Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

The Biology of Chernobyl

Abstract

Environmental disasters offer the unique opportunity for landscape-scale ecological and evolutionary studies that are not possible in the laboratory or small experimental plots. The nuclear accident at Chernobyl (1986) allows for rigorous analyses of radiation effects on individuals and populations at an ecosystem scale. Here, the current state of knowledge related to populations within the Chernobyl region of Ukraine and Belarus following the largest civil nuclear accident in history is reviewed. There is now a significant literature that provides contrasting and occasionally conflicting views of the state of animals and how they are affected by this mutagenic stressor. Studies of genetic and physiological effects have largely suggested significant injuries to individuals inhabiting the more radioactive areas of the Chernobyl region. Most population censuses for most species suggest that abundances are reduced in the more radioactive areas.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-ecolsys-110218-024827
    2021-11-03
    2025-11-24
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/ecolsys/52/1/annurev-ecolsys-110218-024827.html?itemId=/content/journals/10.1146/annurev-ecolsys-110218-024827&mimeType=html&fmt=ahah

    Literature Cited

    1. AmiardJC.2018.Military Nuclear Accidents: Environmental, Ecological, Health and Socio-economic Consequences Hoboken, NJ: John Wiley & Sons
      [Google Scholar]
    2. BakerRJ,DickinsB,WickliffeJK,KhanFA,GaschakS et al.2017. Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent.Evol.Appl.10:784–91
      [Google Scholar]
    3. BakerRJ,HamiltonMJ,Van Den BusscheRA,WigginsLE,SuggDWet al1996a. Small mammals from the most radioactive sites near the Chornobyl nuclear power plant.J. Mammal77:15570
      [Google Scholar]
    4. BakerRJ,Van Den BusscheRA,WrightAJ,WigginsLE,HamiltonMJ et al.1996b. High levels of genetic change in rodents of Chernobyl.Nature380:707–8
      [Google Scholar]
    5. BakerRJ,Van Den BusscheRA,WrightAJ,WigginsLE,HamiltonMJ et al.1997. Retraction note to: High levels of genetic change in rodents of Chernobyl.Nature390:100
      [Google Scholar]
    6. Beaugelin-SeillerK,Garnier-LaplaceJ,Della-VedovaC,MétivierJM,LepageH et al.2020. Dose reconstruction supports the interpretation of decreased abundance of mammals in the Chernobyl Exclusion Zone.Sci.Rep.10:14083
      [Google Scholar]
    7. Bonisoli-AlquatiA,KoyamaK,TedeschiDJ,KitamuraW,SukuziH et al.2015. Abundance and genetic damage of barn swallows from Fukushima.Sci.Rep.5:9432
      [Google Scholar]
    8. Bonisoli-AlquatiA,MøllerAP,RudolfsenG,SainoN,CaprioliM et al.2011. The effects of radiation on sperm swimming behavior depend on plasma oxidative status in the barn swallow (Hirundo rustica).Comp. Biochem. Physiol. A Mol. Integr. Physiol.159:105–12
      [Google Scholar]
    9. BoratyńskiZ,AriasJM,GarciaC,MappesT,MousseauTA et al.2016. Ionizing radiation from Chernobyl affects development of wild carrot plants.Sci.Rep.6:39282
      [Google Scholar]
    10. BoratyńskiZ,LehmannP,MappesT,MousseauTA,MøllerAP.2014. Increased radiation from Chernobyl decreases the expression of red colouration in natural populations of bank voles (Myodes glareolus).Sci.Rep.4:7141
      [Google Scholar]
    11. BraithwaiteR.2019. Chernobyl: A ‘normal’ accident?.Survival61:149–58
      [Google Scholar]
    12. BrownK.2019.Manual for Survival: A Chernobyl Guide to the Future London: Penguin UK:
      [Google Scholar]
    13. CamplaniA,SainoN,MøllerAP.1999. Carotenoids, sexual signals and immune function in barn swallows from Chernobyl.Proc. R. Soc. B266:1111–16
      [Google Scholar]
    14. CharlesworthB.1990. Mutation-selection balance and the evolutionary advantage of sex and recombination.Genet. Res.55:199–221
      [Google Scholar]
    15. ClarkC.1997.Radium Girls: Women and Industrial Health Reform,19101935 Chapel Hill, NC: Univ. N. C. Press
      [Google Scholar]
    16. CowanR.1990. Nuclear power reactors: a study in technological lock-in.J.Econ.Hist.50:541–67
      [Google Scholar]
    17. CristaldiM,IeradiLA,MascanzoniD,MatteiT.1991. Environmental impact of the Chernobyl accident: mutagenesis in bank voles from Sweden.Int.J.Radiat.Biol.59:31–40
      [Google Scholar]
    18. CrowleyKD,AhearneJF.2002. Managing the environmental legacy of US nuclear-weapons production.Am. Sci.90:514–23
      [Google Scholar]
    19. Czirják,MøllerAP,MousseauTA,HeebP.2010. Microorganisms associated with feathers of barn swallows in radioactively contaminated areas around Chernobyl.Microb.Ecol.60:373–80
      [Google Scholar]
    20. DadachovaE,CasadevallA.2008. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin.Curr.Opin.Microbiol.11:525–31
      [Google Scholar]
    21. DavisJ.2018.Radioactive Effluents from Nuclear Power Plants,Annual Report 2013 NUREG/CR-2907 , Vol.19 Washington, DC: US Nucl. Regul. Comm.
      [Google Scholar]
    22. De CortM,DuboisG,FridmanSD,GermenchukMG,IzraelYA et al.1998.Atlas of caesium deposition on Europe after the Chernobyl accident EUR Rep. 16733 Off. Off. Publ. Eur. Communities Luxembourg:
      [Google Scholar]
    23. DeryabinaTG,KuchmelSV,NagorskayaLL,HintonTG,BeasleyJC et al.2015. Long-term census data reveal abundant wildlife populations at Chernobyl.Curr. Biol.25:R824–26
      [Google Scholar]
    24. DiCarloAL,MaherC,HickJL,HanflingD,DainiakN et al.2011. Radiation injury after a nuclear detonation: medical consequences and the need for scarce resources allocation.Disaster Med.Public Health Prep.5:S1S32–44
      [Google Scholar]
    25. DubrovaYE.1998. Radiation-induced germline instability at minisatellite loci.Int.J.Radiat.Biol.74:689–96
      [Google Scholar]
    26. DubrovaYE,NesterovVN,KrouchinskyNG,OstapenkoVA,NeumannR et al.1996. Human minisatellite mutation rate after the Chernobyl accident.Nature380:683–86
      [Google Scholar]
    27. EinorD,Bonisoli-AlquatiA,CostantiniD,MousseauTA,MøllerAP.2016. Ionizing radiation, antioxidant response and oxidative damage: a meta-analysis.Sci. Total Environ.548:463–71
      [Google Scholar]
    28. EllegrenH,LindgrenG,PrimmerCR,MøllerAP.1997. Fitness loss and germline mutations in barn swallows breeding in Chernobyl.Nature389:593–96
      [Google Scholar]
    29. EvangeliouN,HamburgerT,TalerkoN,ZibtsevS,BondarY et al.2016. Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe.Environ.Pollut.216:408–18
      [Google Scholar]
    30. FairlieI.2014. A hypothesis to explain childhood cancers near nuclear power plants.J.Environ.Radioact.133:10–17
      [Google Scholar]
    31. FischbeinA,ZabludovskyN,EltesF,GrischenkoV,BartoovB.1997. Ultramorphological sperm characteristics in the risk assessment of health effects after radiation exposure among salvage workers in Chernobyl.Environ.Health Perspect.105:1445–49
      [Google Scholar]
    32. GalvánI,Bonisoli-AlquatiA,JenkinsonS,GhanemG,WakamatsuK et al.2014. Chronic exposure to low-dose radiation at Chernobyl favours adaptation to oxidative stress in birds.Funct. Ecol.28:1387–403
      [Google Scholar]
    33. Garnier-LaplaceJ,Beaugelin-SeillerK,Della-VedovaC,MétivierJM,RitzC et al.2015. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships.Sci.Rep.5:16594
      [Google Scholar]
    34. Garnier-LaplaceJ,Geras'kinS,Della-VedovaC,Beaugelin-SeillerK,HintonTG et al.2013. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates.J.Environ.Radioact.121:12–21
      [Google Scholar]
    35. Geras'kinSA,FesenkoSV,AlexakhinRM2008. Effects of non-human species irradiation after the Chernobyl NPP accident.Environ. Int.34:880–97
      [Google Scholar]
    36. GilbertJA,BlaserMJ,CaporasoJG,JanssonJK,LynchSV,KnightR.2018. Current understanding of the human microbiome.Nat.Med.24:392–400
      [Google Scholar]
    37. GoncharovaRI,RyabokonNI.1995. Dynamics of cytogenetic injuries in natural populations of bank vole in the Republic of Belarus.Radiat. Prot. Dosim.62:37–40
      [Google Scholar]
    38. GrantEJ,BrennerA,SugiyamaH,SakataR,SadakaneA et al.2017. Solid cancer incidence among the life span study of atomic bomb survivors: 1958–2009.Radiat.Res.187:513–37
      [Google Scholar]
    39. GsponerA,HurniJP.2009.The Physical Principles of Thermonuclear Explosives, Inertial Confinement Fusion, and the Quest for Fourth Generation Nuclear Weapons INESAP Tech. Rep. 1 Darmstadt, Ger.: INESAP, 7th ed..
      [Google Scholar]
    40. HermosellIG,LaskemoenT,RoweM,MøllerAP,MousseauTA et al.2013. Patterns of sperm damage in Chernobyl passerine birds suggest a trade-off between sperm length and integrity.Biol. Lett.9:20130530
      [Google Scholar]
    41. HigginbothamA.2019.Midnight in Chernobyl: The Untold Story of the World's Greatest Nuclear Disaster New York: Random House
      [Google Scholar]
    42. HigginsK,LynchM.2001. Metapopulation extinction caused by mutation accumulation.PNAS98:2928–33
      [Google Scholar]
    43. HowellSJ,ShaletSM.2005. Spermatogenesis after cancer treatment: damage and recovery.J. Natl. Cancer Inst. Monogr.2005:12–17
      [Google Scholar]
    44. Int. At. Energy Agency2006.Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Radiol. Assess. Rep. Ser. 8, Int. At. Energy Agency, Vienna
      [Google Scholar]
    45. JernforsT,KesäniemiJ,LavrinienkoA,MappesT,MilinevskyG et al.2018. Transcriptional upregulation of DNA damage response genes in bank voles (Myodes glareolus) inhabiting the Chernobyl Exclusion Zone.Front.Environ. Sci.5:95
      [Google Scholar]
    46. JohnsonRL.2014.Chernobyl's Wild Kingdom: Life in the Dead Zone Minneapolis, MN: Twenty-First Century Books
      [Google Scholar]
    47. KesäniemiJ,LavrinienkoA,TukalenkoE,BoratyńskiZ,KivisaariK et al.2019. Exposure to environmental radionuclides associates with tissue-specific impacts on telomerase expression and telomere length.Sci.Rep.9:850
      [Google Scholar]
    48. KesäniemiJ,LavrinienkoA,TukalenkoE,MoutinhoAF,MappesT et al.2020. Exposure to environmental radionuclides alters mitochondrial DNA maintenance in a wild rodent.Evol. Ecol.34:163–74
      [Google Scholar]
    49. KivisaariK.2019.The effects of ionizing radiation on bank vole in Chernobyl Exclusion Zone. PhD Diss. Univ. Jyväskylä Jyväskylä, Finland:
      [Google Scholar]
    50. KivisaariK,BoratyńskiZ,LavrinienkoA,KesäniemiJ,LehmannP,MappesT.2020. The effect of chronic low-dose environmental radiation on organ mass of bank voles in the Chernobyl exclusion zone.Int. J. Radiat. Biol.96:1254–62
      [Google Scholar]
    51. KolbertE.2014.The Sixth Extinction: An Unnatural History New York: Henry Holt & Co.
      [Google Scholar]
    52. KörbleinA,Hesse-HoneggerC.2018. Morphological abnormalities in true bugs (Heteroptera) near Swiss nuclear power stations.Chem. Biodivers.15:e1800099
      [Google Scholar]
    53. KovalchukI,AbramovV,PogribnyI,KovalchukO.2004. Molecular aspects of plant adaptation to life in the Chernobyl zone.Plant Physiol135:357–63
      [Google Scholar]
    54. KovalchukO,DubrovaYE,ArkhipovA,HohnB,KovalchukI.2000. Wheat mutation rate after Chernobyl.Nature407:583–84
      [Google Scholar]
    55. KuzioT.2015.Ukraine: Democratization, Corruption, and the New Russian Imperialism Westport, CT: Praeger
      [Google Scholar]
    56. LavrinienkoA,HämäläinenA,HindströmR,TukalenkoE,BoratyńskiZ et al.2021. Comparable response of wild rodent gut microbiome to anthropogenic habitat contamination.Mol. Ecol.30:348599
      [Google Scholar]
    57. LavrinienkoA,MappesT,TukalenkoE,MousseauTA,MøllerAP et al.2018a. Environmental radiation alters the gut microbiome of the bank voleMyodes glareolus.ISME J12:2801–6
      [Google Scholar]
    58. LavrinienkoA,TukalenkoE,KesäniemiJ,KivisaariK,MasiukS et al.2020a. Applying the Anna Karenina principle for wild animal gut microbiota: temporal stability of the bank vole gut microbiota in a disturbed environment.J.Anim.Ecol.89:2617–30
      [Google Scholar]
    59. LavrinienkoA,TukalenkoE,MappesT,WattsPC.2018b. Skin and gut microbiomes of a wild mammal respond to different environmental cues.Microbiome6:209
      [Google Scholar]
    60. LavrinienkoA,TukalenkoE,MousseauTA,ThompsonLR,KnightR et al.2020b. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota.Sci.Data7:312
      [Google Scholar]
    61. Lazard2020.Lazard's levelized cost of energy analysis—version 14.0. Rep., Lazard, Hamilton, Bermud.https://www.lazard.com/media/451419/lazards-levelized-cost-of-energy-version-140.pdf
    62. LehmannP,BoratyńskiZ,MappesT,MousseauTA,MøllerAP.2016. Fitness costs of increased cataract frequency and cumulative radiation dose in natural mammalian populations from Chernobyl.Sci.Rep.6:19974
      [Google Scholar]
    63. LochbaumD,LymanE,StranahanSQ2014.Fukushima: The Story of a Nuclear Disaster New York: The New Press
      [Google Scholar]
    64. LynchM,ConeryJ,BurgerR.1995. Mutation accumulation and the extinction of small populations.Am. Nat.146:489–518
      [Google Scholar]
    65. MappesT,BoratyńskiZ,KivisaariK,LavrinienkoA,MilinevskyG et al.2019. Ecological mechanisms can modify radiation effects in a key forest mammal of Chernobyl.Ecosphere10:e02667
      [Google Scholar]
    66. MedvedevZA.1986. Ecological aspects of the Chernobyl nuclear plant disaster.Trends Ecol.Evol.1:23–25
      [Google Scholar]
    67. MøllerAP.1993. Morphology and sexual selection in the barn swallowHirundo rustica in Chernobyl, Ukraine.Proc. R. Soc. B252:51–57
      [Google Scholar]
    68. MøllerAP,Bonisoli-AlquatiA,MousseauTA.2013a. High frequency of albinism and tumours in free-living birds around Chernobyl.Mutat. Res./Genet. Toxicol. Environ. Mutagen.757:52–59
      [Google Scholar]
    69. MøllerAP,Bonisoli-AlquatiA,MousseauTA,RudolfsenG.2014. Aspermy, sperm quality and radiation in Chernobyl birds.PLOS ONE9:e100296
      [Google Scholar]
    70. MøllerAP,Bonisoli-AlquatiA,RudolfsenG,MousseauTA.2011. Chernobyl birds have smaller brains.PLOS ONE6:e16862
      [Google Scholar]
    71. MøllerAP,Bonisoli-AlquatiA,RudolfsenG,MousseauTA.2012a. Elevated mortality among birds in Chernobyl as judged from skewed age and sex ratios.PLOS ONE7:e35223
      [Google Scholar]
    72. MøllerAP,HagiwaraA,MatsuiS,KasaharaS,KawatsuK et al.2012b. Abundance of birds in Fukushima as judged from Chernobyl.Environ. Pollut.164:36–39
      [Google Scholar]
    73. MøllerAP,HobsonKA,MousseauTA,PekloAM.2006. Chernobyl as a population sink for barn swallows: tracking dispersal using stable-isotope profiles.Ecol. Appl.16:1696–705
      [Google Scholar]
    74. MøllerAP,MorelliF,MousseauTA,TryjanowskiP.2016a. The number of syllables in Chernobyl cuckoo calls reliably indicate habitat, soil and radiation levels.Ecol. Indicators66:592–97
      [Google Scholar]
    75. MøllerAP,MousseauTA.2001. Albinism and phenotype of barn swallows (Hirundo rustica) from Chernobyl.Evolution55:2097–104
      [Google Scholar]
    76. MøllerAP,MousseauTA.2006. Biological consequences of Chernobyl: 20 years on.Trends Ecol.Evol.21:200–7
      [Google Scholar]
    77. MøllerAP,MousseauTA.2007a. Species richness and abundance of forest birds in relation to radiation at Chernobyl.Biol. Lett.3:483–86
      [Google Scholar]
    78. MøllerAP,MousseauTA.2007b. Determinants of interspecific variation in population declines of birds after exposure to radiation at Chernobyl.J. Appl. Ecol.44:909–19
      [Google Scholar]
    79. MøllerAP,MousseauTA.2009. Reduced abundance of insects and spiders linked to radiation at Chernobyl 20 years after the accident.Biol. Lett.5:356–59
      [Google Scholar]
    80. MøllerAP,MousseauTA.2011a. Efficiency of bio-indicators for low-level radiation under field conditions.Ecol. Indicators11:424–30
      [Google Scholar]
    81. MøllerAP,MousseauTA.2011b. Conservation consequences of Chernobyl and other nuclear accidents.Biol. Conserv.144:2787–98
      [Google Scholar]
    82. MøllerAP,MousseauTA.2013a. The effects of natural variation in background radioactivity on humans, animals and other organisms.Biol. Rev.88:226–54
      [Google Scholar]
    83. MøllerAP,MousseauTA.2013b. Assessing effects of radiation on abundance of mammals and predator–prey interactions in Chernobyl using tracks in the snow.Ecol. Indicators26:112–16
      [Google Scholar]
    84. MøllerAP,MousseauTA.2015. Strong effects of ionizing radiation from Chernobyl on mutation rates.Sci.Rep.5:8363
      [Google Scholar]
    85. MøllerAP,MousseauTA.2016. Are organisms adapting to ionizing radiation at Chernobyl?.Trends Ecol.Evol.31:281–89
      [Google Scholar]
    86. MøllerAP,MousseauTA.2017. Radiation levels affect pollen viability and germination among sites and species at Chernobyl.Int. J. Plant Sci.178:537–45
      [Google Scholar]
    87. MøllerAP,MousseauTA.2019. Radioecology.Oxf. Bibliogr. Ecol.2019:https://www.oxfordbibliographies.com/view/document/obo-9780199830060/obo-9780199830060-0229.xml
      [Google Scholar]
    88. MøllerAP,MousseauTA,LynnC,OstermillerS,RudolfsenG.2008. Impaired swimming behaviour and morphology of sperm from barn swallowsHirundo rustica in Chernobyl.Mutat. Res./Genet. Toxicol. Environ. Mutagen.650:210–16
      [Google Scholar]
    89. MøllerAP,MousseauTA,MilinevskyG,PekloA,PysanetsE,SzépT2005a. Condition, reproduction and survival of barn swallows from Chernobyl.J. Anim. Ecol74:110211
      [Google Scholar]
    90. MøllerAP,MousseauTA,NishiumiI,UedaK.2015. Ecological differences in response of bird species to radioactivity from Chernobyl and Fukushima.J. Ornithol.156:287–96
      [Google Scholar]
    91. MøllerAP,NishiumiI,SuzukiH,UedaK,MousseauTA.2013b. Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl.Ecol. Indicators24:75–81
      [Google Scholar]
    92. MøllerAP,ShyuJC,MousseauTA.2016b. Ionizing radiation from Chernobyl and the fraction of viable pollen.Int. J. Plant Sci.177:727–35
      [Google Scholar]
    93. MøllerAP,SuraiP,MousseauTA.2005b. Antioxidants, radiation and mutation as revealed by sperm abnormality in barn swallows from Chernobyl.Proc. R. Soc. B272:247–53
      [Google Scholar]
    94. MorelliF,BenedettiY,MousseauTA,MøllerAP.2018. Ionizing radiation and taxonomic, functional and evolutionary diversity of bird communities.J.Environ.Manag.220:183–90
      [Google Scholar]
    95. MorganMG,AbdullaA,FordMJ,RathM.2018. US nuclear power: the vanishing low-carbon wedge.PNAS115:7184–89
      [Google Scholar]
    96. MousseauT,MøllerAP.2013a. Perspectives on Chernobyl and Fukushima health effects: What can be learned from Eastern European research?.J. Health Pollut.3:2–6
      [Google Scholar]
    97. MousseauTA,MøllerAP.2013b. Elevated frequency of cataracts in birds from Chernobyl.PLOS ONE8:e66939
      [Google Scholar]
    98. MousseauTA,MøllerAP.2014. Genetic and ecological studies of animals in Chernobyl and Fukushima.J. Hered.105:704–9
      [Google Scholar]
    99. MousseauTA,WelchSM,ChizhevskyI,BondarenkoO,MilinevskyG et al.2013. Tree rings reveal extent of exposure to ionizing radiation in Scots pinePinus sylvestris.Trees27:1443–53
      [Google Scholar]
    100. MullerHJ.1927. Artificial transmutation of the gene.Science66:84–87
      [Google Scholar]
    101. MustonenV,KesäniemiJ,LavrinienkoA,TukalenkoE,MappesT et al.2018. Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses.BMC Cell Biol19:17
      [Google Scholar]
    102. Natl. Res. Counc.2012.Analysis of Cancer Risks in Populations Near Nuclear Facilities: Phase I Rep Washington, DC: Natl. Acad. Press
      [Google Scholar]
    103. NeelJV.1998. Genetic studies at the Atomic Bomb Casualty Commission—Radiation Effects Research Foundation: 1946–1997.PNAS95:5432–36
      [Google Scholar]
    104. [Google Scholar]
    105. Nucl. Energy Inst2020. Used fuel storage and nuclear waste fund payments by state.Nucl. Energy Inst.https://www.nei.org/resources/statistics/used-fuel-storage-and-nuclear-waste-fund-payments
      [Google Scholar]
    106. Omar-NazirL,ShiX,MollerA,MousseauT,ByunS et al.2018. Long-term effects of ionizing radiation after the Chernobyl accident: possible contribution of historic dose.Environ.Res.165:55–62
      [Google Scholar]
    107. PetersenRCJr.,LandnerL,BlanckH.1986. Assessment of the impact of the Chernobyl reactor accident on the biota of Swedish streams and lakes.Ambio15:327–31
      [Google Scholar]
    108. PrestonDL,RonE,TokuokaS,FunamotoS,NishiN et al.2007. Solid cancer incidence in atomic bomb survivors: 1958–1998.Radiat.Res.168:1–64
      [Google Scholar]
    109. RamanaMV.2018. Technical and social problems of nuclear waste.WIREs Energy Environ.7:e289
      [Google Scholar]
    110. Ruiz-GonzálezMX,Czirják,GenevauxP,MøllerAP,MousseauTA,HeebP.2016. Resistance of feather-associated bacteria to intermediate levels of ionizing radiation near Chernobyl.Sci.Rep.6:22969
      [Google Scholar]
    111. RyabokonNI,GoncharovaRI.2006. Transgenerational accumulation of radiation damage in small mammals chronically exposed to Chernobyl fallout.Radiat.Environ.Biophys.45:167–77
      [Google Scholar]
    112. ScherbH,VoigtK.2011. The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities.Environ. Sci. Pollut. Res.18:697–707
      [Google Scholar]
    113. ShestopalovVM.1996.Atlas of Chernobyl Exclusion Zone Kiev, Ukr: Ukr. Acad. Sci.
      [Google Scholar]
    114. SimonSL,BouvilleA,LandCE.2006. Fallout from nuclear weapons tests and cancer risks: exposures 50 years ago still have health implications today that will continue into the future.Am. Sci.94:48–57
      [Google Scholar]
    115. StadlerLJ.1928. Mutations in barley induced by X-rays and radium.Science68:186–87
      [Google Scholar]
    116. SteinhauserG,BrandlA,JohnsonTE.2014. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts.Sci.Total Environ.470:800–17
      [Google Scholar]
    117. SubramanianM.2019. Anthropocene now: influential panel votes to recognize Earth's new epoch.Nature May 21.https://doi.org/10.1038/d41586-019-01641-5
      [Crossref][Google Scholar]
    118. TurelliM.1984. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle.Theor.Popul.Biol.25:138–93
      [Google Scholar]
    119. UN Sci. Comm. Eff. At. Radiat2000.Sources and effects of ionizing radiation. UNSCEAR 2000 Rep., Gen. Assem. Vol. I, U. N., New York
    120. US Dep. Energy (DOE)2019.Hanford lifecycle scope,schedule, and cost report. DOE/RL-2018-45 Rev. 0, DOE Richland, WA:
      [Google Scholar]
    121. von HippelFN,SchoeppnerM.2017. Economic losses from a fire in a dense-packed US spent fuel pool.Sci. Glob. Secur.25:80–92
      [Google Scholar]
    122. WebsterSC,ByrneME,LanceSL,LoveCN,HintonTG et al.2016. Where the wild things are: influence of radiation on the distribution of four mammalian species within the Chernobyl Exclusion Zone.Front. Ecol. Environ.14:185–90
      [Google Scholar]
    123. WheatleyS,SovacoolB,SornetteD.2017. Of disasters and dragon kings: a statistical analysis of nuclear power incidents and accidents.Risk Anal37:99–115
      [Google Scholar]
    124. WickliffeJK,RodgersBE,ChesserRK,PhillipsCJ,GaschakSP,BakerRJ.2003. Mitochondrial DNA heteroplasmy in laboratory mice experimentally enclosed in the radioactive Chernobyl environment.Radiat.Res.159:458–64
      [Google Scholar]
    125. World Nucl. Assoc2020.World nuclear performance report 2020. Rep., World Nuclear Association, London.https://www.world-nuclear.org/getmedia/3418bf4a-5891-4ba1-b6c2-d83d8907264d/performance-report-2020-v1.pdf.aspx
    126. YablokovA.2013. A review and critical analysis of the “effective dose of radiation” concept.J. Health Pollut.3:13–28
      [Google Scholar]
    127. YablokovAV,NesterenkoVB,NesterenkoAV.2009. Chernobyl: consequences of the catastrophe for people and the environment.Ann. N. Y. Acad. Sci.1181:1–327
      [Google Scholar]
    128. ZhangA,SteenTY.2018. Gut microbiomics—a solution to unloose the gordian knot of biological effects of ionizing radiation.J. Hered.109:212–21
      [Google Scholar]
    129. ZhdanovaNN,ZakharchenkoVA,VemberVV,NakonechnayaLT.2000. Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor.Mycological Res104:1421–26
      [Google Scholar]
    /content/journals/10.1146/annurev-ecolsys-110218-024827
    Loading
    The Biology of Chernobyl
    Annual Review of Ecology, Evolution, and Systematics52, 87 (2021);https://doi.org/10.1146/annurev-ecolsys-110218-024827
    /content/journals/10.1146/annurev-ecolsys-110218-024827
    /content/journals/10.1146/annurev-ecolsys-110218-024827
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/ecolsys
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-ecolsys-110218-024827
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. AmiardJC.2018.Military Nuclear Accidents: Environmental, Ecological, Health and Socio-economic Consequences Hoboken, NJ: John Wiley & Sons
      [Google Scholar]
    2. BakerRJ,DickinsB,WickliffeJK,KhanFA,GaschakS et al.2017. Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent.Evol.Appl.10:784–91
      [Google Scholar]
    3. BakerRJ,HamiltonMJ,Van Den BusscheRA,WigginsLE,SuggDWet al1996a. Small mammals from the most radioactive sites near the Chornobyl nuclear power plant.J. Mammal77:15570
      [Google Scholar]
    4. BakerRJ,Van Den BusscheRA,WrightAJ,WigginsLE,HamiltonMJ et al.1996b. High levels of genetic change in rodents of Chernobyl.Nature380:707–8
      [Google Scholar]
    5. BakerRJ,Van Den BusscheRA,WrightAJ,WigginsLE,HamiltonMJ et al.1997. Retraction note to: High levels of genetic change in rodents of Chernobyl.Nature390:100
      [Google Scholar]
    6. Beaugelin-SeillerK,Garnier-LaplaceJ,Della-VedovaC,MétivierJM,LepageH et al.2020. Dose reconstruction supports the interpretation of decreased abundance of mammals in the Chernobyl Exclusion Zone.Sci.Rep.10:14083
      [Google Scholar]
    7. Bonisoli-AlquatiA,KoyamaK,TedeschiDJ,KitamuraW,SukuziH et al.2015. Abundance and genetic damage of barn swallows from Fukushima.Sci.Rep.5:9432
      [Google Scholar]
    8. Bonisoli-AlquatiA,MøllerAP,RudolfsenG,SainoN,CaprioliM et al.2011. The effects of radiation on sperm swimming behavior depend on plasma oxidative status in the barn swallow (Hirundo rustica).Comp. Biochem. Physiol. A Mol. Integr. Physiol.159:105–12
      [Google Scholar]
    9. BoratyńskiZ,AriasJM,GarciaC,MappesT,MousseauTA et al.2016. Ionizing radiation from Chernobyl affects development of wild carrot plants.Sci.Rep.6:39282
      [Google Scholar]
    10. BoratyńskiZ,LehmannP,MappesT,MousseauTA,MøllerAP.2014. Increased radiation from Chernobyl decreases the expression of red colouration in natural populations of bank voles (Myodes glareolus).Sci.Rep.4:7141
      [Google Scholar]
    11. BraithwaiteR.2019. Chernobyl: A ‘normal’ accident?.Survival61:149–58
      [Google Scholar]
    12. BrownK.2019.Manual for Survival: A Chernobyl Guide to the Future London: Penguin UK:
      [Google Scholar]
    13. CamplaniA,SainoN,MøllerAP.1999. Carotenoids, sexual signals and immune function in barn swallows from Chernobyl.Proc. R. Soc. B266:1111–16
      [Google Scholar]
    14. CharlesworthB.1990. Mutation-selection balance and the evolutionary advantage of sex and recombination.Genet. Res.55:199–221
      [Google Scholar]
    15. ClarkC.1997.Radium Girls: Women and Industrial Health Reform,19101935 Chapel Hill, NC: Univ. N. C. Press
      [Google Scholar]
    16. CowanR.1990. Nuclear power reactors: a study in technological lock-in.J.Econ.Hist.50:541–67
      [Google Scholar]
    17. CristaldiM,IeradiLA,MascanzoniD,MatteiT.1991. Environmental impact of the Chernobyl accident: mutagenesis in bank voles from Sweden.Int.J.Radiat.Biol.59:31–40
      [Google Scholar]
    18. CrowleyKD,AhearneJF.2002. Managing the environmental legacy of US nuclear-weapons production.Am. Sci.90:514–23
      [Google Scholar]
    19. Czirják,MøllerAP,MousseauTA,HeebP.2010. Microorganisms associated with feathers of barn swallows in radioactively contaminated areas around Chernobyl.Microb.Ecol.60:373–80
      [Google Scholar]
    20. DadachovaE,CasadevallA.2008. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin.Curr.Opin.Microbiol.11:525–31
      [Google Scholar]
    21. DavisJ.2018.Radioactive Effluents from Nuclear Power Plants,Annual Report 2013 NUREG/CR-2907 , Vol.19 Washington, DC: US Nucl. Regul. Comm.
      [Google Scholar]
    22. De CortM,DuboisG,FridmanSD,GermenchukMG,IzraelYA et al.1998.Atlas of caesium deposition on Europe after the Chernobyl accident EUR Rep. 16733 Off. Off. Publ. Eur. Communities Luxembourg:
      [Google Scholar]
    23. DeryabinaTG,KuchmelSV,NagorskayaLL,HintonTG,BeasleyJC et al.2015. Long-term census data reveal abundant wildlife populations at Chernobyl.Curr. Biol.25:R824–26
      [Google Scholar]
    24. DiCarloAL,MaherC,HickJL,HanflingD,DainiakN et al.2011. Radiation injury after a nuclear detonation: medical consequences and the need for scarce resources allocation.Disaster Med.Public Health Prep.5:S1S32–44
      [Google Scholar]
    25. DubrovaYE.1998. Radiation-induced germline instability at minisatellite loci.Int.J.Radiat.Biol.74:689–96
      [Google Scholar]
    26. DubrovaYE,NesterovVN,KrouchinskyNG,OstapenkoVA,NeumannR et al.1996. Human minisatellite mutation rate after the Chernobyl accident.Nature380:683–86
      [Google Scholar]
    27. EinorD,Bonisoli-AlquatiA,CostantiniD,MousseauTA,MøllerAP.2016. Ionizing radiation, antioxidant response and oxidative damage: a meta-analysis.Sci. Total Environ.548:463–71
      [Google Scholar]
    28. EllegrenH,LindgrenG,PrimmerCR,MøllerAP.1997. Fitness loss and germline mutations in barn swallows breeding in Chernobyl.Nature389:593–96
      [Google Scholar]
    29. EvangeliouN,HamburgerT,TalerkoN,ZibtsevS,BondarY et al.2016. Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe.Environ.Pollut.216:408–18
      [Google Scholar]
    30. FairlieI.2014. A hypothesis to explain childhood cancers near nuclear power plants.J.Environ.Radioact.133:10–17
      [Google Scholar]
    31. FischbeinA,ZabludovskyN,EltesF,GrischenkoV,BartoovB.1997. Ultramorphological sperm characteristics in the risk assessment of health effects after radiation exposure among salvage workers in Chernobyl.Environ.Health Perspect.105:1445–49
      [Google Scholar]
    32. GalvánI,Bonisoli-AlquatiA,JenkinsonS,GhanemG,WakamatsuK et al.2014. Chronic exposure to low-dose radiation at Chernobyl favours adaptation to oxidative stress in birds.Funct. Ecol.28:1387–403
      [Google Scholar]
    33. Garnier-LaplaceJ,Beaugelin-SeillerK,Della-VedovaC,MétivierJM,RitzC et al.2015. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships.Sci.Rep.5:16594
      [Google Scholar]
    34. Garnier-LaplaceJ,Geras'kinS,Della-VedovaC,Beaugelin-SeillerK,HintonTG et al.2013. Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates.J.Environ.Radioact.121:12–21
      [Google Scholar]
    35. Geras'kinSA,FesenkoSV,AlexakhinRM2008. Effects of non-human species irradiation after the Chernobyl NPP accident.Environ. Int.34:880–97
      [Google Scholar]
    36. GilbertJA,BlaserMJ,CaporasoJG,JanssonJK,LynchSV,KnightR.2018. Current understanding of the human microbiome.Nat.Med.24:392–400
      [Google Scholar]
    37. GoncharovaRI,RyabokonNI.1995. Dynamics of cytogenetic injuries in natural populations of bank vole in the Republic of Belarus.Radiat. Prot. Dosim.62:37–40
      [Google Scholar]
    38. GrantEJ,BrennerA,SugiyamaH,SakataR,SadakaneA et al.2017. Solid cancer incidence among the life span study of atomic bomb survivors: 1958–2009.Radiat.Res.187:513–37
      [Google Scholar]
    39. GsponerA,HurniJP.2009.The Physical Principles of Thermonuclear Explosives, Inertial Confinement Fusion, and the Quest for Fourth Generation Nuclear Weapons INESAP Tech. Rep. 1 Darmstadt, Ger.: INESAP, 7th ed..
      [Google Scholar]
    40. HermosellIG,LaskemoenT,RoweM,MøllerAP,MousseauTA et al.2013. Patterns of sperm damage in Chernobyl passerine birds suggest a trade-off between sperm length and integrity.Biol. Lett.9:20130530
      [Google Scholar]
    41. HigginbothamA.2019.Midnight in Chernobyl: The Untold Story of the World's Greatest Nuclear Disaster New York: Random House
      [Google Scholar]
    42. HigginsK,LynchM.2001. Metapopulation extinction caused by mutation accumulation.PNAS98:2928–33
      [Google Scholar]
    43. HowellSJ,ShaletSM.2005. Spermatogenesis after cancer treatment: damage and recovery.J. Natl. Cancer Inst. Monogr.2005:12–17
      [Google Scholar]
    44. Int. At. Energy Agency2006.Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Radiol. Assess. Rep. Ser. 8, Int. At. Energy Agency, Vienna
      [Google Scholar]
    45. JernforsT,KesäniemiJ,LavrinienkoA,MappesT,MilinevskyG et al.2018. Transcriptional upregulation of DNA damage response genes in bank voles (Myodes glareolus) inhabiting the Chernobyl Exclusion Zone.Front.Environ. Sci.5:95
      [Google Scholar]
    46. JohnsonRL.2014.Chernobyl's Wild Kingdom: Life in the Dead Zone Minneapolis, MN: Twenty-First Century Books
      [Google Scholar]
    47. KesäniemiJ,LavrinienkoA,TukalenkoE,BoratyńskiZ,KivisaariK et al.2019. Exposure to environmental radionuclides associates with tissue-specific impacts on telomerase expression and telomere length.Sci.Rep.9:850
      [Google Scholar]
    48. KesäniemiJ,LavrinienkoA,TukalenkoE,MoutinhoAF,MappesT et al.2020. Exposure to environmental radionuclides alters mitochondrial DNA maintenance in a wild rodent.Evol. Ecol.34:163–74
      [Google Scholar]
    49. KivisaariK.2019.The effects of ionizing radiation on bank vole in Chernobyl Exclusion Zone. PhD Diss. Univ. Jyväskylä Jyväskylä, Finland:
      [Google Scholar]
    50. KivisaariK,BoratyńskiZ,LavrinienkoA,KesäniemiJ,LehmannP,MappesT.2020. The effect of chronic low-dose environmental radiation on organ mass of bank voles in the Chernobyl exclusion zone.Int. J. Radiat. Biol.96:1254–62
      [Google Scholar]
    51. KolbertE.2014.The Sixth Extinction: An Unnatural History New York: Henry Holt & Co.
      [Google Scholar]
    52. KörbleinA,Hesse-HoneggerC.2018. Morphological abnormalities in true bugs (Heteroptera) near Swiss nuclear power stations.Chem. Biodivers.15:e1800099
      [Google Scholar]
    53. KovalchukI,AbramovV,PogribnyI,KovalchukO.2004. Molecular aspects of plant adaptation to life in the Chernobyl zone.Plant Physiol135:357–63
      [Google Scholar]
    54. KovalchukO,DubrovaYE,ArkhipovA,HohnB,KovalchukI.2000. Wheat mutation rate after Chernobyl.Nature407:583–84
      [Google Scholar]
    55. KuzioT.2015.Ukraine: Democratization, Corruption, and the New Russian Imperialism Westport, CT: Praeger
      [Google Scholar]
    56. LavrinienkoA,HämäläinenA,HindströmR,TukalenkoE,BoratyńskiZ et al.2021. Comparable response of wild rodent gut microbiome to anthropogenic habitat contamination.Mol. Ecol.30:348599
      [Google Scholar]
    57. LavrinienkoA,MappesT,TukalenkoE,MousseauTA,MøllerAP et al.2018a. Environmental radiation alters the gut microbiome of the bank voleMyodes glareolus.ISME J12:2801–6
      [Google Scholar]
    58. LavrinienkoA,TukalenkoE,KesäniemiJ,KivisaariK,MasiukS et al.2020a. Applying the Anna Karenina principle for wild animal gut microbiota: temporal stability of the bank vole gut microbiota in a disturbed environment.J.Anim.Ecol.89:2617–30
      [Google Scholar]
    59. LavrinienkoA,TukalenkoE,MappesT,WattsPC.2018b. Skin and gut microbiomes of a wild mammal respond to different environmental cues.Microbiome6:209
      [Google Scholar]
    60. LavrinienkoA,TukalenkoE,MousseauTA,ThompsonLR,KnightR et al.2020b. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota.Sci.Data7:312
      [Google Scholar]
    61. Lazard2020.Lazard's levelized cost of energy analysis—version 14.0. Rep., Lazard, Hamilton, Bermud.https://www.lazard.com/media/451419/lazards-levelized-cost-of-energy-version-140.pdf
    62. LehmannP,BoratyńskiZ,MappesT,MousseauTA,MøllerAP.2016. Fitness costs of increased cataract frequency and cumulative radiation dose in natural mammalian populations from Chernobyl.Sci.Rep.6:19974
      [Google Scholar]
    63. LochbaumD,LymanE,StranahanSQ2014.Fukushima: The Story of a Nuclear Disaster New York: The New Press
      [Google Scholar]
    64. LynchM,ConeryJ,BurgerR.1995. Mutation accumulation and the extinction of small populations.Am. Nat.146:489–518
      [Google Scholar]
    65. MappesT,BoratyńskiZ,KivisaariK,LavrinienkoA,MilinevskyG et al.2019. Ecological mechanisms can modify radiation effects in a key forest mammal of Chernobyl.Ecosphere10:e02667
      [Google Scholar]
    66. MedvedevZA.1986. Ecological aspects of the Chernobyl nuclear plant disaster.Trends Ecol.Evol.1:23–25
      [Google Scholar]
    67. MøllerAP.1993. Morphology and sexual selection in the barn swallowHirundo rustica in Chernobyl, Ukraine.Proc. R. Soc. B252:51–57
      [Google Scholar]
    68. MøllerAP,Bonisoli-AlquatiA,MousseauTA.2013a. High frequency of albinism and tumours in free-living birds around Chernobyl.Mutat. Res./Genet. Toxicol. Environ. Mutagen.757:52–59
      [Google Scholar]
    69. MøllerAP,Bonisoli-AlquatiA,MousseauTA,RudolfsenG.2014. Aspermy, sperm quality and radiation in Chernobyl birds.PLOS ONE9:e100296
      [Google Scholar]
    70. MøllerAP,Bonisoli-AlquatiA,RudolfsenG,MousseauTA.2011. Chernobyl birds have smaller brains.PLOS ONE6:e16862
      [Google Scholar]
    71. MøllerAP,Bonisoli-AlquatiA,RudolfsenG,MousseauTA.2012a. Elevated mortality among birds in Chernobyl as judged from skewed age and sex ratios.PLOS ONE7:e35223
      [Google Scholar]
    72. MøllerAP,HagiwaraA,MatsuiS,KasaharaS,KawatsuK et al.2012b. Abundance of birds in Fukushima as judged from Chernobyl.Environ. Pollut.164:36–39
      [Google Scholar]
    73. MøllerAP,HobsonKA,MousseauTA,PekloAM.2006. Chernobyl as a population sink for barn swallows: tracking dispersal using stable-isotope profiles.Ecol. Appl.16:1696–705
      [Google Scholar]
    74. MøllerAP,MorelliF,MousseauTA,TryjanowskiP.2016a. The number of syllables in Chernobyl cuckoo calls reliably indicate habitat, soil and radiation levels.Ecol. Indicators66:592–97
      [Google Scholar]
    75. MøllerAP,MousseauTA.2001. Albinism and phenotype of barn swallows (Hirundo rustica) from Chernobyl.Evolution55:2097–104
      [Google Scholar]
    76. MøllerAP,MousseauTA.2006. Biological consequences of Chernobyl: 20 years on.Trends Ecol.Evol.21:200–7
      [Google Scholar]
    77. MøllerAP,MousseauTA.2007a. Species richness and abundance of forest birds in relation to radiation at Chernobyl.Biol. Lett.3:483–86
      [Google Scholar]
    78. MøllerAP,MousseauTA.2007b. Determinants of interspecific variation in population declines of birds after exposure to radiation at Chernobyl.J. Appl. Ecol.44:909–19
      [Google Scholar]
    79. MøllerAP,MousseauTA.2009. Reduced abundance of insects and spiders linked to radiation at Chernobyl 20 years after the accident.Biol. Lett.5:356–59
      [Google Scholar]
    80. MøllerAP,MousseauTA.2011a. Efficiency of bio-indicators for low-level radiation under field conditions.Ecol. Indicators11:424–30
      [Google Scholar]
    81. MøllerAP,MousseauTA.2011b. Conservation consequences of Chernobyl and other nuclear accidents.Biol. Conserv.144:2787–98
      [Google Scholar]
    82. MøllerAP,MousseauTA.2013a. The effects of natural variation in background radioactivity on humans, animals and other organisms.Biol. Rev.88:226–54
      [Google Scholar]
    83. MøllerAP,MousseauTA.2013b. Assessing effects of radiation on abundance of mammals and predator–prey interactions in Chernobyl using tracks in the snow.Ecol. Indicators26:112–16
      [Google Scholar]
    84. MøllerAP,MousseauTA.2015. Strong effects of ionizing radiation from Chernobyl on mutation rates.Sci.Rep.5:8363
      [Google Scholar]
    85. MøllerAP,MousseauTA.2016. Are organisms adapting to ionizing radiation at Chernobyl?.Trends Ecol.Evol.31:281–89
      [Google Scholar]
    86. MøllerAP,MousseauTA.2017. Radiation levels affect pollen viability and germination among sites and species at Chernobyl.Int. J. Plant Sci.178:537–45
      [Google Scholar]
    87. MøllerAP,MousseauTA.2019. Radioecology.Oxf. Bibliogr. Ecol.2019:https://www.oxfordbibliographies.com/view/document/obo-9780199830060/obo-9780199830060-0229.xml
      [Google Scholar]
    88. MøllerAP,MousseauTA,LynnC,OstermillerS,RudolfsenG.2008. Impaired swimming behaviour and morphology of sperm from barn swallowsHirundo rustica in Chernobyl.Mutat. Res./Genet. Toxicol. Environ. Mutagen.650:210–16
      [Google Scholar]
    89. MøllerAP,MousseauTA,MilinevskyG,PekloA,PysanetsE,SzépT2005a. Condition, reproduction and survival of barn swallows from Chernobyl.J. Anim. Ecol74:110211
      [Google Scholar]
    90. MøllerAP,MousseauTA,NishiumiI,UedaK.2015. Ecological differences in response of bird species to radioactivity from Chernobyl and Fukushima.J. Ornithol.156:287–96
      [Google Scholar]
    91. MøllerAP,NishiumiI,SuzukiH,UedaK,MousseauTA.2013b. Differences in effects of radiation on abundance of animals in Fukushima and Chernobyl.Ecol. Indicators24:75–81
      [Google Scholar]
    92. MøllerAP,ShyuJC,MousseauTA.2016b. Ionizing radiation from Chernobyl and the fraction of viable pollen.Int. J. Plant Sci.177:727–35
      [Google Scholar]
    93. MøllerAP,SuraiP,MousseauTA.2005b. Antioxidants, radiation and mutation as revealed by sperm abnormality in barn swallows from Chernobyl.Proc. R. Soc. B272:247–53
      [Google Scholar]
    94. MorelliF,BenedettiY,MousseauTA,MøllerAP.2018. Ionizing radiation and taxonomic, functional and evolutionary diversity of bird communities.J.Environ.Manag.220:183–90
      [Google Scholar]
    95. MorganMG,AbdullaA,FordMJ,RathM.2018. US nuclear power: the vanishing low-carbon wedge.PNAS115:7184–89
      [Google Scholar]
    96. MousseauT,MøllerAP.2013a. Perspectives on Chernobyl and Fukushima health effects: What can be learned from Eastern European research?.J. Health Pollut.3:2–6
      [Google Scholar]
    97. MousseauTA,MøllerAP.2013b. Elevated frequency of cataracts in birds from Chernobyl.PLOS ONE8:e66939
      [Google Scholar]
    98. MousseauTA,MøllerAP.2014. Genetic and ecological studies of animals in Chernobyl and Fukushima.J. Hered.105:704–9
      [Google Scholar]
    99. MousseauTA,WelchSM,ChizhevskyI,BondarenkoO,MilinevskyG et al.2013. Tree rings reveal extent of exposure to ionizing radiation in Scots pinePinus sylvestris.Trees27:1443–53
      [Google Scholar]
    100. MullerHJ.1927. Artificial transmutation of the gene.Science66:84–87
      [Google Scholar]
    101. MustonenV,KesäniemiJ,LavrinienkoA,TukalenkoE,MappesT et al.2018. Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses.BMC Cell Biol19:17
      [Google Scholar]
    102. Natl. Res. Counc.2012.Analysis of Cancer Risks in Populations Near Nuclear Facilities: Phase I Rep Washington, DC: Natl. Acad. Press
      [Google Scholar]
    103. NeelJV.1998. Genetic studies at the Atomic Bomb Casualty Commission—Radiation Effects Research Foundation: 1946–1997.PNAS95:5432–36
      [Google Scholar]
    104. [Google Scholar]
    105. Nucl. Energy Inst2020. Used fuel storage and nuclear waste fund payments by state.Nucl. Energy Inst.https://www.nei.org/resources/statistics/used-fuel-storage-and-nuclear-waste-fund-payments
      [Google Scholar]
    106. Omar-NazirL,ShiX,MollerA,MousseauT,ByunS et al.2018. Long-term effects of ionizing radiation after the Chernobyl accident: possible contribution of historic dose.Environ.Res.165:55–62
      [Google Scholar]
    107. PetersenRCJr.,LandnerL,BlanckH.1986. Assessment of the impact of the Chernobyl reactor accident on the biota of Swedish streams and lakes.Ambio15:327–31
      [Google Scholar]
    108. PrestonDL,RonE,TokuokaS,FunamotoS,NishiN et al.2007. Solid cancer incidence in atomic bomb survivors: 1958–1998.Radiat.Res.168:1–64
      [Google Scholar]
    109. RamanaMV.2018. Technical and social problems of nuclear waste.WIREs Energy Environ.7:e289
      [Google Scholar]
    110. Ruiz-GonzálezMX,Czirják,GenevauxP,MøllerAP,MousseauTA,HeebP.2016. Resistance of feather-associated bacteria to intermediate levels of ionizing radiation near Chernobyl.Sci.Rep.6:22969
      [Google Scholar]
    111. RyabokonNI,GoncharovaRI.2006. Transgenerational accumulation of radiation damage in small mammals chronically exposed to Chernobyl fallout.Radiat.Environ.Biophys.45:167–77
      [Google Scholar]
    112. ScherbH,VoigtK.2011. The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities.Environ. Sci. Pollut. Res.18:697–707
      [Google Scholar]
    113. ShestopalovVM.1996.Atlas of Chernobyl Exclusion Zone Kiev, Ukr: Ukr. Acad. Sci.
      [Google Scholar]
    114. SimonSL,BouvilleA,LandCE.2006. Fallout from nuclear weapons tests and cancer risks: exposures 50 years ago still have health implications today that will continue into the future.Am. Sci.94:48–57
      [Google Scholar]
    115. StadlerLJ.1928. Mutations in barley induced by X-rays and radium.Science68:186–87
      [Google Scholar]
    116. SteinhauserG,BrandlA,JohnsonTE.2014. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts.Sci.Total Environ.470:800–17
      [Google Scholar]
    117. SubramanianM.2019. Anthropocene now: influential panel votes to recognize Earth's new epoch.Nature May 21.https://doi.org/10.1038/d41586-019-01641-5
      [Crossref][Google Scholar]
    118. TurelliM.1984. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle.Theor.Popul.Biol.25:138–93
      [Google Scholar]
    119. UN Sci. Comm. Eff. At. Radiat2000.Sources and effects of ionizing radiation. UNSCEAR 2000 Rep., Gen. Assem. Vol. I, U. N., New York
    120. US Dep. Energy (DOE)2019.Hanford lifecycle scope,schedule, and cost report. DOE/RL-2018-45 Rev. 0, DOE Richland, WA:
      [Google Scholar]
    121. von HippelFN,SchoeppnerM.2017. Economic losses from a fire in a dense-packed US spent fuel pool.Sci. Glob. Secur.25:80–92
      [Google Scholar]
    122. WebsterSC,ByrneME,LanceSL,LoveCN,HintonTG et al.2016. Where the wild things are: influence of radiation on the distribution of four mammalian species within the Chernobyl Exclusion Zone.Front. Ecol. Environ.14:185–90
      [Google Scholar]
    123. WheatleyS,SovacoolB,SornetteD.2017. Of disasters and dragon kings: a statistical analysis of nuclear power incidents and accidents.Risk Anal37:99–115
      [Google Scholar]
    124. WickliffeJK,RodgersBE,ChesserRK,PhillipsCJ,GaschakSP,BakerRJ.2003. Mitochondrial DNA heteroplasmy in laboratory mice experimentally enclosed in the radioactive Chernobyl environment.Radiat.Res.159:458–64
      [Google Scholar]
    125. World Nucl. Assoc2020.World nuclear performance report 2020. Rep., World Nuclear Association, London.https://www.world-nuclear.org/getmedia/3418bf4a-5891-4ba1-b6c2-d83d8907264d/performance-report-2020-v1.pdf.aspx
    126. YablokovA.2013. A review and critical analysis of the “effective dose of radiation” concept.J. Health Pollut.3:13–28
      [Google Scholar]
    127. YablokovAV,NesterenkoVB,NesterenkoAV.2009. Chernobyl: consequences of the catastrophe for people and the environment.Ann. N. Y. Acad. Sci.1181:1–327
      [Google Scholar]
    128. ZhangA,SteenTY.2018. Gut microbiomics—a solution to unloose the gordian knot of biological effects of ionizing radiation.J. Hered.109:212–21
      [Google Scholar]
    129. ZhdanovaNN,ZakharchenkoVA,VemberVV,NakonechnayaLT.2000. Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor.Mycological Res104:1421–26
      [Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special


    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-ecolsys-110218-024827
    10.1146/annurev-ecolsys-110218-024827
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp