Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

Insect Declines in the Anthropocene

Abstract

Insect declines are being reported worldwide for flying, ground, and aquatic lineages. Most reports come from western and northern Europe, where the insect fauna is well-studied and there are considerable demographic data for many taxonomically disparate lineages. Additional cases of faunal losses have been noted from Asia, North America, the Arctic, the Neotropics, and elsewhere. While this review addresses both species loss and population declines, its emphasis is on the latter. Declines of abundant species can be especially worrisome, given that they anchor trophic interactions and shoulder many of the essential ecosystem services of their respective communities. A review of the factors believed to be responsible for observed collapses and those perceived to be especially threatening to insects form the core of this treatment. In addition to widely recognized threats to insect biodiversity, e.g., habitat destruction, agricultural intensification (including pesticide use), climate change, and invasive species, this assessment highlights a few less commonly considered factors such as atmospheric nitrification from the burning of fossil fuels and the effects of droughts and changing precipitation patterns. Because the geographic extent and magnitude of insect declines are largely unknown, there is an urgent need for monitoring efforts, especially across ecological gradients, which will help to identify important causal factors in declines. This review also considers the status of vertebrate insectivores, reporting bias, challenges inherent in collecting and interpreting insect demographic data, and cases of increasing insect abundance.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-ento-011019-025151
    2020-01-07
    2025-11-27
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/ento/65/1/annurev-ento-011019-025151.html?itemId=/content/journals/10.1146/annurev-ento-011019-025151&mimeType=html&fmt=ahah

    Literature Cited

    1. 1. 
      ArcherCR,PirkCWW,CarvalheiroLG,NicolsonSW2014. Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines.Oikos123:401–7
      [Google Scholar]
    2. 2. 
      AsherJ,FoxF,JeffcoateS,HardingP,JeffcoateG et al.2001.The Millennium Atlas of Butterflies in Britain and Ireland Oxford, UK: Oxford Univ. Press
      [Google Scholar]
    3. 3. 
      AshmanT-L,KnightTM,SteetsJA,AmarasekareP,BurdM et al.2004. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences.Ecology85:2408–21
      [Google Scholar]
    4. 4. 
      AttwoodSJ,MaronM,HouseAPN,ZammitC2008. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management?.Glob. Ecol. Biogeogr.17:585–99
      [Google Scholar]
    5. 5. 
      BahlaiCA,Colunga-GarciaM,GageSH,LandisDA2014. The role of exotic ladybeetles in the decline of native ladybeetle populations: evidence from long-term monitoring.Biol. Invas.17:1005–24
      [Google Scholar]
    6. 6. 
      BartomeusI,AscherJS,GibbsJ,DanforthBN,WagnerDL et al.2013. Historical changes in northeastern United States bee pollinators related to shared ecological traits.PNAS110:4656–60
      [Google Scholar]
    7. 7. 
      BartomeusI,StavertJR,WardD,AguadoO2018. Historical collections as a tool for assessing the global pollination crisis.Phil. Trans. R. Soc. B374:2017038
      [Google Scholar]
    8. 8. 
      BaudeM,KuninWE,BoatmanND,ConyersS,DaviesN et al.2016. Historical nectar assessment reveals the fall and rise of floral resources in Britain.Nature530:85–88
      [Google Scholar]
    9. 9. 
      BentonTG,BryantDM,ColeL,CrickHQ2002. Linking agricultural practice to insect and bird populations: a historical study over three decades.J. App. Ecol.39:673–87
      [Google Scholar]
    10. 10. 
      BianchiFJJA,BooijCJH,TscharntkeT2006. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control.Proc. R. Soc. B273:1715–27
      [Google Scholar]
    11. 11. 
      BiesmeijerJC,RobertsSPM,ReemerM,OhlemullerR,EdwardsM et al.2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands.Science313:351–54
      [Google Scholar]
    12. 12. 
      BoggsC.2016. The fingerprints of global climate change on insect populations.Curr. Opin. Insect Sci.17:69–73
      [Google Scholar]
    13. 13. 
      BoyleJH,DalgleishHJ,PuzeyJR2019. Monarch butterfly and milkweed declines substantially predate the use of genetically modified crops.PNAS116:3006–11
      [Google Scholar]
    14. 14. 
      BrooksDR,BaterJE,ClarkSJ,MonteithDT,AndrewsC et al.2012. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity.J. Appl. Biol.49:1009–19
      [Google Scholar]
    15. 15. 
      BrowerLP,TaylorOR,WilliamsEH,SlaybackDA,ZubietaRR,RamírezMI2012. Decline of monarch butterflies overwintering in Mexico: Is the migratory phenomenon at risk?.Insect Conserv. Divers.5:95–100
      [Google Scholar]
    16. 16. 
      BrownPMJ,FrostR,DoberskiJ,SparksT,HarringtonR,RoyHE2011. Decline in native ladybirds in response to the arrival ofHarmonia axyridis: early evidence from England.Ecol. Entomol.36:231–40
      [Google Scholar]
    17. 17. 
      BuckwellA,Armstrong‐BrownS.2004. Changes in farming and future prospects: technology and policy.Ibis146:14–21
      [Google Scholar]
    18. 18. 
      BurghardtKT,TallamyDW,PhilipsC,ShropshireKJ2010. Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities.Ecosphere1:1–22
      [Google Scholar]
    19. 19. 
      BurkleLA,MarkinJC,KnightTM2013. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function.Science339:1611–15
      [Google Scholar]
    20. 20. 
      CameronSA,LimHC,LozierJD,DuennesMA,ThorpR2016. Test of the invasive pathogen hypothesis of bumble bee decline in North America.PNAS113:4386–91
      [Google Scholar]
    21. 21. 
      CameronSA,LozierJD,StrangeJP,KochJB,CordesN et al.2011. Patterns of widespread decline in North American bumble bees.PNAS108:662–67
      [Google Scholar]
    22. 22. 
      CarpanetoGM,MazziottaA,ValerioL2007. Inferring species decline from collection records: roller dung beetles in Italy (Coleoptera, Scarabaeidae).Divers. Distrib.3:903–19
      [Google Scholar]
    23. 23. 
      CeballosG,EhrlichPR,DirzoR2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines.PNAS114:E6089–96
      [Google Scholar]
    24. 24. 
      ChamberlainDE,FullerRJ.2000. Local extinctions and changes in species richness of lowland farmland birds in England and Wales in relation to recent changes in agricultural land-use.Agric. Ecosyst. Environ.78:1–17
      [Google Scholar]
    25. 25. 
      ChapmanTB,VeblenTT,SchoennagelT2012. Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains.Ecology93:2175–85
      [Google Scholar]
    26. 26. 
      ColeLJ,BrocklehurstS,RobertsonD,HarrisonW,McCrackenDI2017. Exploring the interactions between resource availability and the utilization of semi-natural habitats by insect pollinators in an intensive agricultural landscape.Agricult. Ecosyst. Environ.246:157–67
      [Google Scholar]
    27. 27. 
      ColwellRK,BrehmG,CardelúsCL,GilmanAC,LonginoJT2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics.Science322:258–61
      [Google Scholar]
    28. 28. 
      ConradKF,WarrenMS,FoxR,ParsonsMS,WoiwodIP2006. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis.Biol. Conserv.132:279–91
      [Google Scholar]
    29. 29. 
      ConradKF,WoiwodIP,ParsonsM,FoxR,WarrenMS2004. Long-term population trends in widespread British moths.J. Insect Conserv.8:119–36
      [Google Scholar]
    30. 30. 
      CoviellaCE,,TrumbleJT1999. Effects of elevated atmospheric carbon dioxide on insect-plant interactions.Conserv. Biol13:700–12
      [Google Scholar]
    31. 31. 
      DeckerLE,RoodeJC,HunterMD2018. Elevated atmospheric concentrations of carbon dioxide reduce monarch tolerance and increase parasite virulence by altering the medicinal properties of milkweeds.Ecol. Lett.21:1353–63
      [Google Scholar]
    32. 32. 
      DennisEB,BreretonTM,MorganBJT,FoxR,ShortallCR et al.2019. Trends and indicators for quantifying moth abundance and occupancy in Scotland.J. Insect Conserv.23:369–80
      [Google Scholar]
    33. 33. 
      DesenderK,TurinH.1989. Loss of habitats and changes in the composition of the ground and tiger beetle fauna in four West European countries since 1950 (Coleoptera: Carabidae, Cicindelidae).Biol. Conserv.48:277–94
      [Google Scholar]
    34. 34. 
      DirzoR,YoungHS,GalettiM,CeballosG,IsaacNJB,CollenB2014. Defaunation in the Anthropocene.Science345:401–6
      [Google Scholar]
    35. 35. 
      DonaldPF,GreenRE,HeathMF2001. Agricultural intensification and the collapse of Europe's farmland bird populations.Proc. R. Soc. Lond. B268:25–29
      [Google Scholar]
    36. 36. 
      DudleyN,AttwoodSJ,GoulsonD,JarvisD,BharuchaZP,PrettyJ2017. How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems?.Biol. Conserv.209:449–53
      [Google Scholar]
    37. 37. 
      EwaldJA,WheatleyCJ,AebischerNJ,MorebySJ,DuffieldSJ et al.2015. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years.Glob. Change Biol.21:3931–50
      [Google Scholar]
    38. 38. 
      FAO2019.The State of the World's Biodiversity for Food and Agriculture Rome: FAO Commiss. Genet. Res. Food and Agric. Assesshttp://www.fao.org/3/CA3129EN/CA3129EN.pdf
      [Google Scholar]
    39. 39. 
      FoleyJA,DeFriesR,AsnerGP,BarfordC,BonanG et al.2005. Global consequences of land use.Science309:570–74
      [Google Scholar]
    40. 40. 
      ForisterML,CousensB,HarrisonJG,AndersonK,ThorneJH et al.2016. Increasing neonicotinoid use and the declining butterfly fauna of lowland California.Biol. Lett.12:20160475
      [Google Scholar]
    41. 41. 
      ForisterML,FordyceJA,NiceCC,ThorneJH,WaetjenDP,ShapiroAM2018. Impacts of a millennium drought on butterfly faunal dynamics.Clim. Change Respons.5:3
      [Google Scholar]
    42. 42. 
      ForisterML,JahnerJP,CasnerKL,WilsonJS,ShapiroAM2010. The race is not to the swift: Long-term data reveal pervasive declines in California's low-elevation butterfly fauna.Ecology92:2222–35
      [Google Scholar]
    43. 43. 
      ForisterML,NovotnyV,PanorskaAK,BajeL,BassetY et al.2015. The global distribution of diet breadth in insect herbivores.PNAS112:442–47
      [Google Scholar]
    44. 44. 
      ForisterML,PeltonEM,BlackSH2019. Declines in insect abundance and diversity: We know enough to act now.Conserv. Sci. Pract.1:e80
      [Google Scholar]
    45. 45. 
      FoxR.2013. The decline of moths in Great Britain: a review of possible causes.Insect Conserv. Divers.6:5–19
      [Google Scholar]
    46. 46. 
      FoxR,BreretonTM,AsherJ,AugustTA,BothamMS et al.2015.The State of the UK's Butterflies 2015 Wareham, UK: Butterfly Conserv./Cent. Ecol. Hydrol.
      [Google Scholar]
    47. 47. 
      FoxR,BreretonTM,AsherJ,BothamMS,MiddlebrookI et al.2011.The State of the UK's Butterflies 2011 Wareham, UK: Butterfly Conserv./Cent. Ecol. Hydrol.
      [Google Scholar]
    48. 48. 
      FoxR,OliverTH,HarrowerC,ParsonsMS,ThomasCD,RoyDB2014. Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes.J. Appl. Ecol.51:949–57
      [Google Scholar]
    49. 49. 
      FoxR,ParsonsMS,ChapmanJW,WoiwodIP,WarrenMS,BrooksDR2013.The State of Britain's Larger Moths 2013 Wareham, UK: Butterfly Conserv./Rothamsted Res.
      [Google Scholar]
    50. 50. 
      FrankieGW,RizzardiM,VinsonSB,GriswoldTL2009. Decline in bee diversity and abundance from 1972–2004 on a flowering leguminous tree,Andira inermis in Costa Rica at the interface of disturbed dry forest and the urban environment.J. Kans. Entomol. Soc.82:1–20
      [Google Scholar]
    51. 51. 
      FranzénM,JohannessonM.2007. Predicting extinction risk of butterflies and moths (Macrolepidoptera) from distribution patterns and species characteristics.J. Insect Conserv.11:367–90
      [Google Scholar]
    52. 52. 
      Garcia-RobledoC,KuprewiczEC,StainesCL,ErwinTL,KressWJ2016. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.PNAS113:680–85
      [Google Scholar]
    53. 53. 
      GardinerMM,O'NealME,LandisDA2011. Intraguild predation and native lady beetle decline.PLOS ONE6:e23576
      [Google Scholar]
    54. 54. 
      GastonKJ,FullerRA.2007. Biodiversity and extinction: losing the common and the widespread.Prog. Phys. Geogr. Earth Environ.31:213–25
      [Google Scholar]
    55. 55. 
      GastonKJ,FullerRA.2008. Commonness, population depletion and conservation biology.Trends Ecol. Evol.23:14–19
      [Google Scholar]
    56. 56. 
      GhilainA,BélisleM.2008. Breeding success of tree swallows along a gradient of agricultural intensification.Ecol. Appl.18:1140–54
      [Google Scholar]
    57. 57. 
      GilburnAS,BunnefeldN,WilsonJM,BothamMS,BreretonTM et al.2015. Are neonicotinoid insecticides driving declines of widespread butterflies?.PeerJ3:e1402
      [Google Scholar]
    58. 58. 
      GillespieMAK,AlfredssonM,BarrioIC,BowdenJJ,ConveyP et al.2019. Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic.Ambiohttps://doi.org/10.1007/s13280-019-01162-5
      [Crossref][Google Scholar]
    59. 59. 
      GodfrayHCJ,BlacquiereT,FieldLM,HailsRS,PetrokofskyG et al.2014. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators.Proc. Roy. Soc. B281:20140558
      [Google Scholar]
    60. 60. 
      GoulsonD,LyeGC,DarvillB2008. Decline and conservation of bumble bees.Annu. Rev. Entomol.53:191–208
      [Google Scholar]
    61. 61. 
      GoulsonD,NichollsE,BotíasC,RotherayEL2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers.Science347:1255957
      [Google Scholar]
    62. 62. 
      GrabH,BranstetterMG,AmonN,Urban-MeadKR,ParkMG et al.2019. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services.Science363:282–84
      [Google Scholar]
    63. 63. 
      GrubisicM,van GrunsvenRHA,Kyba1CCM,ManfrinA,HölkerF2018. Insect declines and agroecosystems: Does light pollution matter?.J. Appl. Biol.173:180–89
      [Google Scholar]
    64. 64. 
      HabelJC,SamwaysMJ,Schmitt2019. Mitigating the precipitous decline of terrestrial European insects: requirements for a new strategy.Biodivers. Conserv.28:1343–60
      [Google Scholar]
    65. 65. 
      HabelJC,SegererA,UlrichW,TorchykO,WeisserWW,SchmittT2016. Butterfly community shifts over two centuries.Conserv. Biol.30:754–62
      [Google Scholar]
    66. 66. 
      HahnM,BruhlCA.2016. The secret pollinators: an overview of moth pollination with a focus on Europe and North America.Arthropod-Plant Interact10:21–28
      [Google Scholar]
    67. 67. 
      HallmannCA,FoppenRP,van TurnhoutCA,de KroonH,JongejansE2014. Declines in insectivorous birds are associated with high neonicotinoid concentrations.Nature511:341–43
      [Google Scholar]
    68. 68. 
      HallmannCA,SorgM,JongejansE,SiepelH,HoflandN et al.2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas.PLOS ONE12:10e0185809
      [Google Scholar]
    69. 69. 
      HanulaJL,HornS,O'BrienJJ2015. Have changing forests conditions contributed to pollinator decline in the southeastern United States?.For. Ecol. Manag.348:142–52
      [Google Scholar]
    70. 70. 
      HarmonJP,StephensE,LoseyJ2007. The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada.J. Insect Conserv.11:85–94
      [Google Scholar]
    71. 71. 
      Harmon-ThreattA.2020 Intersections of nesting and threats to wild bee communities.Annu. Rev. Entomol.65:39–56
      [Google Scholar]
    72. 72. 
      HarrisJE,RodenhouseNL,HolmesRT2019. Decline in beetle abundance and diversity in an intact temperate forest linked to climate warming.Biol. Conserv. In press
      [Google Scholar]
    73. 73. 
      HaysomK,DekkerJ,RussJ,van der MeijT,van StrienA2014.European bat population trends Tech. Rep., Eur. Env. Agency Copenhagen:
      [Google Scholar]
    74. 74. 
      HelmerEH,GersonEA,BaggettLS,BirdBJ,RuzyckiTS,VoggesserSM2019. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost.PLOS ONE14:e0213155
      [Google Scholar]
    75. 75. 
      HelmuthB,RussellBD,ConnellSD,DongY,HarleyCDG et al.2014. Beyond long-term averages: making biological sense of a rapidly changing world.Clim. Change Responses1:6
      [Google Scholar]
    76. 76. 
      HerreraCM.2019. Complex long-term dynamics of pollinator abundance in undisturbed Mediterranean montane habitats over two decades.Ecol. Monogr.89:1e01338
      [Google Scholar]
    77. 77. 
      HofmannMM,FleischmannA,RennerSS2018. Changes in the bee fauna of a German botanical garden between 1997 and 2017, attributable to mate warming, not other parameters.Oecologia187:701–6
      [Google Scholar]
    78. 78. 
      HolzschuhA,DormannCF,TscharntkeT,Steffan-DewenterI2011. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination.Proc. R. Soc. B278:3444–51
      [Google Scholar]
    79. 79. 
      HøyeTT,PostE,SchmidtNM,TrøjelsgaardK,ForchhammerMC2013. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic.Nat. Clim. Change3:759–63
      [Google Scholar]
    80. 80. 
      HumphreysAM,GovaertsR,FicinskiS,Nic LughadhaE,VorontsovaMS2019. Global dataset shows geography and life form predict modern plant extinction and rediscovery.Nat. Ecol. Evol.3:1043–47
      [Google Scholar]
    81. 81. 
      HunterMD.2001. Effects of elevated atmospheric carbon dioxide on insect–plant interactions.Agric. For. Entomol.3:153–59
      [Google Scholar]
    82. 82. 
      HunterMD,KozlovMV,ItämiesJ,PulliainenE,Bäck et al.2014. Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths.Glob. Change Biol.20:1723–37
      [Google Scholar]
    83. 83. 
      InamineH,EllnerSP,SpringerJP,AgrawalAA2016. Linking the continental migratory cycle of the monarch butterfly to understand its population decline.Oikos125:1081–91
      [Google Scholar]
    84. 84. 
      IPBES2018.The Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia Bonn, Ger.: Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.
      [Google Scholar]
    85. 85. 
      IPCC (Intergov. Panel Clim. Change)2014.Climate Change 2014: Mitigation of Climate Change Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    86. 86. 
      JanzenDH.1974. The deflowering of Central America.Nat. Hist.83:48–53
      [Google Scholar]
    87. 87. 
      JanzenDH,HallwachsW.2019. Where might be many tropical insects?.Biol. Conserv.233:102–8
      [Google Scholar]
    88. 88. 
      JarvisB.2018. The insect apocalypse is here.New York Times Magazine, Dec.2:41
      [Google Scholar]
    89. 89. 
      JonesG,JacobsD,KunzT,WilligM,RaceyP2009. Carpe noctem: the importance of bats as bioindicators.Endanger. Species Res.8:93–115
      [Google Scholar]
    90. 90. 
      KarbanR,HuntzingerM.2019. Decline of meadow spittlebugs, a previously abundant insect, along the California coast.Ecology99:2614–16
      [Google Scholar]
    91. 91. 
      KemptonRA.1979. The structure of species abundance and measurement of diversity.Biometrics35:307–21
      [Google Scholar]
    92. 92. 
      KerrJT,PindarA,GalpernP,PackerL,PottsSG et al.2015. Cross-continental convergence of climate change impacts on bumblebees.Science349:177–80
      [Google Scholar]
    93. 93. 
      KleijnD,KohlerF,BaldiA,BatáryP,ConcepcionED et al.2009. On the relationship between farmland biodiversity and land-use intensity in Europe.Proc. R. Soc. B276:903–9
      [Google Scholar]
    94. 94. 
      KleinAM,VaissièreBE,CaneJH,Steffan-DewenterI,CunninghamSA et al.2007. Importance of pollinators in changing landscapes for world crops.Proc. R. Soc. B274:303–13
      [Google Scholar]
    95. 95. 
      KnightTM,SteetsJA,VamosiJC,MazerSJ,BurdM et al.2005. Pollen limitation of plant reproduction: pattern and process.ARES36:467–49
      [Google Scholar]
    96. 96. 
      KnopE,ZollerL,RyserR,GerpeC,HörlerM,FontaineC2017. Artificial light at night as a new threat to pollination.Nature548:206–9
      [Google Scholar]
    97. 97. 
      KolbTE,FettigCJ,AyresMP,BentzBJ,HickeJA et al.2016. Observed and anticipated impacts of drought on forest insects and diseases in the United States.For. Ecol. Manag.380:321–34
      [Google Scholar]
    98. 98. 
      KolbertE.2014.The Sixth Extinction: An Unnatural History New York: Henry Holt
      [Google Scholar]
    99. 99. 
      KomonenA,HalmeP,KotiahoJS2019. Alarmist by bad design: Strongly popularized unsubstantiated claims undermine credibility of conservation science.Rethink. Ecol.4:17–19
      [Google Scholar]
    100. 100. 
      KosiorA,CelaryW,OlejniczakP,FijałJ,KrólW et al.2007. The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of western and central Europe.Oryx41:79–88
      [Google Scholar]
    101. 101. 
      KremenC.2018. The value of pollinator species diversity.Science359:741–42
      [Google Scholar]
    102. 102. 
      KremenC,MerenlenderAM.2018. Landscapes that work for biodiversity and people.Science362:eaau6020
      [Google Scholar]
    103. 103. 
      KremenC,MilesA.2012. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs.Ecol. Soc.17:40
      [Google Scholar]
    104. 104. 
      KremenC,WilliamsNM,ThorpRW2002. Crop pollination from native bees at risk from agricultural intensification.PNAS99:16812–16
      [Google Scholar]
    105. 105. 
      KrupkeCH,HollandJD,LongEY,EitzerBD2017. Planting of neonicotinoid-treated maize poses risks for honey bees and other non-target organisms over a wide area without consistent crop yield benefit.J. Appl. Ecol.54:1449–58
      [Google Scholar]
    106. 106. 
      LämsaJ,KuuselaE,TuomiJ,JuntunenS,WattsPC2018. Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees.Proc. R. Soc. B285:20180506
      [Google Scholar]
    107. 107. 
      LawlerJJ,AukemaJE,GrantJB,HalperBS,KareivaP et al.2006. Conservation science: a 20-year report card.Front. Ecol. Environ.4:473–80
      [Google Scholar]
    108. 108. 
      LeatherSR.2018. “Ecological Armageddon”: more evidence for the drastic decline in insect numbers.Ann. Appl. Biol.172:1–3
      [Google Scholar]
    109. 109. 
      ListerB,GarciaA.2018. Climate-driven declines in arthropod abundance restructure a rainforest food web.PNAS115:44E10397–406
      [Google Scholar]
    110. 110. 
      LobodaS,SavageJ,BuddleCM,SchmidtNM,HøyeTT2018. Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming.Ecography41:265–77
      [Google Scholar]
    111. 111. 
      LockwoodJA.2005.Locust: The Devastating Rise and Mysterious Disappearance of the Insect that Shaped the American Frontier New York: Basic Books
      [Google Scholar]
    112. 112. 
      LoseyJE,VaughanM.2006. The economic value of ecological services provided by insects.BioScience56:311–23
      [Google Scholar]
    113. 113. 
      MaG,RudolfVHW,MaC-S2014. Extreme temperature events alter demographic rates, relative fitness, and community structure.Glob. Change Biol.21:1794–808
      [Google Scholar]
    114. 114. 
      MaesD,Van DyckH2001. Butterfly diversity loss in Flanders (north Belgium): Europe's worst case scenario?.Biol. Conserv.99:263–76
      [Google Scholar]
    115. 115. 
      MalcolmSB.2018. Anthropogenic impacts on mortality and population viability of the monarch butterfly.Annu. Rev. Entomol.63:277–302
      [Google Scholar]
    116. 116. 
      MathiassonME,RehanSM.2019. Status changes in the wild bees of north-eastern North America over 125 years revealed through museum specimens.Insect Conserv. Biodivers.12:278–88
      [Google Scholar]
    117. 117. 
      MattilaN,KaitalaV,KomonenA,KotiahoJS,PäivinenJ2006. Ecological determinants of distribution decline and risk of extinction in moths.Conserv. Biol.20:1161–68
      [Google Scholar]
    118. 118. 
      MaxwellSL,FullerRA,BrooksTM,WatsonJEM2016. The ravages of guns, nets and bulldozers.Nature536:143–45
      [Google Scholar]
    119. 119. 
      McCrackenGF.1986. Why are we losing our Mexican free-tailed bats?.Bats3:1–4
      [Google Scholar]
    120. 120. 
      McCrackenGF.2003. Estimates of population sizes in summer colonies of estimates of population sizes in summer colonies of Brazilian Free-Tailed Bats (Tadarida brasiliensis)..Monitoring Trends in Bat Populations United States and Territories: Problems and Prospects TJ O'Shea, MA Bogan21–30 Washington, DC: US Dep. Inter.
      [Google Scholar]
    121. 121. 
      McFadyenREC.1998. Biological control of weeds.Annu. Rev. Entomol.43:369–93
      [Google Scholar]
    122. 122. 
      MeeusI,BrownMJF,De GraafDC,SmaggheG2011. Effects of invasive parasites on bumble bee declines.Conserv. Biol.25:662–71
      [Google Scholar]
    123. 123. 
      MurphyMT.2003. Avian population trends within the evolving agricultural landscape of eastern and central United States.Auk120:20–34
      [Google Scholar]
    124. 124. 
      NarangoDL,TallamyDW,MarraPP2017. Native plants improve breeding and foraging habitat for an insectivorous bird.Biol. Conserv.213:42–50
      [Google Scholar]
    125. 125. 
      NarangoDL,TallamyDW,MarraPP2018. Nonnative plants reduce population growth of an insectivorous bird.PNAS15:11549–54
      [Google Scholar]
    126. 126. 
      Natl. Acad. Sci., Natl. Res. Counc2006.Status of Pollinators in North America Washington, DC: Natl. Acad. Press
      [Google Scholar]
    127. 127. 
      NebelS,MillsA,McCrackenJD,TaylorPD2010. Declines of aerial insectivores in North America follow a geographic gradient.Avian Conserv. Ecol.5:1
      [Google Scholar]
    128. 128. 
      NemesioA.2013. Are orchid bees at risk? First comparative survey suggests declining populations of forest-dependent species.Braz. J. Biol.73:367–74
      [Google Scholar]
    129. 129. 
      NewboldT,LawrenceNH,ContuS,HillSLL,BeckJ et al.2018. Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide.PLOS Biol16:12e2006841
      [Google Scholar]
    130. 130. 
      NewtonI.2004. The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions.Ibis146:579–600
      [Google Scholar]
    131. 131. 
      NilssonSG,FranzénM,JönssonE2008. Long-term land-use changes and extinction of specialised butterflies.Insect Conserv. Divers.1:197–207
      [Google Scholar]
    132. 132. 
      NoceraJJ,BlaisJM,BeresfordDV,FinityLK,GroomsC et al.2012. Historical pesticide applications coincided with an altered diet of aerially foraging insectivorous Chimney Swifts.Proc. R. Soc. Lond. B279:3114–20
      [Google Scholar]
    133. 133. 
      NoriegaJA,HortalJ,AzcárateFM,BergMP,BonadaN et al.2018. Research trends in ecosystem services provided by insects.Basic Appl. Ecol.26:8–23
      [Google Scholar]
    134. 134. 
      ÖckingerE,HammarstedtO,NilssonSG,SmithHG2006. The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels.Biol. Conserv.128:564–73
      [Google Scholar]
    135. 135. 
      OllertonJ,WinfreeR,TarrantS2011. How many flowering plants are pollinated by animals?.Oikos120:321–26
      [Google Scholar]
    136. 136. 
      OrmerodSJ,MarshallEJP,KerbyG,RushtonSP2003. Meeting the ecological challenges of agricultural change: editors’ introduction.J. Appl. Ecol.40:939–46
      [Google Scholar]
    137. 137. 
      OwensACS,LewisSM.2018. The impact of artificial light at night on nocturnal insects: a review and synthesis.Ecol. Evol.8:11337–58
      [Google Scholar]
    138. 138. 
      ParainEC,RohrRP,GraySM,BersierL-F2019. Increased temperature disrupts the biodiversity-ecosystem functioning relationship.Am. Nat.193:227–39
      [Google Scholar]
    139. 139. 
      PardikesN,ShapiroAM,DyerLA,ForisterML2015. Global weather and local butterflies: variable responses to a large-scale climate pattern along an elevational gradient.Ecology96:2891–901
      [Google Scholar]
    140. 140. 
      PhillipsBB,ShawRF,HollandMJ,FryEL,BardgettRD et al.2018. Drought reduces floral resources for pollinators.Glob. Change Biol.24:3226–35
      [Google Scholar]
    141. 141. 
      PhoenixGK,EmmettBA,BrittonAJ,CapornSJ,DiseNB et al.2012. Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments.Glob. Change Biol.18:1197–215
      [Google Scholar]
    142. 142. 
      PielkeRASr.,RezaulM,McAlpineC.2016. Land's complex role in climate change.Phys. Today69:1140
      [Google Scholar]
    143. 143. 
      PisaLW,Amaral-RogersV,BelzuncesLP,BonmatinJM,GoulsonD et al.2015. Effects of neonicotinoids and fipronil on non-target invertebrates.Environ. Sci. Pollut. Res.22:68–102
      [Google Scholar]
    144. 144. 
      PortmanZM,TepedinoVJ,TripodiAD,SzalanskiAL,DurhamSL2018. Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees.Biol. Invas.20:593–606
      [Google Scholar]
    145. 145. 
      PottsSG,BiesmeijerJC,KremenC,NeumannP,SchweigerO,KuninWE2010. Global pollinator declines: trends, impacts and drivers.Trends Ecol. Evol.25:345–53
      [Google Scholar]
    146. 146. 
      PowneyGD,CarvellC,EdwardsM,MorrisRKA,RoyHE et al.2019. Widespread losses of pollinating insects in Britain.Nat. Commun.10:1018
      [Google Scholar]
    147. 147. 
      PricePW.1980.Evolutionary Biology of Parasites Princeton, NJ: Princeton Univ. Press
      [Google Scholar]
    148. 148. 
      RadaS,SchweigerO,HarpkeA,KühnE,KurasT et al.2019. Protected areas do not mitigate biodiversity declines: a case study on butterflies.Biodivers. Res.25:217–24
      [Google Scholar]
    149. 149. 
      RaffaKF,PowellEN,TownsendPA2012. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses.PNAS110:2193–98
      [Google Scholar]
    150. 150. 
      RazengE,WatsonDM.2012. What do declining woodland birds eat? A synthesis of dietary records.Emu112:149–56
      [Google Scholar]
    151. 151. 
      RichardM,TallamyDW,MitchellAB2018. Introduced plants reduced species interactions.Biol. Invas.21:983–92
      [Google Scholar]
    152. 152. 
      Rioux PaquetteS,PelletierF,GarantD,BelisleM2014. Severe recent decrease of adult body mass in a declining insectivorous bird population.Proc. R. Soc. B.281:20140649
      [Google Scholar]
    153. 153. 
      RoubikDW.2001. Ups and downs in pollinator populations: When is there a decline?.Ecol. Soc.5:12
      [Google Scholar]
    154. 154. 
      SalaOE,ChapinFSIII,ArmestoJJ,BerlowE,BloomfieldJ et al.2000. Global biodiversity scenarios for the year 2100.Science287:1770–74
      [Google Scholar]
    155. 155. 
      SalesK,VasudevaR,DickinsonME,GodwinJL,LumleyAJ2018. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect.Nat. Commun.13:4771
      [Google Scholar]
    156. 156. 
      Sánchez-BayoF,WyckhuysKAG.2019. Worldwide decline of the entomofauna: a review of its drivers.Biol. Conserv.232:8–27
      [Google Scholar]
    157. 157. 
      ScheeleBC,PasmansF,SkerrattLF,BergerL,MartelA et al.2019. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity.Science363:1459–63
      [Google Scholar]
    158. 158. 
      SchirmelJ,BundschuhM,EntlingMH,KowarikI,BuchholzS2015. Impacts of invasive plants on resident animals across ecosystems, taxa, and feeding types: a global assessment.Glob. Change Biol.22:594–603
      [Google Scholar]
    159. 159. 
      SchuchS,WescheK,SchaeferM2012. Long-term decline in the abundance of leafhoppers and plant-hoppers (Auchenorrhyncha) in Central European protected dry grasslands.Biol. Conserv.149:75–83
      [Google Scholar]
    160. 160. 
      SchweitzerDF.2017. Current versus mid-20th century statuses of moths with big summer caterpillars (Saturniidae, Sphingidae,Datana) in northern New Jersey and eastern Pennsylvania.Newsl. Lepid. Soc.59:134–41
      [Google Scholar]
    161. 161. 
      SchweitzerDF.2017. Fluctuations of moths with big summer caterpillars (Saturniidae, Sphingidae,Datana) in early 21st century northwestern New Jersey, USA.Newsl. Lepid. Soc.59:186–89
      [Google Scholar]
    162. 162. 
      SimberloffD,MartinJL,GenovesiP,MarisV,WardleDA et al.2013. Impacts of biological invasions: what's what and the way forward.Trends Ecol. Evol.28:58–66
      [Google Scholar]
    163. 163. 
      SorgM,SchwanH,StenmansW,MüllerA2013.Ermittlung der Biomassen flugaktiver Insekten im Naturschutzgebiet Orbroicher Bruch mit Malaise-Fallen in den Jahren 1989 und 2013 Krefeld, Ger.: Entomol. Ver.
      [Google Scholar]
    164. 164. 
      StavertJR,PattemoreDE,BartomeusI,GaskettAC,BeggsJR2018. Exotic flies maintain pollination services as native pollinators decline with agricultural expansion.J. Appl. Ecol.55:1737–46
      [Google Scholar]
    165. 165. 
      StefanescuC,PeñuelasJ,FilellaI2009. Rapid changes in butterfly communities following the abandonment of grasslands: a case study.Insect Conserv. Divers.2:261–69
      [Google Scholar]
    166. 166. 
      StenoienC,NailKR,ZaluckiJM,ParryH,OberhauserKS et al.2016. Monarchs in decline: a collateral landscapelevel effect of modern agriculture.Insect Sci25:528–41
      [Google Scholar]
    167. 167. 
      StepanianPM,WainwrightCE.2017. Ongoing changes in migration phenology and winter residency at Bracken Bat Cave.Glob. Change Biol.24:3266–75
      [Google Scholar]
    168. 168. 
      StokstadE.2018. New global study reveals the ‘staggering’ loss of forests caused by industrial agriculture.Science Sept. 13.https://www.sciencemag.org/news/2018/09/scientists-reveal-how-much-world-s-forests-being-destroyed-industrial-agriculture
      [Google Scholar]
    169. 169. 
      StorkN.2018. How many species of insects and other terrestrial arthropods are there on Earth?.Annu. Rev. Entomol.63:31–45
      [Google Scholar]
    170. 170. 
      StrongDR,LawtonJH,SouthwoodSR1984.Insects on Plants: Community Patterns and Mechanisms Cambridge, MA: Harvard Univ. Press
      [Google Scholar]
    171. 171. 
      SyktusJI,McAlpineCA.2016. More than carbon sequestration: biophysical climate benefits of restored savanna woodlands.Sci. Rep.6:29194
      [Google Scholar]
    172. 172. 
      ThogmartinWE,DiffendorferJE,Lopez-HoffmanL,OberhauserK,PleasantsJ et al.2017. Density estimates of monarch butterflies overwintering in central Mexico.PeerJ5:e3221
      [Google Scholar]
    173. 173. 
      ThomasCD,JonesTH,HartleySE2019. “Insectageddon”: a call for more robust data and rigorous analyses.Glob. Change Biol.25:1891–92
      [Google Scholar]
    174. 174. 
      ThomasJA.2016. Butterfly communities under threat.Science353:216–18
      [Google Scholar]
    175. 175. 
      ThomasJA,ClarkeRT.2004. Extinction rates and butterflies.Science305:1563–64
      [Google Scholar]
    176. 176. 
      ThomasJA,TelferMG,RoyDB,PrestonCD,GreenwoodJ et al.2004. Comparative losses of British butterflies, birds, and plants and the global extinction crisis.Science303:1879–81
      [Google Scholar]
    177. 177. 
      ThompsonJN.1996. Evolutionary ecology and the conservation of biodiversity.Trends Ecol. Evol.11:300–3
      [Google Scholar]
    178. 178. 
      ThompsonJN.1997. Conserving interaction biodiversity.The Ecological Basis of Conservation: Heterogeneity, Ecosystems, and Biodiversity S Pickett, RS Ostfeld, M Shachak, GE Likens285–93 New York: Chapman & Hall
      [Google Scholar]
    179. 179. 
      ThorpRW,ShepherdMD.2005. Profile: subgenusBombus.Red List of Pollinator Insects of North America MD Shepherd, DM Vaughan, SH Black Portland, OR: Xerces Soc. Invertebr. Conserv.
      [Google Scholar]
    180. 180. 
      TilmanD.1983. Some thoughts on resource competition and diversity in plant communities.Mediter.-Type Ecosyst.43:322–36
      [Google Scholar]
    181. 181. 
      TscharntkeT,KleinAM,KruessA,Steffan-DewenterI,ThiesC2005. Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management.Ecol. Lett.8:857–74
      [Google Scholar]
    182. 182. 
      UrbanM.2015. Accelerating extinction risk from climate change.Science348:571–73
      [Google Scholar]
    183. 183. 
      van LangeveldeF,Braamburg-AnnegarnM,HuigensME,GroendijkR,PoitevinO et al.2018. Declines in moth populations stress the need for conserving dark nights.Glob. Change Biol.24:925–32
      [Google Scholar]
    184. 184. 
      Vanbergen AJ, Insect Pollinat. Initiat2013. Threats to an ecosystem service: pressures on pollinators.Front. Ecol. Environ.11:251–59
      [Google Scholar]
    185. 185. 
      VilàM,EspinarJL,HejdaM,HulmePE,JarošíkV et al.2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems.Ecol. Lett.14:702–8
      [Google Scholar]
    186. 186. 
      VogelG.2017. Where have all the insects gone?.Science356:576–79
      [Google Scholar]
    187. 187. 
      WagnerDL.2007. Butterfly conservation.Connecticut Butterfly Atlas JE O'Donnell, LF Gall, DL Wagner289–309 Hartford, CT: Conn. Dep. Env. Protect.
      [Google Scholar]
    188. 188. 
      WagnerDL.2012. Moth decline in the Northeastern United States.Newsl. Lepid. Soc.54:52–56
      [Google Scholar]
    189. 189. 
      WagnerDL.2017. Trends in biodiversity: insects.InEncyclopedia of the Anthropocene3 DA DellaSala, MI Goldstein131–43 Amsterdam: Elsevier
      [Google Scholar]
    190. 190. 
      WagnerDL2019. Global insect decline: comments on Sánchez-Bayo and Wyckhuys.Biol. Conserv.233:332–33
      [Google Scholar]
    191. 191. 
      WagnerDL,ToddK.2015. Ecological impacts of the emerald ash borer.Biology and Control of Emerald Ash Borer RG Van Driesche15–63 Morgantown, WV: US Dep. Agric.
      [Google Scholar]
    192. 192. 
      WagnerDL,Van DriescheRG2010. Threats posed to rare or endangered insects by invasions of non-native species.Annu. Rev. Entomol.55:547–68
      [Google Scholar]
    193. 193. 
      Wallis de VriesMF,van SwaayCAM2017. A nitrogen index to track changes in butterfly species assemblages under nitrogen deposition.Biol. Conserv.212:448–53
      [Google Scholar]
    194. 194. 
      WarrenMS.2019. Conserving British butterflies: progress against the odds.Newsl. Lepid. Soc.61:3–6
      [Google Scholar]
    195. 195. 
      WarrenMS,HillJK,ThomasJA,AsherJ,FoxR et al.2001. Rapid responses of British butterflies to opposing forces of climate and habitat change.Nature414:65–69
      [Google Scholar]
    196. 196. 
      WarrenR,PriceJ,GrahamE,ForstenhaeuslerN,VanDerWalJ2018. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C.Science360:791–95
      [Google Scholar]
    197. 197. 
      WatsonDM.2011. A productivity-based explanation for woodland bird declines: poorer soils yield less food.Emu111:10–18
      [Google Scholar]
    198. 198. 
      WeisseM,GoldmanED.2019. The world lost a Belgium-sized area of primary rainforests last year.World Resources Institute Blog Apr. 25.https://www.wri.org/blog/2019/04/world-lost-belgium-sized-area-primary-rainforests-last-year
      [Google Scholar]
    199. 199. 
      WepprichT,AdrionJR,RiesL,WiedmannJ,HaddadNM2019. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA.PLOS ONE14:7e0216270
      [Google Scholar]
    200. 200. 
      WhitePJT.2018. An aerial approach to investigating the relationship between macromoths and artificial nighttime lights across an urban landscape.J. Agric. Urban Entomol.34:1–14
      [Google Scholar]
    201. 201. 
      WilcoveDS,RothsteinD,DubowJ,PhillipsA,LososE1998. Quantifying threats to imperiled species in the United States.BioScience48:607–15
      [Google Scholar]
    202. 202. 
      WilliamsPH,OsborneJL.2009. Bumblebee vulnerability and conservation worldwide.Apidologie40:367–87
      [Google Scholar]
    203. 203. 
      WilligMR,WoolbrightL,PresleyS,SchowalterTD,WaideRB et al.2019. Populations are not declining and food webs are not collapsing at the Luquillo Experimental Forest.PNAS116:2512143–44
      [Google Scholar]
    204. 204. 
      WilsonEO.1987. The little things that run the world: the importance and conservation of invertebrates.Conserv. Biol.1:344–46
      [Google Scholar]
    205. 205. 
      WilsonEO.2002.The Future of Life London: Abacus
      [Google Scholar]
    206. 206. 
      WilsonEO.2016.Half-Earth:Our Planet's Fight for Life New York: Leveright
      [Google Scholar]
    207. 207. 
      WilsonJF,BakerD,CheneyJ,CookM,EllisM et al.2018. A role for artificial night-time lighting in long-term changes in populations of 100 widespread macro-moths in UK and Ireland: a citizen-science study.J. Insect Conserv.22:189–96
      [Google Scholar]
    208. 208. 
      WinfreeR.2010. The conservation and restoration of wild bees.Ann. N. Y. Acad. Sci.1195:169–97
      [Google Scholar]
    209. 209. 
      WinfreeRW,FoxJ,WilliamsNM,ReillyJR,CariveauDP2015. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service.Ecol. Lett.18:626–35
      [Google Scholar]
    210. 210. 
      WinfreeRW,ReillyJR,BartomeusI,CariveauDP,WilliamsNM et al.2018. Species turnover promotes the importance of bee diversity for crop pollination at regional scales.Science359:791–93
      [Google Scholar]
    211. 211. 
      WoodTJ,GoulsonD.2017. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013.Environ. Sci. Pollut. Res. Int.24:2117285–325
      [Google Scholar]
    212. 212. 
      YangLH,GrattonC.2014. Insects as drivers of ecosystem processes.Curr. Opin. Insect Sci.2:26–32
      [Google Scholar]
    213. 213. 
      YoungBE,AuerS,OrmesM,RapacciuoloG,SchweitzerD2017. Are pollinating hawk moths declining in the Northeastern United States? An analysis of collection records.PLOS ONE12:10e0185683
      [Google Scholar]
    214. 214. 
      ZiskaLH,PettisJS,EdwardsJ,HancockJE,TomecekMB et al.2016. Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees.Proc. R. Soc. B283:20160414
      [Google Scholar]
    /content/journals/10.1146/annurev-ento-011019-025151
    Loading
    Insect Declines in the Anthropocene
    Annual Review of Entomology65, 457 (2020);https://doi.org/10.1146/annurev-ento-011019-025151
    /content/journals/10.1146/annurev-ento-011019-025151
    /content/journals/10.1146/annurev-ento-011019-025151
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/ento
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-ento-011019-025151
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. 1. 
      ArcherCR,PirkCWW,CarvalheiroLG,NicolsonSW2014. Economic and ecological implications of geographic bias in pollinator ecology in the light of pollinator declines.Oikos123:401–7
      [Google Scholar]
    2. 2. 
      AsherJ,FoxF,JeffcoateS,HardingP,JeffcoateG et al.2001.The Millennium Atlas of Butterflies in Britain and Ireland Oxford, UK: Oxford Univ. Press
      [Google Scholar]
    3. 3. 
      AshmanT-L,KnightTM,SteetsJA,AmarasekareP,BurdM et al.2004. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences.Ecology85:2408–21
      [Google Scholar]
    4. 4. 
      AttwoodSJ,MaronM,HouseAPN,ZammitC2008. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management?.Glob. Ecol. Biogeogr.17:585–99
      [Google Scholar]
    5. 5. 
      BahlaiCA,Colunga-GarciaM,GageSH,LandisDA2014. The role of exotic ladybeetles in the decline of native ladybeetle populations: evidence from long-term monitoring.Biol. Invas.17:1005–24
      [Google Scholar]
    6. 6. 
      BartomeusI,AscherJS,GibbsJ,DanforthBN,WagnerDL et al.2013. Historical changes in northeastern United States bee pollinators related to shared ecological traits.PNAS110:4656–60
      [Google Scholar]
    7. 7. 
      BartomeusI,StavertJR,WardD,AguadoO2018. Historical collections as a tool for assessing the global pollination crisis.Phil. Trans. R. Soc. B374:2017038
      [Google Scholar]
    8. 8. 
      BaudeM,KuninWE,BoatmanND,ConyersS,DaviesN et al.2016. Historical nectar assessment reveals the fall and rise of floral resources in Britain.Nature530:85–88
      [Google Scholar]
    9. 9. 
      BentonTG,BryantDM,ColeL,CrickHQ2002. Linking agricultural practice to insect and bird populations: a historical study over three decades.J. App. Ecol.39:673–87
      [Google Scholar]
    10. 10. 
      BianchiFJJA,BooijCJH,TscharntkeT2006. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control.Proc. R. Soc. B273:1715–27
      [Google Scholar]
    11. 11. 
      BiesmeijerJC,RobertsSPM,ReemerM,OhlemullerR,EdwardsM et al.2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands.Science313:351–54
      [Google Scholar]
    12. 12. 
      BoggsC.2016. The fingerprints of global climate change on insect populations.Curr. Opin. Insect Sci.17:69–73
      [Google Scholar]
    13. 13. 
      BoyleJH,DalgleishHJ,PuzeyJR2019. Monarch butterfly and milkweed declines substantially predate the use of genetically modified crops.PNAS116:3006–11
      [Google Scholar]
    14. 14. 
      BrooksDR,BaterJE,ClarkSJ,MonteithDT,AndrewsC et al.2012. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity.J. Appl. Biol.49:1009–19
      [Google Scholar]
    15. 15. 
      BrowerLP,TaylorOR,WilliamsEH,SlaybackDA,ZubietaRR,RamírezMI2012. Decline of monarch butterflies overwintering in Mexico: Is the migratory phenomenon at risk?.Insect Conserv. Divers.5:95–100
      [Google Scholar]
    16. 16. 
      BrownPMJ,FrostR,DoberskiJ,SparksT,HarringtonR,RoyHE2011. Decline in native ladybirds in response to the arrival ofHarmonia axyridis: early evidence from England.Ecol. Entomol.36:231–40
      [Google Scholar]
    17. 17. 
      BuckwellA,Armstrong‐BrownS.2004. Changes in farming and future prospects: technology and policy.Ibis146:14–21
      [Google Scholar]
    18. 18. 
      BurghardtKT,TallamyDW,PhilipsC,ShropshireKJ2010. Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities.Ecosphere1:1–22
      [Google Scholar]
    19. 19. 
      BurkleLA,MarkinJC,KnightTM2013. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function.Science339:1611–15
      [Google Scholar]
    20. 20. 
      CameronSA,LimHC,LozierJD,DuennesMA,ThorpR2016. Test of the invasive pathogen hypothesis of bumble bee decline in North America.PNAS113:4386–91
      [Google Scholar]
    21. 21. 
      CameronSA,LozierJD,StrangeJP,KochJB,CordesN et al.2011. Patterns of widespread decline in North American bumble bees.PNAS108:662–67
      [Google Scholar]
    22. 22. 
      CarpanetoGM,MazziottaA,ValerioL2007. Inferring species decline from collection records: roller dung beetles in Italy (Coleoptera, Scarabaeidae).Divers. Distrib.3:903–19
      [Google Scholar]
    23. 23. 
      CeballosG,EhrlichPR,DirzoR2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines.PNAS114:E6089–96
      [Google Scholar]
    24. 24. 
      ChamberlainDE,FullerRJ.2000. Local extinctions and changes in species richness of lowland farmland birds in England and Wales in relation to recent changes in agricultural land-use.Agric. Ecosyst. Environ.78:1–17
      [Google Scholar]
    25. 25. 
      ChapmanTB,VeblenTT,SchoennagelT2012. Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains.Ecology93:2175–85
      [Google Scholar]
    26. 26. 
      ColeLJ,BrocklehurstS,RobertsonD,HarrisonW,McCrackenDI2017. Exploring the interactions between resource availability and the utilization of semi-natural habitats by insect pollinators in an intensive agricultural landscape.Agricult. Ecosyst. Environ.246:157–67
      [Google Scholar]
    27. 27. 
      ColwellRK,BrehmG,CardelúsCL,GilmanAC,LonginoJT2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics.Science322:258–61
      [Google Scholar]
    28. 28. 
      ConradKF,WarrenMS,FoxR,ParsonsMS,WoiwodIP2006. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis.Biol. Conserv.132:279–91
      [Google Scholar]
    29. 29. 
      ConradKF,WoiwodIP,ParsonsM,FoxR,WarrenMS2004. Long-term population trends in widespread British moths.J. Insect Conserv.8:119–36
      [Google Scholar]
    30. 30. 
      CoviellaCE,,TrumbleJT1999. Effects of elevated atmospheric carbon dioxide on insect-plant interactions.Conserv. Biol13:700–12
      [Google Scholar]
    31. 31. 
      DeckerLE,RoodeJC,HunterMD2018. Elevated atmospheric concentrations of carbon dioxide reduce monarch tolerance and increase parasite virulence by altering the medicinal properties of milkweeds.Ecol. Lett.21:1353–63
      [Google Scholar]
    32. 32. 
      DennisEB,BreretonTM,MorganBJT,FoxR,ShortallCR et al.2019. Trends and indicators for quantifying moth abundance and occupancy in Scotland.J. Insect Conserv.23:369–80
      [Google Scholar]
    33. 33. 
      DesenderK,TurinH.1989. Loss of habitats and changes in the composition of the ground and tiger beetle fauna in four West European countries since 1950 (Coleoptera: Carabidae, Cicindelidae).Biol. Conserv.48:277–94
      [Google Scholar]
    34. 34. 
      DirzoR,YoungHS,GalettiM,CeballosG,IsaacNJB,CollenB2014. Defaunation in the Anthropocene.Science345:401–6
      [Google Scholar]
    35. 35. 
      DonaldPF,GreenRE,HeathMF2001. Agricultural intensification and the collapse of Europe's farmland bird populations.Proc. R. Soc. Lond. B268:25–29
      [Google Scholar]
    36. 36. 
      DudleyN,AttwoodSJ,GoulsonD,JarvisD,BharuchaZP,PrettyJ2017. How should conservationists respond to pesticides as a driver of biodiversity loss in agroecosystems?.Biol. Conserv.209:449–53
      [Google Scholar]
    37. 37. 
      EwaldJA,WheatleyCJ,AebischerNJ,MorebySJ,DuffieldSJ et al.2015. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years.Glob. Change Biol.21:3931–50
      [Google Scholar]
    38. 38. 
      FAO2019.The State of the World's Biodiversity for Food and Agriculture Rome: FAO Commiss. Genet. Res. Food and Agric. Assesshttp://www.fao.org/3/CA3129EN/CA3129EN.pdf
      [Google Scholar]
    39. 39. 
      FoleyJA,DeFriesR,AsnerGP,BarfordC,BonanG et al.2005. Global consequences of land use.Science309:570–74
      [Google Scholar]
    40. 40. 
      ForisterML,CousensB,HarrisonJG,AndersonK,ThorneJH et al.2016. Increasing neonicotinoid use and the declining butterfly fauna of lowland California.Biol. Lett.12:20160475
      [Google Scholar]
    41. 41. 
      ForisterML,FordyceJA,NiceCC,ThorneJH,WaetjenDP,ShapiroAM2018. Impacts of a millennium drought on butterfly faunal dynamics.Clim. Change Respons.5:3
      [Google Scholar]
    42. 42. 
      ForisterML,JahnerJP,CasnerKL,WilsonJS,ShapiroAM2010. The race is not to the swift: Long-term data reveal pervasive declines in California's low-elevation butterfly fauna.Ecology92:2222–35
      [Google Scholar]
    43. 43. 
      ForisterML,NovotnyV,PanorskaAK,BajeL,BassetY et al.2015. The global distribution of diet breadth in insect herbivores.PNAS112:442–47
      [Google Scholar]
    44. 44. 
      ForisterML,PeltonEM,BlackSH2019. Declines in insect abundance and diversity: We know enough to act now.Conserv. Sci. Pract.1:e80
      [Google Scholar]
    45. 45. 
      FoxR.2013. The decline of moths in Great Britain: a review of possible causes.Insect Conserv. Divers.6:5–19
      [Google Scholar]
    46. 46. 
      FoxR,BreretonTM,AsherJ,AugustTA,BothamMS et al.2015.The State of the UK's Butterflies 2015 Wareham, UK: Butterfly Conserv./Cent. Ecol. Hydrol.
      [Google Scholar]
    47. 47. 
      FoxR,BreretonTM,AsherJ,BothamMS,MiddlebrookI et al.2011.The State of the UK's Butterflies 2011 Wareham, UK: Butterfly Conserv./Cent. Ecol. Hydrol.
      [Google Scholar]
    48. 48. 
      FoxR,OliverTH,HarrowerC,ParsonsMS,ThomasCD,RoyDB2014. Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes.J. Appl. Ecol.51:949–57
      [Google Scholar]
    49. 49. 
      FoxR,ParsonsMS,ChapmanJW,WoiwodIP,WarrenMS,BrooksDR2013.The State of Britain's Larger Moths 2013 Wareham, UK: Butterfly Conserv./Rothamsted Res.
      [Google Scholar]
    50. 50. 
      FrankieGW,RizzardiM,VinsonSB,GriswoldTL2009. Decline in bee diversity and abundance from 1972–2004 on a flowering leguminous tree,Andira inermis in Costa Rica at the interface of disturbed dry forest and the urban environment.J. Kans. Entomol. Soc.82:1–20
      [Google Scholar]
    51. 51. 
      FranzénM,JohannessonM.2007. Predicting extinction risk of butterflies and moths (Macrolepidoptera) from distribution patterns and species characteristics.J. Insect Conserv.11:367–90
      [Google Scholar]
    52. 52. 
      Garcia-RobledoC,KuprewiczEC,StainesCL,ErwinTL,KressWJ2016. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.PNAS113:680–85
      [Google Scholar]
    53. 53. 
      GardinerMM,O'NealME,LandisDA2011. Intraguild predation and native lady beetle decline.PLOS ONE6:e23576
      [Google Scholar]
    54. 54. 
      GastonKJ,FullerRA.2007. Biodiversity and extinction: losing the common and the widespread.Prog. Phys. Geogr. Earth Environ.31:213–25
      [Google Scholar]
    55. 55. 
      GastonKJ,FullerRA.2008. Commonness, population depletion and conservation biology.Trends Ecol. Evol.23:14–19
      [Google Scholar]
    56. 56. 
      GhilainA,BélisleM.2008. Breeding success of tree swallows along a gradient of agricultural intensification.Ecol. Appl.18:1140–54
      [Google Scholar]
    57. 57. 
      GilburnAS,BunnefeldN,WilsonJM,BothamMS,BreretonTM et al.2015. Are neonicotinoid insecticides driving declines of widespread butterflies?.PeerJ3:e1402
      [Google Scholar]
    58. 58. 
      GillespieMAK,AlfredssonM,BarrioIC,BowdenJJ,ConveyP et al.2019. Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic.Ambiohttps://doi.org/10.1007/s13280-019-01162-5
      [Crossref][Google Scholar]
    59. 59. 
      GodfrayHCJ,BlacquiereT,FieldLM,HailsRS,PetrokofskyG et al.2014. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators.Proc. Roy. Soc. B281:20140558
      [Google Scholar]
    60. 60. 
      GoulsonD,LyeGC,DarvillB2008. Decline and conservation of bumble bees.Annu. Rev. Entomol.53:191–208
      [Google Scholar]
    61. 61. 
      GoulsonD,NichollsE,BotíasC,RotherayEL2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers.Science347:1255957
      [Google Scholar]
    62. 62. 
      GrabH,BranstetterMG,AmonN,Urban-MeadKR,ParkMG et al.2019. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services.Science363:282–84
      [Google Scholar]
    63. 63. 
      GrubisicM,van GrunsvenRHA,Kyba1CCM,ManfrinA,HölkerF2018. Insect declines and agroecosystems: Does light pollution matter?.J. Appl. Biol.173:180–89
      [Google Scholar]
    64. 64. 
      HabelJC,SamwaysMJ,Schmitt2019. Mitigating the precipitous decline of terrestrial European insects: requirements for a new strategy.Biodivers. Conserv.28:1343–60
      [Google Scholar]
    65. 65. 
      HabelJC,SegererA,UlrichW,TorchykO,WeisserWW,SchmittT2016. Butterfly community shifts over two centuries.Conserv. Biol.30:754–62
      [Google Scholar]
    66. 66. 
      HahnM,BruhlCA.2016. The secret pollinators: an overview of moth pollination with a focus on Europe and North America.Arthropod-Plant Interact10:21–28
      [Google Scholar]
    67. 67. 
      HallmannCA,FoppenRP,van TurnhoutCA,de KroonH,JongejansE2014. Declines in insectivorous birds are associated with high neonicotinoid concentrations.Nature511:341–43
      [Google Scholar]
    68. 68. 
      HallmannCA,SorgM,JongejansE,SiepelH,HoflandN et al.2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas.PLOS ONE12:10e0185809
      [Google Scholar]
    69. 69. 
      HanulaJL,HornS,O'BrienJJ2015. Have changing forests conditions contributed to pollinator decline in the southeastern United States?.For. Ecol. Manag.348:142–52
      [Google Scholar]
    70. 70. 
      HarmonJP,StephensE,LoseyJ2007. The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada.J. Insect Conserv.11:85–94
      [Google Scholar]
    71. 71. 
      Harmon-ThreattA.2020 Intersections of nesting and threats to wild bee communities.Annu. Rev. Entomol.65:39–56
      [Google Scholar]
    72. 72. 
      HarrisJE,RodenhouseNL,HolmesRT2019. Decline in beetle abundance and diversity in an intact temperate forest linked to climate warming.Biol. Conserv. In press
      [Google Scholar]
    73. 73. 
      HaysomK,DekkerJ,RussJ,van der MeijT,van StrienA2014.European bat population trends Tech. Rep., Eur. Env. Agency Copenhagen:
      [Google Scholar]
    74. 74. 
      HelmerEH,GersonEA,BaggettLS,BirdBJ,RuzyckiTS,VoggesserSM2019. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost.PLOS ONE14:e0213155
      [Google Scholar]
    75. 75. 
      HelmuthB,RussellBD,ConnellSD,DongY,HarleyCDG et al.2014. Beyond long-term averages: making biological sense of a rapidly changing world.Clim. Change Responses1:6
      [Google Scholar]
    76. 76. 
      HerreraCM.2019. Complex long-term dynamics of pollinator abundance in undisturbed Mediterranean montane habitats over two decades.Ecol. Monogr.89:1e01338
      [Google Scholar]
    77. 77. 
      HofmannMM,FleischmannA,RennerSS2018. Changes in the bee fauna of a German botanical garden between 1997 and 2017, attributable to mate warming, not other parameters.Oecologia187:701–6
      [Google Scholar]
    78. 78. 
      HolzschuhA,DormannCF,TscharntkeT,Steffan-DewenterI2011. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination.Proc. R. Soc. B278:3444–51
      [Google Scholar]
    79. 79. 
      HøyeTT,PostE,SchmidtNM,TrøjelsgaardK,ForchhammerMC2013. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic.Nat. Clim. Change3:759–63
      [Google Scholar]
    80. 80. 
      HumphreysAM,GovaertsR,FicinskiS,Nic LughadhaE,VorontsovaMS2019. Global dataset shows geography and life form predict modern plant extinction and rediscovery.Nat. Ecol. Evol.3:1043–47
      [Google Scholar]
    81. 81. 
      HunterMD.2001. Effects of elevated atmospheric carbon dioxide on insect–plant interactions.Agric. For. Entomol.3:153–59
      [Google Scholar]
    82. 82. 
      HunterMD,KozlovMV,ItämiesJ,PulliainenE,Bäck et al.2014. Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths.Glob. Change Biol.20:1723–37
      [Google Scholar]
    83. 83. 
      InamineH,EllnerSP,SpringerJP,AgrawalAA2016. Linking the continental migratory cycle of the monarch butterfly to understand its population decline.Oikos125:1081–91
      [Google Scholar]
    84. 84. 
      IPBES2018.The Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia Bonn, Ger.: Intergov. Sci.-Policy Platf. Biodivers. Ecosyst. Serv.
      [Google Scholar]
    85. 85. 
      IPCC (Intergov. Panel Clim. Change)2014.Climate Change 2014: Mitigation of Climate Change Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    86. 86. 
      JanzenDH.1974. The deflowering of Central America.Nat. Hist.83:48–53
      [Google Scholar]
    87. 87. 
      JanzenDH,HallwachsW.2019. Where might be many tropical insects?.Biol. Conserv.233:102–8
      [Google Scholar]
    88. 88. 
      JarvisB.2018. The insect apocalypse is here.New York Times Magazine, Dec.2:41
      [Google Scholar]
    89. 89. 
      JonesG,JacobsD,KunzT,WilligM,RaceyP2009. Carpe noctem: the importance of bats as bioindicators.Endanger. Species Res.8:93–115
      [Google Scholar]
    90. 90. 
      KarbanR,HuntzingerM.2019. Decline of meadow spittlebugs, a previously abundant insect, along the California coast.Ecology99:2614–16
      [Google Scholar]
    91. 91. 
      KemptonRA.1979. The structure of species abundance and measurement of diversity.Biometrics35:307–21
      [Google Scholar]
    92. 92. 
      KerrJT,PindarA,GalpernP,PackerL,PottsSG et al.2015. Cross-continental convergence of climate change impacts on bumblebees.Science349:177–80
      [Google Scholar]
    93. 93. 
      KleijnD,KohlerF,BaldiA,BatáryP,ConcepcionED et al.2009. On the relationship between farmland biodiversity and land-use intensity in Europe.Proc. R. Soc. B276:903–9
      [Google Scholar]
    94. 94. 
      KleinAM,VaissièreBE,CaneJH,Steffan-DewenterI,CunninghamSA et al.2007. Importance of pollinators in changing landscapes for world crops.Proc. R. Soc. B274:303–13
      [Google Scholar]
    95. 95. 
      KnightTM,SteetsJA,VamosiJC,MazerSJ,BurdM et al.2005. Pollen limitation of plant reproduction: pattern and process.ARES36:467–49
      [Google Scholar]
    96. 96. 
      KnopE,ZollerL,RyserR,GerpeC,HörlerM,FontaineC2017. Artificial light at night as a new threat to pollination.Nature548:206–9
      [Google Scholar]
    97. 97. 
      KolbTE,FettigCJ,AyresMP,BentzBJ,HickeJA et al.2016. Observed and anticipated impacts of drought on forest insects and diseases in the United States.For. Ecol. Manag.380:321–34
      [Google Scholar]
    98. 98. 
      KolbertE.2014.The Sixth Extinction: An Unnatural History New York: Henry Holt
      [Google Scholar]
    99. 99. 
      KomonenA,HalmeP,KotiahoJS2019. Alarmist by bad design: Strongly popularized unsubstantiated claims undermine credibility of conservation science.Rethink. Ecol.4:17–19
      [Google Scholar]
    100. 100. 
      KosiorA,CelaryW,OlejniczakP,FijałJ,KrólW et al.2007. The decline of the bumble bees and cuckoo bees (Hymenoptera: Apidae: Bombini) of western and central Europe.Oryx41:79–88
      [Google Scholar]
    101. 101. 
      KremenC.2018. The value of pollinator species diversity.Science359:741–42
      [Google Scholar]
    102. 102. 
      KremenC,MerenlenderAM.2018. Landscapes that work for biodiversity and people.Science362:eaau6020
      [Google Scholar]
    103. 103. 
      KremenC,MilesA.2012. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs.Ecol. Soc.17:40
      [Google Scholar]
    104. 104. 
      KremenC,WilliamsNM,ThorpRW2002. Crop pollination from native bees at risk from agricultural intensification.PNAS99:16812–16
      [Google Scholar]
    105. 105. 
      KrupkeCH,HollandJD,LongEY,EitzerBD2017. Planting of neonicotinoid-treated maize poses risks for honey bees and other non-target organisms over a wide area without consistent crop yield benefit.J. Appl. Ecol.54:1449–58
      [Google Scholar]
    106. 106. 
      LämsaJ,KuuselaE,TuomiJ,JuntunenS,WattsPC2018. Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees.Proc. R. Soc. B285:20180506
      [Google Scholar]
    107. 107. 
      LawlerJJ,AukemaJE,GrantJB,HalperBS,KareivaP et al.2006. Conservation science: a 20-year report card.Front. Ecol. Environ.4:473–80
      [Google Scholar]
    108. 108. 
      LeatherSR.2018. “Ecological Armageddon”: more evidence for the drastic decline in insect numbers.Ann. Appl. Biol.172:1–3
      [Google Scholar]
    109. 109. 
      ListerB,GarciaA.2018. Climate-driven declines in arthropod abundance restructure a rainforest food web.PNAS115:44E10397–406
      [Google Scholar]
    110. 110. 
      LobodaS,SavageJ,BuddleCM,SchmidtNM,HøyeTT2018. Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming.Ecography41:265–77
      [Google Scholar]
    111. 111. 
      LockwoodJA.2005.Locust: The Devastating Rise and Mysterious Disappearance of the Insect that Shaped the American Frontier New York: Basic Books
      [Google Scholar]
    112. 112. 
      LoseyJE,VaughanM.2006. The economic value of ecological services provided by insects.BioScience56:311–23
      [Google Scholar]
    113. 113. 
      MaG,RudolfVHW,MaC-S2014. Extreme temperature events alter demographic rates, relative fitness, and community structure.Glob. Change Biol.21:1794–808
      [Google Scholar]
    114. 114. 
      MaesD,Van DyckH2001. Butterfly diversity loss in Flanders (north Belgium): Europe's worst case scenario?.Biol. Conserv.99:263–76
      [Google Scholar]
    115. 115. 
      MalcolmSB.2018. Anthropogenic impacts on mortality and population viability of the monarch butterfly.Annu. Rev. Entomol.63:277–302
      [Google Scholar]
    116. 116. 
      MathiassonME,RehanSM.2019. Status changes in the wild bees of north-eastern North America over 125 years revealed through museum specimens.Insect Conserv. Biodivers.12:278–88
      [Google Scholar]
    117. 117. 
      MattilaN,KaitalaV,KomonenA,KotiahoJS,PäivinenJ2006. Ecological determinants of distribution decline and risk of extinction in moths.Conserv. Biol.20:1161–68
      [Google Scholar]
    118. 118. 
      MaxwellSL,FullerRA,BrooksTM,WatsonJEM2016. The ravages of guns, nets and bulldozers.Nature536:143–45
      [Google Scholar]
    119. 119. 
      McCrackenGF.1986. Why are we losing our Mexican free-tailed bats?.Bats3:1–4
      [Google Scholar]
    120. 120. 
      McCrackenGF.2003. Estimates of population sizes in summer colonies of estimates of population sizes in summer colonies of Brazilian Free-Tailed Bats (Tadarida brasiliensis)..Monitoring Trends in Bat Populations United States and Territories: Problems and Prospects TJ O'Shea, MA Bogan21–30 Washington, DC: US Dep. Inter.
      [Google Scholar]
    121. 121. 
      McFadyenREC.1998. Biological control of weeds.Annu. Rev. Entomol.43:369–93
      [Google Scholar]
    122. 122. 
      MeeusI,BrownMJF,De GraafDC,SmaggheG2011. Effects of invasive parasites on bumble bee declines.Conserv. Biol.25:662–71
      [Google Scholar]
    123. 123. 
      MurphyMT.2003. Avian population trends within the evolving agricultural landscape of eastern and central United States.Auk120:20–34
      [Google Scholar]
    124. 124. 
      NarangoDL,TallamyDW,MarraPP2017. Native plants improve breeding and foraging habitat for an insectivorous bird.Biol. Conserv.213:42–50
      [Google Scholar]
    125. 125. 
      NarangoDL,TallamyDW,MarraPP2018. Nonnative plants reduce population growth of an insectivorous bird.PNAS15:11549–54
      [Google Scholar]
    126. 126. 
      Natl. Acad. Sci., Natl. Res. Counc2006.Status of Pollinators in North America Washington, DC: Natl. Acad. Press
      [Google Scholar]
    127. 127. 
      NebelS,MillsA,McCrackenJD,TaylorPD2010. Declines of aerial insectivores in North America follow a geographic gradient.Avian Conserv. Ecol.5:1
      [Google Scholar]
    128. 128. 
      NemesioA.2013. Are orchid bees at risk? First comparative survey suggests declining populations of forest-dependent species.Braz. J. Biol.73:367–74
      [Google Scholar]
    129. 129. 
      NewboldT,LawrenceNH,ContuS,HillSLL,BeckJ et al.2018. Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide.PLOS Biol16:12e2006841
      [Google Scholar]
    130. 130. 
      NewtonI.2004. The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions.Ibis146:579–600
      [Google Scholar]
    131. 131. 
      NilssonSG,FranzénM,JönssonE2008. Long-term land-use changes and extinction of specialised butterflies.Insect Conserv. Divers.1:197–207
      [Google Scholar]
    132. 132. 
      NoceraJJ,BlaisJM,BeresfordDV,FinityLK,GroomsC et al.2012. Historical pesticide applications coincided with an altered diet of aerially foraging insectivorous Chimney Swifts.Proc. R. Soc. Lond. B279:3114–20
      [Google Scholar]
    133. 133. 
      NoriegaJA,HortalJ,AzcárateFM,BergMP,BonadaN et al.2018. Research trends in ecosystem services provided by insects.Basic Appl. Ecol.26:8–23
      [Google Scholar]
    134. 134. 
      ÖckingerE,HammarstedtO,NilssonSG,SmithHG2006. The relationship between local extinctions of grassland butterflies and increased soil nitrogen levels.Biol. Conserv.128:564–73
      [Google Scholar]
    135. 135. 
      OllertonJ,WinfreeR,TarrantS2011. How many flowering plants are pollinated by animals?.Oikos120:321–26
      [Google Scholar]
    136. 136. 
      OrmerodSJ,MarshallEJP,KerbyG,RushtonSP2003. Meeting the ecological challenges of agricultural change: editors’ introduction.J. Appl. Ecol.40:939–46
      [Google Scholar]
    137. 137. 
      OwensACS,LewisSM.2018. The impact of artificial light at night on nocturnal insects: a review and synthesis.Ecol. Evol.8:11337–58
      [Google Scholar]
    138. 138. 
      ParainEC,RohrRP,GraySM,BersierL-F2019. Increased temperature disrupts the biodiversity-ecosystem functioning relationship.Am. Nat.193:227–39
      [Google Scholar]
    139. 139. 
      PardikesN,ShapiroAM,DyerLA,ForisterML2015. Global weather and local butterflies: variable responses to a large-scale climate pattern along an elevational gradient.Ecology96:2891–901
      [Google Scholar]
    140. 140. 
      PhillipsBB,ShawRF,HollandMJ,FryEL,BardgettRD et al.2018. Drought reduces floral resources for pollinators.Glob. Change Biol.24:3226–35
      [Google Scholar]
    141. 141. 
      PhoenixGK,EmmettBA,BrittonAJ,CapornSJ,DiseNB et al.2012. Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments.Glob. Change Biol.18:1197–215
      [Google Scholar]
    142. 142. 
      PielkeRASr.,RezaulM,McAlpineC.2016. Land's complex role in climate change.Phys. Today69:1140
      [Google Scholar]
    143. 143. 
      PisaLW,Amaral-RogersV,BelzuncesLP,BonmatinJM,GoulsonD et al.2015. Effects of neonicotinoids and fipronil on non-target invertebrates.Environ. Sci. Pollut. Res.22:68–102
      [Google Scholar]
    144. 144. 
      PortmanZM,TepedinoVJ,TripodiAD,SzalanskiAL,DurhamSL2018. Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees.Biol. Invas.20:593–606
      [Google Scholar]
    145. 145. 
      PottsSG,BiesmeijerJC,KremenC,NeumannP,SchweigerO,KuninWE2010. Global pollinator declines: trends, impacts and drivers.Trends Ecol. Evol.25:345–53
      [Google Scholar]
    146. 146. 
      PowneyGD,CarvellC,EdwardsM,MorrisRKA,RoyHE et al.2019. Widespread losses of pollinating insects in Britain.Nat. Commun.10:1018
      [Google Scholar]
    147. 147. 
      PricePW.1980.Evolutionary Biology of Parasites Princeton, NJ: Princeton Univ. Press
      [Google Scholar]
    148. 148. 
      RadaS,SchweigerO,HarpkeA,KühnE,KurasT et al.2019. Protected areas do not mitigate biodiversity declines: a case study on butterflies.Biodivers. Res.25:217–24
      [Google Scholar]
    149. 149. 
      RaffaKF,PowellEN,TownsendPA2012. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses.PNAS110:2193–98
      [Google Scholar]
    150. 150. 
      RazengE,WatsonDM.2012. What do declining woodland birds eat? A synthesis of dietary records.Emu112:149–56
      [Google Scholar]
    151. 151. 
      RichardM,TallamyDW,MitchellAB2018. Introduced plants reduced species interactions.Biol. Invas.21:983–92
      [Google Scholar]
    152. 152. 
      Rioux PaquetteS,PelletierF,GarantD,BelisleM2014. Severe recent decrease of adult body mass in a declining insectivorous bird population.Proc. R. Soc. B.281:20140649
      [Google Scholar]
    153. 153. 
      RoubikDW.2001. Ups and downs in pollinator populations: When is there a decline?.Ecol. Soc.5:12
      [Google Scholar]
    154. 154. 
      SalaOE,ChapinFSIII,ArmestoJJ,BerlowE,BloomfieldJ et al.2000. Global biodiversity scenarios for the year 2100.Science287:1770–74
      [Google Scholar]
    155. 155. 
      SalesK,VasudevaR,DickinsonME,GodwinJL,LumleyAJ2018. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect.Nat. Commun.13:4771
      [Google Scholar]
    156. 156. 
      Sánchez-BayoF,WyckhuysKAG.2019. Worldwide decline of the entomofauna: a review of its drivers.Biol. Conserv.232:8–27
      [Google Scholar]
    157. 157. 
      ScheeleBC,PasmansF,SkerrattLF,BergerL,MartelA et al.2019. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity.Science363:1459–63
      [Google Scholar]
    158. 158. 
      SchirmelJ,BundschuhM,EntlingMH,KowarikI,BuchholzS2015. Impacts of invasive plants on resident animals across ecosystems, taxa, and feeding types: a global assessment.Glob. Change Biol.22:594–603
      [Google Scholar]
    159. 159. 
      SchuchS,WescheK,SchaeferM2012. Long-term decline in the abundance of leafhoppers and plant-hoppers (Auchenorrhyncha) in Central European protected dry grasslands.Biol. Conserv.149:75–83
      [Google Scholar]
    160. 160. 
      SchweitzerDF.2017. Current versus mid-20th century statuses of moths with big summer caterpillars (Saturniidae, Sphingidae,Datana) in northern New Jersey and eastern Pennsylvania.Newsl. Lepid. Soc.59:134–41
      [Google Scholar]
    161. 161. 
      SchweitzerDF.2017. Fluctuations of moths with big summer caterpillars (Saturniidae, Sphingidae,Datana) in early 21st century northwestern New Jersey, USA.Newsl. Lepid. Soc.59:186–89
      [Google Scholar]
    162. 162. 
      SimberloffD,MartinJL,GenovesiP,MarisV,WardleDA et al.2013. Impacts of biological invasions: what's what and the way forward.Trends Ecol. Evol.28:58–66
      [Google Scholar]
    163. 163. 
      SorgM,SchwanH,StenmansW,MüllerA2013.Ermittlung der Biomassen flugaktiver Insekten im Naturschutzgebiet Orbroicher Bruch mit Malaise-Fallen in den Jahren 1989 und 2013 Krefeld, Ger.: Entomol. Ver.
      [Google Scholar]
    164. 164. 
      StavertJR,PattemoreDE,BartomeusI,GaskettAC,BeggsJR2018. Exotic flies maintain pollination services as native pollinators decline with agricultural expansion.J. Appl. Ecol.55:1737–46
      [Google Scholar]
    165. 165. 
      StefanescuC,PeñuelasJ,FilellaI2009. Rapid changes in butterfly communities following the abandonment of grasslands: a case study.Insect Conserv. Divers.2:261–69
      [Google Scholar]
    166. 166. 
      StenoienC,NailKR,ZaluckiJM,ParryH,OberhauserKS et al.2016. Monarchs in decline: a collateral landscapelevel effect of modern agriculture.Insect Sci25:528–41
      [Google Scholar]
    167. 167. 
      StepanianPM,WainwrightCE.2017. Ongoing changes in migration phenology and winter residency at Bracken Bat Cave.Glob. Change Biol.24:3266–75
      [Google Scholar]
    168. 168. 
      StokstadE.2018. New global study reveals the ‘staggering’ loss of forests caused by industrial agriculture.Science Sept. 13.https://www.sciencemag.org/news/2018/09/scientists-reveal-how-much-world-s-forests-being-destroyed-industrial-agriculture
      [Google Scholar]
    169. 169. 
      StorkN.2018. How many species of insects and other terrestrial arthropods are there on Earth?.Annu. Rev. Entomol.63:31–45
      [Google Scholar]
    170. 170. 
      StrongDR,LawtonJH,SouthwoodSR1984.Insects on Plants: Community Patterns and Mechanisms Cambridge, MA: Harvard Univ. Press
      [Google Scholar]
    171. 171. 
      SyktusJI,McAlpineCA.2016. More than carbon sequestration: biophysical climate benefits of restored savanna woodlands.Sci. Rep.6:29194
      [Google Scholar]
    172. 172. 
      ThogmartinWE,DiffendorferJE,Lopez-HoffmanL,OberhauserK,PleasantsJ et al.2017. Density estimates of monarch butterflies overwintering in central Mexico.PeerJ5:e3221
      [Google Scholar]
    173. 173. 
      ThomasCD,JonesTH,HartleySE2019. “Insectageddon”: a call for more robust data and rigorous analyses.Glob. Change Biol.25:1891–92
      [Google Scholar]
    174. 174. 
      ThomasJA.2016. Butterfly communities under threat.Science353:216–18
      [Google Scholar]
    175. 175. 
      ThomasJA,ClarkeRT.2004. Extinction rates and butterflies.Science305:1563–64
      [Google Scholar]
    176. 176. 
      ThomasJA,TelferMG,RoyDB,PrestonCD,GreenwoodJ et al.2004. Comparative losses of British butterflies, birds, and plants and the global extinction crisis.Science303:1879–81
      [Google Scholar]
    177. 177. 
      ThompsonJN.1996. Evolutionary ecology and the conservation of biodiversity.Trends Ecol. Evol.11:300–3
      [Google Scholar]
    178. 178. 
      ThompsonJN.1997. Conserving interaction biodiversity.The Ecological Basis of Conservation: Heterogeneity, Ecosystems, and Biodiversity S Pickett, RS Ostfeld, M Shachak, GE Likens285–93 New York: Chapman & Hall
      [Google Scholar]
    179. 179. 
      ThorpRW,ShepherdMD.2005. Profile: subgenusBombus.Red List of Pollinator Insects of North America MD Shepherd, DM Vaughan, SH Black Portland, OR: Xerces Soc. Invertebr. Conserv.
      [Google Scholar]
    180. 180. 
      TilmanD.1983. Some thoughts on resource competition and diversity in plant communities.Mediter.-Type Ecosyst.43:322–36
      [Google Scholar]
    181. 181. 
      TscharntkeT,KleinAM,KruessA,Steffan-DewenterI,ThiesC2005. Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management.Ecol. Lett.8:857–74
      [Google Scholar]
    182. 182. 
      UrbanM.2015. Accelerating extinction risk from climate change.Science348:571–73
      [Google Scholar]
    183. 183. 
      van LangeveldeF,Braamburg-AnnegarnM,HuigensME,GroendijkR,PoitevinO et al.2018. Declines in moth populations stress the need for conserving dark nights.Glob. Change Biol.24:925–32
      [Google Scholar]
    184. 184. 
      Vanbergen AJ, Insect Pollinat. Initiat2013. Threats to an ecosystem service: pressures on pollinators.Front. Ecol. Environ.11:251–59
      [Google Scholar]
    185. 185. 
      VilàM,EspinarJL,HejdaM,HulmePE,JarošíkV et al.2011. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems.Ecol. Lett.14:702–8
      [Google Scholar]
    186. 186. 
      VogelG.2017. Where have all the insects gone?.Science356:576–79
      [Google Scholar]
    187. 187. 
      WagnerDL.2007. Butterfly conservation.Connecticut Butterfly Atlas JE O'Donnell, LF Gall, DL Wagner289–309 Hartford, CT: Conn. Dep. Env. Protect.
      [Google Scholar]
    188. 188. 
      WagnerDL.2012. Moth decline in the Northeastern United States.Newsl. Lepid. Soc.54:52–56
      [Google Scholar]
    189. 189. 
      WagnerDL.2017. Trends in biodiversity: insects.InEncyclopedia of the Anthropocene3 DA DellaSala, MI Goldstein131–43 Amsterdam: Elsevier
      [Google Scholar]
    190. 190. 
      WagnerDL2019. Global insect decline: comments on Sánchez-Bayo and Wyckhuys.Biol. Conserv.233:332–33
      [Google Scholar]
    191. 191. 
      WagnerDL,ToddK.2015. Ecological impacts of the emerald ash borer.Biology and Control of Emerald Ash Borer RG Van Driesche15–63 Morgantown, WV: US Dep. Agric.
      [Google Scholar]
    192. 192. 
      WagnerDL,Van DriescheRG2010. Threats posed to rare or endangered insects by invasions of non-native species.Annu. Rev. Entomol.55:547–68
      [Google Scholar]
    193. 193. 
      Wallis de VriesMF,van SwaayCAM2017. A nitrogen index to track changes in butterfly species assemblages under nitrogen deposition.Biol. Conserv.212:448–53
      [Google Scholar]
    194. 194. 
      WarrenMS.2019. Conserving British butterflies: progress against the odds.Newsl. Lepid. Soc.61:3–6
      [Google Scholar]
    195. 195. 
      WarrenMS,HillJK,ThomasJA,AsherJ,FoxR et al.2001. Rapid responses of British butterflies to opposing forces of climate and habitat change.Nature414:65–69
      [Google Scholar]
    196. 196. 
      WarrenR,PriceJ,GrahamE,ForstenhaeuslerN,VanDerWalJ2018. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C.Science360:791–95
      [Google Scholar]
    197. 197. 
      WatsonDM.2011. A productivity-based explanation for woodland bird declines: poorer soils yield less food.Emu111:10–18
      [Google Scholar]
    198. 198. 
      WeisseM,GoldmanED.2019. The world lost a Belgium-sized area of primary rainforests last year.World Resources Institute Blog Apr. 25.https://www.wri.org/blog/2019/04/world-lost-belgium-sized-area-primary-rainforests-last-year
      [Google Scholar]
    199. 199. 
      WepprichT,AdrionJR,RiesL,WiedmannJ,HaddadNM2019. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA.PLOS ONE14:7e0216270
      [Google Scholar]
    200. 200. 
      WhitePJT.2018. An aerial approach to investigating the relationship between macromoths and artificial nighttime lights across an urban landscape.J. Agric. Urban Entomol.34:1–14
      [Google Scholar]
    201. 201. 
      WilcoveDS,RothsteinD,DubowJ,PhillipsA,LososE1998. Quantifying threats to imperiled species in the United States.BioScience48:607–15
      [Google Scholar]
    202. 202. 
      WilliamsPH,OsborneJL.2009. Bumblebee vulnerability and conservation worldwide.Apidologie40:367–87
      [Google Scholar]
    203. 203. 
      WilligMR,WoolbrightL,PresleyS,SchowalterTD,WaideRB et al.2019. Populations are not declining and food webs are not collapsing at the Luquillo Experimental Forest.PNAS116:2512143–44
      [Google Scholar]
    204. 204. 
      WilsonEO.1987. The little things that run the world: the importance and conservation of invertebrates.Conserv. Biol.1:344–46
      [Google Scholar]
    205. 205. 
      WilsonEO.2002.The Future of Life London: Abacus
      [Google Scholar]
    206. 206. 
      WilsonEO.2016.Half-Earth:Our Planet's Fight for Life New York: Leveright
      [Google Scholar]
    207. 207. 
      WilsonJF,BakerD,CheneyJ,CookM,EllisM et al.2018. A role for artificial night-time lighting in long-term changes in populations of 100 widespread macro-moths in UK and Ireland: a citizen-science study.J. Insect Conserv.22:189–96
      [Google Scholar]
    208. 208. 
      WinfreeR.2010. The conservation and restoration of wild bees.Ann. N. Y. Acad. Sci.1195:169–97
      [Google Scholar]
    209. 209. 
      WinfreeRW,FoxJ,WilliamsNM,ReillyJR,CariveauDP2015. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service.Ecol. Lett.18:626–35
      [Google Scholar]
    210. 210. 
      WinfreeRW,ReillyJR,BartomeusI,CariveauDP,WilliamsNM et al.2018. Species turnover promotes the importance of bee diversity for crop pollination at regional scales.Science359:791–93
      [Google Scholar]
    211. 211. 
      WoodTJ,GoulsonD.2017. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013.Environ. Sci. Pollut. Res. Int.24:2117285–325
      [Google Scholar]
    212. 212. 
      YangLH,GrattonC.2014. Insects as drivers of ecosystem processes.Curr. Opin. Insect Sci.2:26–32
      [Google Scholar]
    213. 213. 
      YoungBE,AuerS,OrmesM,RapacciuoloG,SchweitzerD2017. Are pollinating hawk moths declining in the Northeastern United States? An analysis of collection records.PLOS ONE12:10e0185683
      [Google Scholar]
    214. 214. 
      ZiskaLH,PettisJS,EdwardsJ,HancockJE,TomecekMB et al.2016. Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees.Proc. R. Soc. B283:20160414
      [Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special


    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-ento-011019-025151
    10.1146/annurev-ento-011019-025151
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp