Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis

  • Paulo M. Brando1,2,Lucas Paolucci2,3,Caroline C. Ummenhofer4,Elsa M. Ordway5,6,7,Henrik Hartmann8,Megan E. Cattau9,Ludmila Rattis1,2,Vincent Medjibe10,Michael T. Coe1,2 andJennifer Balch9,11
  • 1Woods Hole Research Center, Falmouth, Massachusetts 02540, USA; email:[email protected]2Instituto de Pesquisa Ambiental da Amazônia (IPAM), Brasília-DF 71503-505, Brazil3Setor de Ecologia e Conservação, Departamento de Biologia, Universidade Federal de Lavras, 37200-000 Lavras, Minas Gerais, Brazil4Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA5Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA6Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305, USA7Center for Global Discovery and Conservation Science, Arizona State University, Tempe, Arizona 85281, USA8Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, 07745 Jena, Germany9Earth Lab, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, Colorado 80303, USA10Commission des Forêts d'Afrique Centrale (COMIFAC), 20818 Yaoundé, République du Cameroun11Department of Geography, University of Colorado Boulder, Boulder, Colorado 80309, USA
  • Vol. 47:555-581(Volume publication date May 2019)
  • Copyright © 2019 by Annual Reviews. All rights reserved

Abstract

Tropical woody plants store ∼230 petagrams of carbon (PgC) in their aboveground living biomass. This review suggests that these stocks are currently growing in primary forests at rates that have decreased in recent decades. Droughts are an important mechanism in reducing forest C uptake and stocks by decreasing photosynthesis, elevating tree mortality, increasing autotrophic respiration, and promoting wildfires. Tropical forests were a C source to the atmosphere during the 2015–2016 El Niño–related drought, with some estimates suggesting that up to 2.3 PgC were released. With continued climate change, the intensity and frequency of droughts and fires will likely increase. It is unclear at what point the impacts of severe, repeated disturbances by drought and fires could exceed tropical forests’ capacity to recover. Although specific threshold conditions beyond which ecosystem properties could lead to alternative stable states are largely unknown, the growing body of scientific evidence points to such threshold conditions becoming more likely as climate and land use change across the tropics.

  • ▪ Droughts have reduced forest carbon uptake and stocks by elevating tree mortality, increasing autotrophic respiration, and promoting wildfires.
  • ▪ Threshold conditions beyond which tropical forests are pushed into alternative stable states are becoming more likely as effects of droughts intensify.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-earth-082517-010235
    2019-05-30
    2025-11-27
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/earth/47/1/annurev-earth-082517-010235.html?itemId=/content/journals/10.1146/annurev-earth-082517-010235&mimeType=html&fmt=ahah

    Literature Cited

    1. AdamsHD,ZeppelMJ,AndereggWR,HartmannH,LandhäusserSM et al.2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.Nat. Ecol. Evol.1:91285–91
      [Google Scholar]
    2. AldrianE,DjamilYS2008. Spatio-temporal climatic change of rainfall in East Java Indonesia.Int. J. Climatol.28:4435–48
      [Google Scholar]
    3. AlencarAA,BrandoPM,AsnerGP,PutzFE2015. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.Ecol. Appl.25:61493–505
      [Google Scholar]
    4. AlexanderMA,KilbourneKH,NyeJA2014. Climate variability during warm and cold phases of the Atlantic Multidecadal Oscillation (AMO) 1871–2008.J. Mar. Syst.133:14–26
      [Google Scholar]
    5. AlkamaR,CescattiA2016. Biophysical climate impacts of recent changes in global forest cover.Science351:600–4
      [Google Scholar]
    6. AllenCD,BreshearsDD,McDowellNG2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene.Ecosphere6:8129
      [Google Scholar]
    7. AndereggWRL,KleinT,BartlettM,SackL,PellegriniAFA et al.2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe.PNAS113:5024–29
      [Google Scholar]
    8. AragãoLEOC,AndersonLO,FonsecaMG,RosanTM,VedovatoLB et al.2018. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions.Nat. Commun.9:1536
      [Google Scholar]
    9. AragãoLEOC,ShimabukuroYE2010. The incidence of fire in Amazonian forests with implications for REDD.Science328:59831275–78
      [Google Scholar]
    10. Asefi-NajafabadyS,SaatchiS2013. Response of African humid tropical forests to recent rainfall anomalies.Philos. Trans. R. Soc. B368:162520120306
      [Google Scholar]
    11. AtkinOK,BruhnD,HurryVM,TjoelkerMG2005.Evans Review No. 2: the hot and the cold: unravelling the variable response of plant respiration to temperature.Funct. Plant Biol32:287–105
      [Google Scholar]
    12. BacciniA,GoetzSJ,WalkerWS,LaporteNT,SunM et al.2012. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps.Nat. Clim. Change2:3182–85
      [Google Scholar]
    13. BacciniA,WalkerW,CarvalhoL,FarinaM,Sulla-MenasheD,HoughtonRA2017. Tropical forests are a net carbon source based on aboveground measurements of gain and loss.Science358:6360230–34
      [Google Scholar]
    14. BalchJK,BrandoPM,NepstadDC,CoeMT,SilvérioD et al.2015. The susceptibility of southeastern Amazon forests to fire: insights from a large-scale burn experiment.BioScience65:9893–905
      [Google Scholar]
    15. BalchJK,MassadTJ,BrandoPM,NepstadDC,CurranLM2013. Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests.Philos. Trans. R. Soc. B368:161920120157
      [Google Scholar]
    16. BalchJK,NepstadDC,BrandoPM,CurranLM,PortelaO et al.2008. Negative fire feedback in a transitional forest of southeastern Amazonia.Glob. Change Biol.14:102276–87
      [Google Scholar]
    17. BarlowJ,ParryL,GardnerTA,FerreiraJ,AragãoLEOC et al.2012a. The critical importance of considering fire in REDD+ programs.Biol. Conserv.154:1–8
      [Google Scholar]
    18. BarlowJ,PeresCA2008. Fire-mediated dieback and compositional cascade in an Amazonian forest.Philos. Trans. R. Soc. B363:14981787–94
      [Google Scholar]
    19. BarlowJ,PeresCA,LaganBO,HaugaasenT2003. Large tree mortality and the decline of forest biomass following Amazonian wildfires.Ecol. Lett.6:6–8
      [Google Scholar]
    20. BarlowJ,SilveiraJM,MestreLAM,AndradeRB,D'AndreaGC et al.2012b. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.PLOS ONE7:3e33373
      [Google Scholar]
    21. BeerC,ReichsteinM,TomelleriE,CiaisP,JungM et al.2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate.Science329:5993834–38
      [Google Scholar]
    22. BerenguerE,FerreiraJ,GardnerTA,AragãoLEOC,De CamargoPB et al.2014. A large-scale field assessment of carbon stocks in human-modified tropical forests.Glob. Change Biol.20:123713–26
      [Google Scholar]
    23. BowmanDMJS,BalchJK,ArtaxoP,BondWJ,CarlsonJM et al.2009. Fire in the Earth system.Science324:5926481–84
      [Google Scholar]
    24. BrandoP2018. Tree height matters.Nat. Geosci.11:390–91
      [Google Scholar]
    25. BrandoPM,BalchJK,NepstadDC,MortonDC,PutzFE et al.2014. Abrupt increases in Amazonian tree mortality due to drought-fire interactions.PNAS111:176347–52
      [Google Scholar]
    26. BrandoPM,GoetzSJ,BacciniA,NepstadDC,BeckPSA,ChristmanMC2010. Seasonal and interannual variability of climate and vegetation indices across the Amazon.PNAS107:3314685–90
      [Google Scholar]
    27. BrandoPM,NepstadDC,BalchJK,BolkerB,ChristmanMC et al.2012. Fire‐induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior.Glob. Change Biol.18:2630–41
      [Google Scholar]
    28. BrandoPM,NepstadDC,DavidsonEA,TrumboreSE,RayD,CamargoP2008. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment.Philos. Trans. R. Soc. B363:14981839–48
      [Google Scholar]
    29. BrandoPM,Oliveria-SantosC,RochaW,CuryR,CoeMT2016. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.Glob. Change Biol.22:72516–25
      [Google Scholar]
    30. BrandoPM,RayD,NepstadD,CardinotG,CurranLM,OliveiraR2006. Effects of partial throughfall exclusion on the phenology ofCoussarea racemosa (Rubiaceae) in an east-central Amazon rainforest.Oecologia150:2181–89
      [Google Scholar]
    31. BreshearsDD,CobbNS,RichPM,PriceKP,AllenCD et al.2005. Regional vegetation die-off in response to global-change-type drought.PNAS102:4215144–48
      [Google Scholar]
    32. BreshearsDD,MyersOB,MeyerCW,BarnesFJ,ZouCB et al.2009. Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements.Front. Ecol. Environ.7:4185–89
      [Google Scholar]
    33. BrienenRJW,PhillipsOL,FeldpauschTR,GloorE,BakerTR et al.2015. Long-term decline of the Amazon carbon sink.Nature519:7543344–48
      [Google Scholar]
    34. BrinckK,FischerR,GroeneveldJ,LehmannS,De PaulaMD et al.2017. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle.Nat. Commun.8:14855
      [Google Scholar]
    35. BucciSJ,GoldsteinG,ScholzFG,MeinzerFC2016. Physiological significance of hydraulic segmentation, nocturnal transpiration and capacitance in tropical trees: paradigms revisited.Tropical Tree Physiology: Adaptations and Responses in a Changing Environment G Goldstein, LS Santiago205–25 Cham, Switz.: Springer
      [Google Scholar]
    36. CaiW,SantosoA,WangG,WellerE,WuL et al.2014. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming.Nature510:254–58
      [Google Scholar]
    37. CaiW,ZhengX-T,WellerE,CollinsM,CowanT et al.2013. Projected response of the Indian Ocean Dipole to greenhouse warming.Nat. Geosci.6:999–1007
      [Google Scholar]
    38. CarvalhoKS,AlencarA,BalchJ,MoutinhoP2012. Leafcutter ant nests inhibit low-intensity fire spread in the understory of transitional forests at the Amazon's forest-savanna boundary.Psyche J. Entomol.2012:780713
      [Google Scholar]
    39. CastanhoA,CoeMT,CostaMH,MalhiY,GalbraithD,QuesadaCA2013. Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters.Biogeosciences10:42255–72
      [Google Scholar]
    40. ChambersJQ,RobertsDA2014. Ecology: drought in the Congo Basin.Nature509:34–37
      [Google Scholar]
    41. ChavesMM,MarocoJP,PereiraJS2003. Understanding plant responses to drought—from genes to the whole plant.Funct. Plant Biol.30:3239–64
      [Google Scholar]
    42. ChazdonRL,BroadbentEN,RozendaalDMA,BongersF,ZambranoAMA et al.2016. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.Sci. Adv.2:5e1501639
      [Google Scholar]
    43. ChenY,MortonDC,AndelaN,van der WerfGR,GiglioL,RandersonJT2017. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation.Nat. Clim. Change7:12906–11
      [Google Scholar]
    44. ChristensenJH,KumarKK,AldrianE,AnSI,CavalcantiIFA et al.2013. Climate phenomena and their relevance for future regional climate change.Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, SK Tignor, J Allen et al.1217–308 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    45. CochraneMA2003. Fire science for rainforests.Nature421:6926913–19
      [Google Scholar]
    46. CochraneMA,BarberCP2009. Climate change, human land use and future fires in the Amazon.Glob. Change Biol.15:3601–12
      [Google Scholar]
    47. CookB,ZengN,YoonJH2012. Will Amazonia dry out? Magnitude and causes of change from IPCC climate model projections.Earth Interact16:1–27
      [Google Scholar]
    48. CookKH,VizyEK2008. Effects of twenty-first-century climate change on the Amazon rain forest.J. Clim.21:3542–60
      [Google Scholar]
    49. da CostaACL,GalbraithD,AlmeidaS,PortelaBTT,da CostaM et al.2010. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest.New Phytol187:3579–91
      [Google Scholar]
    50. D'ArrigoR,AbramN,UmmenhoferC,PalmerJ,MudelseeM2011. Reconstructed streamflow for Citarum River, Java, Indonesia: linkages to tropical climate dynamics.Clim. Dyn.23:451–62
      [Google Scholar]
    51. DavidsonEA,de AraújoAC,ArtaxoP,BalchJK,BrownIF et al.2012. The Amazon basin in transition.Nature481:7381321–28
      [Google Scholar]
    52. DominguesTF,OmettoJPHB,NepstadDC,BrandoPM,MartinelliLA,EhleringerJR2018. Ecophysiological plasticity of Amazonian trees to long-term drought.Oecologia187:933–40
      [Google Scholar]
    53. DuffyPB,BrandoP,AsnerGP,FieldCB2015. Projections of future meteorological drought and wet periods in the Amazon.PNAS112:4313172–77
      [Google Scholar]
    54. ElderingA,WennbergPO,CrispD,SchimelDS,GunsonMR et al.2017. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes.Science358:6360eaam5745
      [Google Scholar]
    55. EngelbrechtBM,ComitaLS,ConditR,KursarTA,TyreeMT et al.2007. Drought sensitivity shapes species distribution patterns in tropical forests.Nature447:714080
      [Google Scholar]
    56. Esquivel-MuelbertA,BakerTR,DexterKG,LewisSL,ter SteegeH et al.2016. Seasonal drought limits tree species across the Neotropics.Ecography40:5618–29
      [Google Scholar]
    57. FausetS,BakerTR,LewisSL,FeldpauschTR,Affum-BaffoeK et al.2012. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana.Ecol. Lett.15:101120–29
      [Google Scholar]
    58. FeldpauschTR,PhillipsOL,BrienenRJ,GloorE,LloydJ et al.2016. Amazon forest response to repeated droughts.Glob. Biogeochem. Cycles30:964–82
      [Google Scholar]
    59. FloresBM,HolmgrenM,XuC,van NesEH,JakovacCC et al.2017. Floodplains as an Achilles’ heel of Amazonian forest resilience.PNAS114:174442–46
      [Google Scholar]
    60. FloresBM,PiedadeMTF,NelsonBW2014. Fire disturbance in Amazonian blackwater floodplain forests.Plant Ecol. Divers.7:1–2319–27
      [Google Scholar]
    61. FuR,YinL,LiW,AriasPA,DickinsonRE et al.2013. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection.PNAS110:18110–15
      [Google Scholar]
    62. FullerDO,FulkM2001. Burned area in Kalimantan, Indonesia mapped with NOAA-AVHRR and Landsat TM imagery.Int. J. Remote Sensing22:4691–97
      [Google Scholar]
    63. FurzeME,TrumboreS,HartmannH2018. Detours on the phloem sugar highway: stem carbon storage and remobilization.Curr. Opin. Plant Biol.43:89–95
      [Google Scholar]
    64. GattiLV,GloorM,MillerJB,DoughtyCE,MalhiY et al.2014. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements.Nature506:748676–80
      [Google Scholar]
    65. GiardinaF,KoningsAG,KennedyD,AlemohammadSH,OliveiraRS et al.2018. Tall Amazonian forests are less sensitive to precipitation variability.Nat. Geosci.11:405–9
      [Google Scholar]
    66. GuanK,PanM,LiH,WolfA,WuJ et al.2015. Photosynthetic seasonality of global tropical forests constrained by hydroclimate.Nat. Geosci.8:4284–89
      [Google Scholar]
    67. HaddadNM,HoltRDJr,FletcherRJ,LoreauM,ClobertJ2017. Connecting models, data, and concepts to understand fragmentation's ecosystem-wide effects.Ecography40:11–8
      [Google Scholar]
    68. HartmannDL,Klein TankAMG,RusticucciM,AlexanderLV,BrönnimannS et al.2013. Observations: atmosphere and surface.Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, SK Tignor, J Allen, et al.159–254 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    69. HartmannH,McDowellNG,TrumboreS2015. Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2.Tree Physiol35:243–52
      [Google Scholar]
    70. HartmannH,SchuldtB,SandersTGM,Macinnis-NgC,BoehmerHJ et al.2018. Monitoring global tree mortality patterns and trends. Report from the VW symposium ‘Crossing scales and disciplines to identify global trends of tree mortality as indicators of forest health.’.New Phytol217:3984–87
      [Google Scholar]
    71. HartmannH,TrumboreS2016. Understanding the roles of nonstructural carbohydrates in forest trees—from what we can measure to what we want to know.New Phytol211:386–403
      [Google Scholar]
    72. HillKJ,TaschettoAS,EnglandMH2011. Sensitivity of South American summer rainfall to tropical Pacific Ocean SST anomalies.Geophys. Res. Lett.38:1L01701
      [Google Scholar]
    73. HirotaM,HolmgrenM,van NesEH,SchefferM2011. Global resilience of tropical forest and savanna to critical transitions.Science334:6053232–35
      [Google Scholar]
    74. HosciloA,PageSE,TanseyKJ,RieleyJO2011. Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005.Int. J. Wildland Fire20:4578–88
      [Google Scholar]
    75. HoughtonRA2007. Balancing the global carbon budget.Annu. Rev. Earth Planet. Sci.35:1313–47
      [Google Scholar]
    76. HoughtonRA,ByersB,NassikasAA2015. A role for tropical forests in stabilizing atmospheric CO2.Nat. Clim. Change5:121022–23
      [Google Scholar]
    77. HuaW,ZhouL,ChenH,NicholsonSE,RaghavendraA,JiangY2016. Possible causes of the Central Equatorial African long-term drought.Environ. Res. Lett.11:12124002
      [Google Scholar]
    78. HuangB,ThornePW,BanzonVF,BoyerT,ChepurinG et al.2017. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons.J. Clim.30:8179–205
      [Google Scholar]
    79. ItohA,NanamiS,HarataT,OhkuboT,TanS et al.2012. The effect of habitat association and edaphic conditions on tree mortality during El Niño‐induced drought in a Bornean dipterocarp forest.Biotropica44:5606–17
      [Google Scholar]
    80. JourdainNC,GuptaAS,TaschettoAS,UmmenhoferCC,MoiseAF,AshokK2013. The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations.Clim. Dyn.41:11–123073–102
      [Google Scholar]
    81. KistlerR,KalnayE,CollinsW,SahaS,WhiteG et al.2001. The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation.Bull. Am. Meteorol. Soc.82:247–68
      [Google Scholar]
    82. KondoM,IchiiK,PatraPK,PoulterB,CalleL et al.2018. Plant regrowth as a driver of recent enhancement of terrestrial CO2 uptake.Geophys. Res. Lett.45:104820–30
      [Google Scholar]
    83. KörnerC2003. Carbon limitation in trees.J. Ecol.91:4–17
      [Google Scholar]
    84. LauhonLJ,GudiksenMS,WangD,LieberCM2002. Epitaxial core-shell and core-multishell nanowire heterostructures.Nature420:691157–61
      [Google Scholar]
    85. LauranceWF2000. Do edge effects occur over large spatial scales?.Trends Ecol. Evol.15:4P134–35
      [Google Scholar]
    86. Le QuéréC,AndrewRM,CanadellJG,SitchS,KorsbakkenJI et al.2016. Global carbon budget 2016.Earth Syst. Sci. Data8:2605–49
      [Google Scholar]
    87. Lebrija-TrejosE,MeaveJA,PoorterL,Pérez-GarcíaEA,BongersF2010. Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession.Perspect. Plant Ecol. Evol. Syst.12:4267–75
      [Google Scholar]
    88. LeeJE,FrankenbergC,van der TolC,BerryJA,GuanterL et al.2013. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence.Proc. R. Soc. B280:176120130171
      [Google Scholar]
    89. LeitoldV,MortonDC,LongoM,dos-SantosMN,KellerM,ScaranelloM2018. El Niño drought increased canopy turnover in Amazon forests.New Phytol219:3959–71
      [Google Scholar]
    90. LevineNM,ZhangK,LongoM,BacciniA,PhillipsOL et al.2016. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change.PNAS113:3793–97
      [Google Scholar]
    91. LewisSL,BrandoPM,PhillipsOL,van der HeijdenGMF,NepstadD2011. The 2010 Amazon drought.Science331:6017554
      [Google Scholar]
    92. LewisSL,EdwardsDP,GalbraithD2015. Increasing human dominance of tropical forests.Science349:6250827–32
      [Google Scholar]
    93. LewisSL,LloydJ,SitchS,MitchardETA,LauranceWF2009a. Changing ecology of tropical forests: evidence and drivers.Annu. Rev. Ecol. Evol. Syst.40:1529–49
      [Google Scholar]
    94. LewisSL,Lopez-GonzalezG,SonkéB,Affum-BaffoeK,BakerTR et al.2009b. Increasing carbon storage in intact African tropical forests.Nature457:72321003–6
      [Google Scholar]
    95. LewisSL,SonkéB,SunderlandT,BegneSK,Lopez-GonzalezG et al.2013. Above-ground biomass and structure of 260 African tropical forests.Philos. Trans. R. Soc. B368:162520120295
      [Google Scholar]
    96. LiuJ,BowmanKW,SchimelDS,ParazooNC,JiangZ et al.2017. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño.Science358:6360eaam5690
      [Google Scholar]
    97. LongoM,KnoxRG,LevineNM,AlvesLF,BonalD et al.2018. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts.New Phytol219:914–31
      [Google Scholar]
    98. LuoX,KeenanTF,FisherJB,Jiménez-MuñozJ-C,ChenJM et al.2018. The impact of the 2015/2016 El Niño on global photosynthesis using satellite remote sensing.Philos. Trans. R. Soc. B373:176020170409
      [Google Scholar]
    99. MalhiY2011. The productivity, metabolism and carbon cycle of tropical forest vegetation.J. Ecol.100:165–75
      [Google Scholar]
    100. MalhiY,GardnerTA,GoldsmithGR,SilmanMR,ZelazowskiP2014. Tropical forests in the Anthropocene.Annu. Rev. Environ. Resour.39:125–59
      [Google Scholar]
    101. MalhiY,RowlandL,AragãoLEOC,FisherRA2018. New insights into the variability of the tropical land carbon cycle from the El Niño of 2015/2016.Philos. Trans. R. Soc. B373:20170298
      [Google Scholar]
    102. MarengoJA,TomasellaJ,AlvesLM,SoaresWR,RodriguezDA2011. The drought of 2010 in the context of historical droughts in the Amazon region.Geophys. Res. Lett.38:12L12703
      [Google Scholar]
    103. MarengoJA,TomasellaJ,SoaresWR,AlvesLM,NobreCA2012. Extreme climatic events in the Amazon basin.Theor. Appl. Climatol.107:1–273–85
      [Google Scholar]
    104. MastrandreaMD,FieldCB,StockerTF,EdenhoferO,EbiKL et al.2010.Guidance note for lead authors of the IPCC Fifth Assessment Report on consistent treatment of uncertainties Product prepared for IPCC Cross-Working Group Meeting on Consistent Treatment of Uncertainties. Jasper Ridge, CA, July 6–7
      [Google Scholar]
    105. McDowellNG,AllenCD,Anderson-TeixeiraK,BrandoP,BrienenR et al.2018a. Drivers and mechanisms of tree mortality in moist tropical forests.New Phytol219:851–69
      [Google Scholar]
    106. McDowellNG,BeerlingDJ,BreshearsDD,FisherRA,RaffaKF,StittM2011. The interdependence of mechanisms underlying climate-driven vegetation mortality.Trends Ecol. Evol.26:523–32
      [Google Scholar]
    107. McDowellNG,MichaletzST,BennettKE,SolanderKC,XuC et al.2018b. Predicting chronic climate-driven disturbances and their mitigation.Trends Ecol. Evol.33:115–27
      [Google Scholar]
    108. McDowellNG,PockmanWT,AllenCD,BreshearsDD,CobbN et al.2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?.New Phytol178:4719–39
      [Google Scholar]
    109. MeirP,BrandoPM,NepstadD,VasconcelosS,CostaACL et al.2009. The effects of drought on Amazonian rain forests.Geophys. Monogr. Ser.186:429–49
      [Google Scholar]
    110. MetcalfeDB,RochaW,BalchJK,BrandoPM,DoughtyCE,MalhiY2018. Impacts of fire on sources of soil CO2 efflux in a dry Amazon rain forest.Glob. Change Biol.24:83629–41
      [Google Scholar]
    111. MichaletzST,JohnsonEA2007. How forest fires kill trees: a review of the fundamental biophysical processes.Scand. J. For. Res.22:6500–15
      [Google Scholar]
    112. MiettinenJ,HooijerA,VernimmenR,LiewSC,PageSE2017. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990.Environ. Res. Lett.12:2024014
      [Google Scholar]
    113. MortonDC,Le PageY,DeFriesR,CollatzGJ,HurttGC2013. Understorey fire frequency and the fate of burned forests in southern Amazonia.Philos. Trans. R. Soc. B368:161920120163
      [Google Scholar]
    114. Natl. Acad. Sci. Eng. Med.2016.Attribution of Extreme Weather Events in the Context of Climate Change Washington, DC: Natl. Acad. Press
      [Google Scholar]
    115. NepstadDC,CarvalhoG,BarrosAC,AlencarA,CapobiancoJP et al.2001. Road paving, fire regime feedbacks, and the future of Amazon forests.For. Ecol. Manag.154:395–407
      [Google Scholar]
    116. NepstadDC,de CarvalhoCR,DavidsonEA,JippPH,LefebvreP et al.1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures.Nature372:666–69
      [Google Scholar]
    117. NepstadDC,LefebvreP,Lopes da SilvaU,TomasellaJ,SchlesingerP et al.2004. Amazon drought and its implications for forest flammability and tree growth: a basin‐wide analysis.Glob. Change Biol.10:704–17
      [Google Scholar]
    118. NepstadDC,SticklerCM,Soares-FilhoB,MerryF2008. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point.Philos. Trans. R. Soc. B363:14981737–46
      [Google Scholar]
    119. NepstadDC,TohverIM,RayD,MoutinhoP,CardinotG2007. Mortality of large trees and lianas following experimental drought in an Amazon forest.Ecology88:92259–69
      [Google Scholar]
    120. NepstadDC,VerssimoA,AlencarA,NobreC,LimaE et al.1999. Large-scale impoverishment of Amazonian forests by logging and fire.Nature398:6727505–8
      [Google Scholar]
    121. NobreCA,SampaioG,BormaLS,Castilla-RubioJC,SilvaJS,CardosoM2016. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm.PNAS113:3910759–68
      [Google Scholar]
    122. NumataI,SilvaSS,CochraneMA,d'OliveiraMV2017. Fire and edge effects in a fragmented tropical forest landscape in the southwestern Amazon.For. Ecol. Manag.401:135–46
      [Google Scholar]
    123. PageSE,HooijerA2016. In the line of fire: the peatlands of Southeast Asia.Philos. Trans. R. Soc. B371:169620150176
      [Google Scholar]
    124. PanX,ChinM,IchokuCM,FieldRD2018. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean Dipole during 1979–2016.J. Geophys. Res. Atmos.123:7974–88
      [Google Scholar]
    125. PanY,BirdseyRA,PhillipsOL,JacksonRB2013. The structure, distribution, and biomass of the world's forests.Annu. Rev. Ecol. Evol. Syst.44:1593–622
      [Google Scholar]
    126. PellegriniAFA,AhlströmA,HobbieSE,ReichPB,NieradzikLP et al.2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity.Nature553:194–98
      [Google Scholar]
    127. PhillipsOL,BrienenRJW2017. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions.Carbon Balance Manag12:11–9
      [Google Scholar]
    128. PhillipsOL,van der HeijdenG,LewisSL,López-GonzálezG,AragãoLEOC et al.2010. Drought-mortality relationships for tropical forests.New Phytol187:3631–46
      [Google Scholar]
    129. PutraEI2011. The effect of the precipitation pattern of the dry season on peat fire occurrence in the Mega Rice Project area, Central Kalimantan, Indonesia.Tropics19:4145–56
      [Google Scholar]
    130. RammigA,JuppT,ThonickeK,TietjenB,HeinkeJ et al.2010. Estimating the risk of Amazonian forest dieback.New Phytol187:3694–706
      [Google Scholar]
    131. RappaportDI,MortonDC,LongoM,KellerM,DubayahR,dos-SantosMN2018. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation.Environ. Res. Lett.13:6065013
      [Google Scholar]
    132. RayD,NepstadD,MoutinhoP2005. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape.Ecol. Appl.15:51664–78
      [Google Scholar]
    133. RifaiSW,GirardinCAJ,BerenguerE,del Aguila-PasquelJ,DahlsjöCAL et al.2018. ENSO drives interannual variation of forest woody growth across the tropics.Philos. Trans. R. Soc. B373:176020170410
      [Google Scholar]
    134. RopelewskiCF,HalpertMS1987. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation.Mon. Weather Rev.115:81606–26
      [Google Scholar]
    135. RowlandL,da CostaAC,GalbraithDR,OliveiraRS,BinksOJ et al.2015a. Death from drought in tropical forests is triggered by hydraulics not carbon starvation.Nature528:119–22
      [Google Scholar]
    136. RowlandL,Lobo-do-ValeRL,ChristoffersenBO,MelémEA,KruijtB et al.2015b. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.Glob. Change Biol.21:4662–72
      [Google Scholar]
    137. SaatchiSS,HarrisNL,BrownS,LefskyM,MitchardETA et al.2011. Benchmark map of forest carbon stocks in tropical regions across three continents.PNAS108:249899–904
      [Google Scholar]
    138. SajiNH,GoswamiBN,VinayachandranPN,YamagataT1999. A dipole mode in the tropical Indian Ocean.Nature401:6751360
      [Google Scholar]
    139. SantiagoLS,De GuzmanME,BaralotoC,VogenbergJE,BrodieM et al.2018. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species.New Phytol218:31015–24
      [Google Scholar]
    140. SantosVAHFD,FerreiraMJ,RodriguesJVFC,GarciaMN,CeronJVB et al.2018. Causes of reduced leaf-level photosynthesis during strong El Niño drought in a Central Amazon forest.Glob. Change Biol.24:4266–79
      [Google Scholar]
    141. SchroederW,AlencarA,ArimaE,SetzerA2009. The spatial distribution and interannual variability of fire in Amazonia.Amazon. Glob. Change186:43–60
      [Google Scholar]
    142. SchwalmCR,AndereggWRL,MichalakAM,FisherJB,BiondiF et al.2017. Global patterns of drought recovery.Nature548:7666202–5
      [Google Scholar]
    143. SeagerR,NaikN,VogelL2012. Does global warming cause intensified interannual hydroclimate variability?.J. Clim.25:3355–72
      [Google Scholar]
    144. SecchiF,PagliaraniC,ZwienieckiMA2017. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress.Plant Cell Environ40:6858–71
      [Google Scholar]
    145. SeddonAWR,Macias-FauriaM,LongPR,BenzD,WillisKJ2016. Sensitivity of global terrestrial ecosystems to climate variability.Nature531:7593229–32
      [Google Scholar]
    146. SeneviratneSI,NichollsN,EasterlingD,GoodessCM,KanaeS et al.2012. Changes in climate extremes and their impacts on the natural physical environment.Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change CB Field109–230 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    147. SilvaCVJ,AragãoLEOC,BarlowJ,Espirito-SantoF,YoungPJ et al.2018. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics.Philos. Trans. R. Soc. B373:20180043
      [Google Scholar]
    148. SilvérioDV,BrandoPM,BalchJK,PutzFE,NepstadDC et al.2013. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses.Philos. Trans. R. Soc. B368:161920120427
      [Google Scholar]
    149. SilvérioDV,BrandoPM,BustamanteMMC,PutzFE,MarraDM et al.2019. Fire, fragmentation, and windstorms: a recipe for tropical forest degradation.J. Ecol.107:2656–67
      [Google Scholar]
    150. SilvérioDV,BrandoPM,MacedoMN,BeckPS,BustamanteM,CoeMT2015. Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing.Environ. Res. Lett.10:10104015
      [Google Scholar]
    151. SilvestriniRA,Soares-FilhoBS,NepstadD,CoeM,RodriguesH,AssunçãoR2011. Simulating fire regimes in the Amazon in response to climate change and deforestation.Ecol. Appl.21:51573–90
      [Google Scholar]
    152. SlikJWF2004. El Niño droughts and their effects on tree species composition and diversity in tropical rain forests.Oecologia141:1114–20
      [Google Scholar]
    153. SlikJWF,EichhornKAO2003. Fire survival of lowland tropical rain forest trees in relation to stem diameter and topographic position.Oecologia137:3446–55
      [Google Scholar]
    154. SpessaAC,FieldRD,PappenbergerF,LangnerA,EnglhartS et al.2015. Seasonal forecasting of fire over Kalimantan, Indonesia.Nat. Hazards Earth Syst. Sci.15:3429–42
      [Google Scholar]
    155. StahlC,HéraultB,RossiV,BurbanB,BréchetC,BonalD2013. Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter?.Oecologia173:41191–201
      [Google Scholar]
    156. StaverAC,ArchibaldS,LevinSA2011. The global extent and determinants of savanna and forest as alternative biome states.Science334:6053230–32
      [Google Scholar]
    157. StottP2000. Combustion in tropical biomass fires: a critical review.Prog. Phys. Geogr.24:3355–77
      [Google Scholar]
    158. TedeschiRG,CavalcantiIF,GrimmAM2013. Influences of two types of ENSO on South American precipitation.Int. J. Climatol.33:61382–400
      [Google Scholar]
    159. TrugmanAT,DettoM,BartlettMK,MedvigyD,AndereggWRL et al.2018. Tree carbon allocation explains forest drought‐kill and recovery patterns.Ecol. Lett.21:101552–60
      [Google Scholar]
    160. TrumboreS,BrandoP,HartmannH2015. Forest health and global change.Science349:6250814–18
      [Google Scholar]
    161. TyreeMT,EwersFW1991. The hydraulic architecture of trees and other woody plants.New Phytol119:3345–60
      [Google Scholar]
    162. TyreeMT,SperryJS1988. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model.Plant Physiol88:3574–80
      [Google Scholar]
    163. UhlC,KauffmanJB1990. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon.Ecology71:2437–49
      [Google Scholar]
    164. UmmenhoferCC,MeehlGA2017. Extreme weather and climate events with ecological relevance: a review.Philos. Trans. R. Soc. B372:172320160135
      [Google Scholar]
    165. UsupA,HashimotoY,TakahashiH,HayasakaH2004. Combustion and thermal characteristics of peat fire in tropical peatland in Central Kalimantan, Indonesia.Tropics14:11–19
      [Google Scholar]
    166. van der WerfGR,DempewolfJ,TriggSN,RandersonJT,KasibhatlaPS et al.2008. Climate regulation of fire emissions and deforestation in equatorial Asia.PNAS105:5120350–55
      [Google Scholar]
    167. van der WerfGR,RandersonJT,GiglioL,CollatzGJ,MuM et al.2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009).Atmos. Chem. Phys.10:2311707–35
      [Google Scholar]
    168. Van NieuwstadtMGL,SheilD2005. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia.J. Ecol.93:191–201
      [Google Scholar]
    169. WarrenM,FrolkingSE,DaiZ,KurniantoS2016. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the 21st century: implications for climate mitigation.Mitig. Adapt. Strateg. Glob. Change22:1041–61
      [Google Scholar]
    170. WebsterPJ,MooreAM,LoschniggJP,LebenRR1999. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98.Nature401:6751356–60
      [Google Scholar]
    171. WilhiteDA,GlantzMH1985. Understanding: the drought phenomenon: the role of definitions.Water Int10:3111–20
      [Google Scholar]
    172. WillisKJ,JeffersES,TovarC2018. What makes a terrestrial ecosystem resilient.?Science359:6379988–89
      [Google Scholar]
    173. WoosterMJ,PerryGLW,ZoumasA2012. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000).Biogeosciences9:1317–40
      [Google Scholar]
    174. WöstenJH,ClymansE,PageSE,RieleyJO,LiminSH2008. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia.Catena73:2212–24
      [Google Scholar]
    175. XingD,XuX,WuY,LiuY,WuY et al.2018. Leaf tensity: a method for rapid determination of water requirement information inBrassica napus L.J. Plant Interact.13:1380–87
      [Google Scholar]
    176. ZengN,YoonJ-H,MarengoJA,SubramaniamA,NobreCA et al.2008. Causes and impacts of the 2005 Amazon drought.Environ. Res. Lett.3:1014002
      [Google Scholar]
    177. ZhangY,XiaoX,WuX,ZhouS,ZhangG et al.2017. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016.Sci. Data4:170165
      [Google Scholar]
    178. ZhaoJ,HartmannH,TrumboreS,ZieglerW,ZhangY2013. High temperature causes negative whole-plant carbon balance under mild drought.New Phytol200:2330–39
      [Google Scholar]
    179. ZhaoM,RunningSW2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.Science329:5994940–43
      [Google Scholar]
    180. ZhouL,TianY,MyneniRB,CiaisP,SaatchiS et al.2014. Widespread decline of Congo rainforest greenness in the past decade.Nature509:749886–90
      [Google Scholar]
    /content/journals/10.1146/annurev-earth-082517-010235
    Loading
    Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis
    Annual Review of Earth and Planetary Sciences47, 555 (2019);https://doi.org/10.1146/annurev-earth-082517-010235
    /content/journals/10.1146/annurev-earth-082517-010235
    /content/journals/10.1146/annurev-earth-082517-010235
    Loading

    Data & Media loading...

    Supplementary Data

    Most Read This Month

    Article
    content/journals/earth
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-earth-082517-010235
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. AdamsHD,ZeppelMJ,AndereggWR,HartmannH,LandhäusserSM et al.2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.Nat. Ecol. Evol.1:91285–91
      [Google Scholar]
    2. AldrianE,DjamilYS2008. Spatio-temporal climatic change of rainfall in East Java Indonesia.Int. J. Climatol.28:4435–48
      [Google Scholar]
    3. AlencarAA,BrandoPM,AsnerGP,PutzFE2015. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.Ecol. Appl.25:61493–505
      [Google Scholar]
    4. AlexanderMA,KilbourneKH,NyeJA2014. Climate variability during warm and cold phases of the Atlantic Multidecadal Oscillation (AMO) 1871–2008.J. Mar. Syst.133:14–26
      [Google Scholar]
    5. AlkamaR,CescattiA2016. Biophysical climate impacts of recent changes in global forest cover.Science351:600–4
      [Google Scholar]
    6. AllenCD,BreshearsDD,McDowellNG2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene.Ecosphere6:8129
      [Google Scholar]
    7. AndereggWRL,KleinT,BartlettM,SackL,PellegriniAFA et al.2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe.PNAS113:5024–29
      [Google Scholar]
    8. AragãoLEOC,AndersonLO,FonsecaMG,RosanTM,VedovatoLB et al.2018. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions.Nat. Commun.9:1536
      [Google Scholar]
    9. AragãoLEOC,ShimabukuroYE2010. The incidence of fire in Amazonian forests with implications for REDD.Science328:59831275–78
      [Google Scholar]
    10. Asefi-NajafabadyS,SaatchiS2013. Response of African humid tropical forests to recent rainfall anomalies.Philos. Trans. R. Soc. B368:162520120306
      [Google Scholar]
    11. AtkinOK,BruhnD,HurryVM,TjoelkerMG2005.Evans Review No. 2: the hot and the cold: unravelling the variable response of plant respiration to temperature.Funct. Plant Biol32:287–105
      [Google Scholar]
    12. BacciniA,GoetzSJ,WalkerWS,LaporteNT,SunM et al.2012. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps.Nat. Clim. Change2:3182–85
      [Google Scholar]
    13. BacciniA,WalkerW,CarvalhoL,FarinaM,Sulla-MenasheD,HoughtonRA2017. Tropical forests are a net carbon source based on aboveground measurements of gain and loss.Science358:6360230–34
      [Google Scholar]
    14. BalchJK,BrandoPM,NepstadDC,CoeMT,SilvérioD et al.2015. The susceptibility of southeastern Amazon forests to fire: insights from a large-scale burn experiment.BioScience65:9893–905
      [Google Scholar]
    15. BalchJK,MassadTJ,BrandoPM,NepstadDC,CurranLM2013. Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests.Philos. Trans. R. Soc. B368:161920120157
      [Google Scholar]
    16. BalchJK,NepstadDC,BrandoPM,CurranLM,PortelaO et al.2008. Negative fire feedback in a transitional forest of southeastern Amazonia.Glob. Change Biol.14:102276–87
      [Google Scholar]
    17. BarlowJ,ParryL,GardnerTA,FerreiraJ,AragãoLEOC et al.2012a. The critical importance of considering fire in REDD+ programs.Biol. Conserv.154:1–8
      [Google Scholar]
    18. BarlowJ,PeresCA2008. Fire-mediated dieback and compositional cascade in an Amazonian forest.Philos. Trans. R. Soc. B363:14981787–94
      [Google Scholar]
    19. BarlowJ,PeresCA,LaganBO,HaugaasenT2003. Large tree mortality and the decline of forest biomass following Amazonian wildfires.Ecol. Lett.6:6–8
      [Google Scholar]
    20. BarlowJ,SilveiraJM,MestreLAM,AndradeRB,D'AndreaGC et al.2012b. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.PLOS ONE7:3e33373
      [Google Scholar]
    21. BeerC,ReichsteinM,TomelleriE,CiaisP,JungM et al.2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate.Science329:5993834–38
      [Google Scholar]
    22. BerenguerE,FerreiraJ,GardnerTA,AragãoLEOC,De CamargoPB et al.2014. A large-scale field assessment of carbon stocks in human-modified tropical forests.Glob. Change Biol.20:123713–26
      [Google Scholar]
    23. BowmanDMJS,BalchJK,ArtaxoP,BondWJ,CarlsonJM et al.2009. Fire in the Earth system.Science324:5926481–84
      [Google Scholar]
    24. BrandoP2018. Tree height matters.Nat. Geosci.11:390–91
      [Google Scholar]
    25. BrandoPM,BalchJK,NepstadDC,MortonDC,PutzFE et al.2014. Abrupt increases in Amazonian tree mortality due to drought-fire interactions.PNAS111:176347–52
      [Google Scholar]
    26. BrandoPM,GoetzSJ,BacciniA,NepstadDC,BeckPSA,ChristmanMC2010. Seasonal and interannual variability of climate and vegetation indices across the Amazon.PNAS107:3314685–90
      [Google Scholar]
    27. BrandoPM,NepstadDC,BalchJK,BolkerB,ChristmanMC et al.2012. Fire‐induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior.Glob. Change Biol.18:2630–41
      [Google Scholar]
    28. BrandoPM,NepstadDC,DavidsonEA,TrumboreSE,RayD,CamargoP2008. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment.Philos. Trans. R. Soc. B363:14981839–48
      [Google Scholar]
    29. BrandoPM,Oliveria-SantosC,RochaW,CuryR,CoeMT2016. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.Glob. Change Biol.22:72516–25
      [Google Scholar]
    30. BrandoPM,RayD,NepstadD,CardinotG,CurranLM,OliveiraR2006. Effects of partial throughfall exclusion on the phenology ofCoussarea racemosa (Rubiaceae) in an east-central Amazon rainforest.Oecologia150:2181–89
      [Google Scholar]
    31. BreshearsDD,CobbNS,RichPM,PriceKP,AllenCD et al.2005. Regional vegetation die-off in response to global-change-type drought.PNAS102:4215144–48
      [Google Scholar]
    32. BreshearsDD,MyersOB,MeyerCW,BarnesFJ,ZouCB et al.2009. Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements.Front. Ecol. Environ.7:4185–89
      [Google Scholar]
    33. BrienenRJW,PhillipsOL,FeldpauschTR,GloorE,BakerTR et al.2015. Long-term decline of the Amazon carbon sink.Nature519:7543344–48
      [Google Scholar]
    34. BrinckK,FischerR,GroeneveldJ,LehmannS,De PaulaMD et al.2017. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle.Nat. Commun.8:14855
      [Google Scholar]
    35. BucciSJ,GoldsteinG,ScholzFG,MeinzerFC2016. Physiological significance of hydraulic segmentation, nocturnal transpiration and capacitance in tropical trees: paradigms revisited.Tropical Tree Physiology: Adaptations and Responses in a Changing Environment G Goldstein, LS Santiago205–25 Cham, Switz.: Springer
      [Google Scholar]
    36. CaiW,SantosoA,WangG,WellerE,WuL et al.2014. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming.Nature510:254–58
      [Google Scholar]
    37. CaiW,ZhengX-T,WellerE,CollinsM,CowanT et al.2013. Projected response of the Indian Ocean Dipole to greenhouse warming.Nat. Geosci.6:999–1007
      [Google Scholar]
    38. CarvalhoKS,AlencarA,BalchJ,MoutinhoP2012. Leafcutter ant nests inhibit low-intensity fire spread in the understory of transitional forests at the Amazon's forest-savanna boundary.Psyche J. Entomol.2012:780713
      [Google Scholar]
    39. CastanhoA,CoeMT,CostaMH,MalhiY,GalbraithD,QuesadaCA2013. Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters.Biogeosciences10:42255–72
      [Google Scholar]
    40. ChambersJQ,RobertsDA2014. Ecology: drought in the Congo Basin.Nature509:34–37
      [Google Scholar]
    41. ChavesMM,MarocoJP,PereiraJS2003. Understanding plant responses to drought—from genes to the whole plant.Funct. Plant Biol.30:3239–64
      [Google Scholar]
    42. ChazdonRL,BroadbentEN,RozendaalDMA,BongersF,ZambranoAMA et al.2016. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.Sci. Adv.2:5e1501639
      [Google Scholar]
    43. ChenY,MortonDC,AndelaN,van der WerfGR,GiglioL,RandersonJT2017. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation.Nat. Clim. Change7:12906–11
      [Google Scholar]
    44. ChristensenJH,KumarKK,AldrianE,AnSI,CavalcantiIFA et al.2013. Climate phenomena and their relevance for future regional climate change.Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, SK Tignor, J Allen et al.1217–308 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    45. CochraneMA2003. Fire science for rainforests.Nature421:6926913–19
      [Google Scholar]
    46. CochraneMA,BarberCP2009. Climate change, human land use and future fires in the Amazon.Glob. Change Biol.15:3601–12
      [Google Scholar]
    47. CookB,ZengN,YoonJH2012. Will Amazonia dry out? Magnitude and causes of change from IPCC climate model projections.Earth Interact16:1–27
      [Google Scholar]
    48. CookKH,VizyEK2008. Effects of twenty-first-century climate change on the Amazon rain forest.J. Clim.21:3542–60
      [Google Scholar]
    49. da CostaACL,GalbraithD,AlmeidaS,PortelaBTT,da CostaM et al.2010. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest.New Phytol187:3579–91
      [Google Scholar]
    50. D'ArrigoR,AbramN,UmmenhoferC,PalmerJ,MudelseeM2011. Reconstructed streamflow for Citarum River, Java, Indonesia: linkages to tropical climate dynamics.Clim. Dyn.23:451–62
      [Google Scholar]
    51. DavidsonEA,de AraújoAC,ArtaxoP,BalchJK,BrownIF et al.2012. The Amazon basin in transition.Nature481:7381321–28
      [Google Scholar]
    52. DominguesTF,OmettoJPHB,NepstadDC,BrandoPM,MartinelliLA,EhleringerJR2018. Ecophysiological plasticity of Amazonian trees to long-term drought.Oecologia187:933–40
      [Google Scholar]
    53. DuffyPB,BrandoP,AsnerGP,FieldCB2015. Projections of future meteorological drought and wet periods in the Amazon.PNAS112:4313172–77
      [Google Scholar]
    54. ElderingA,WennbergPO,CrispD,SchimelDS,GunsonMR et al.2017. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes.Science358:6360eaam5745
      [Google Scholar]
    55. EngelbrechtBM,ComitaLS,ConditR,KursarTA,TyreeMT et al.2007. Drought sensitivity shapes species distribution patterns in tropical forests.Nature447:714080
      [Google Scholar]
    56. Esquivel-MuelbertA,BakerTR,DexterKG,LewisSL,ter SteegeH et al.2016. Seasonal drought limits tree species across the Neotropics.Ecography40:5618–29
      [Google Scholar]
    57. FausetS,BakerTR,LewisSL,FeldpauschTR,Affum-BaffoeK et al.2012. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana.Ecol. Lett.15:101120–29
      [Google Scholar]
    58. FeldpauschTR,PhillipsOL,BrienenRJ,GloorE,LloydJ et al.2016. Amazon forest response to repeated droughts.Glob. Biogeochem. Cycles30:964–82
      [Google Scholar]
    59. FloresBM,HolmgrenM,XuC,van NesEH,JakovacCC et al.2017. Floodplains as an Achilles’ heel of Amazonian forest resilience.PNAS114:174442–46
      [Google Scholar]
    60. FloresBM,PiedadeMTF,NelsonBW2014. Fire disturbance in Amazonian blackwater floodplain forests.Plant Ecol. Divers.7:1–2319–27
      [Google Scholar]
    61. FuR,YinL,LiW,AriasPA,DickinsonRE et al.2013. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection.PNAS110:18110–15
      [Google Scholar]
    62. FullerDO,FulkM2001. Burned area in Kalimantan, Indonesia mapped with NOAA-AVHRR and Landsat TM imagery.Int. J. Remote Sensing22:4691–97
      [Google Scholar]
    63. FurzeME,TrumboreS,HartmannH2018. Detours on the phloem sugar highway: stem carbon storage and remobilization.Curr. Opin. Plant Biol.43:89–95
      [Google Scholar]
    64. GattiLV,GloorM,MillerJB,DoughtyCE,MalhiY et al.2014. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements.Nature506:748676–80
      [Google Scholar]
    65. GiardinaF,KoningsAG,KennedyD,AlemohammadSH,OliveiraRS et al.2018. Tall Amazonian forests are less sensitive to precipitation variability.Nat. Geosci.11:405–9
      [Google Scholar]
    66. GuanK,PanM,LiH,WolfA,WuJ et al.2015. Photosynthetic seasonality of global tropical forests constrained by hydroclimate.Nat. Geosci.8:4284–89
      [Google Scholar]
    67. HaddadNM,HoltRDJr,FletcherRJ,LoreauM,ClobertJ2017. Connecting models, data, and concepts to understand fragmentation's ecosystem-wide effects.Ecography40:11–8
      [Google Scholar]
    68. HartmannDL,Klein TankAMG,RusticucciM,AlexanderLV,BrönnimannS et al.2013. Observations: atmosphere and surface.Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, SK Tignor, J Allen, et al.159–254 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    69. HartmannH,McDowellNG,TrumboreS2015. Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2.Tree Physiol35:243–52
      [Google Scholar]
    70. HartmannH,SchuldtB,SandersTGM,Macinnis-NgC,BoehmerHJ et al.2018. Monitoring global tree mortality patterns and trends. Report from the VW symposium ‘Crossing scales and disciplines to identify global trends of tree mortality as indicators of forest health.’.New Phytol217:3984–87
      [Google Scholar]
    71. HartmannH,TrumboreS2016. Understanding the roles of nonstructural carbohydrates in forest trees—from what we can measure to what we want to know.New Phytol211:386–403
      [Google Scholar]
    72. HillKJ,TaschettoAS,EnglandMH2011. Sensitivity of South American summer rainfall to tropical Pacific Ocean SST anomalies.Geophys. Res. Lett.38:1L01701
      [Google Scholar]
    73. HirotaM,HolmgrenM,van NesEH,SchefferM2011. Global resilience of tropical forest and savanna to critical transitions.Science334:6053232–35
      [Google Scholar]
    74. HosciloA,PageSE,TanseyKJ,RieleyJO2011. Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005.Int. J. Wildland Fire20:4578–88
      [Google Scholar]
    75. HoughtonRA2007. Balancing the global carbon budget.Annu. Rev. Earth Planet. Sci.35:1313–47
      [Google Scholar]
    76. HoughtonRA,ByersB,NassikasAA2015. A role for tropical forests in stabilizing atmospheric CO2.Nat. Clim. Change5:121022–23
      [Google Scholar]
    77. HuaW,ZhouL,ChenH,NicholsonSE,RaghavendraA,JiangY2016. Possible causes of the Central Equatorial African long-term drought.Environ. Res. Lett.11:12124002
      [Google Scholar]
    78. HuangB,ThornePW,BanzonVF,BoyerT,ChepurinG et al.2017. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons.J. Clim.30:8179–205
      [Google Scholar]
    79. ItohA,NanamiS,HarataT,OhkuboT,TanS et al.2012. The effect of habitat association and edaphic conditions on tree mortality during El Niño‐induced drought in a Bornean dipterocarp forest.Biotropica44:5606–17
      [Google Scholar]
    80. JourdainNC,GuptaAS,TaschettoAS,UmmenhoferCC,MoiseAF,AshokK2013. The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations.Clim. Dyn.41:11–123073–102
      [Google Scholar]
    81. KistlerR,KalnayE,CollinsW,SahaS,WhiteG et al.2001. The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation.Bull. Am. Meteorol. Soc.82:247–68
      [Google Scholar]
    82. KondoM,IchiiK,PatraPK,PoulterB,CalleL et al.2018. Plant regrowth as a driver of recent enhancement of terrestrial CO2 uptake.Geophys. Res. Lett.45:104820–30
      [Google Scholar]
    83. KörnerC2003. Carbon limitation in trees.J. Ecol.91:4–17
      [Google Scholar]
    84. LauhonLJ,GudiksenMS,WangD,LieberCM2002. Epitaxial core-shell and core-multishell nanowire heterostructures.Nature420:691157–61
      [Google Scholar]
    85. LauranceWF2000. Do edge effects occur over large spatial scales?.Trends Ecol. Evol.15:4P134–35
      [Google Scholar]
    86. Le QuéréC,AndrewRM,CanadellJG,SitchS,KorsbakkenJI et al.2016. Global carbon budget 2016.Earth Syst. Sci. Data8:2605–49
      [Google Scholar]
    87. Lebrija-TrejosE,MeaveJA,PoorterL,Pérez-GarcíaEA,BongersF2010. Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession.Perspect. Plant Ecol. Evol. Syst.12:4267–75
      [Google Scholar]
    88. LeeJE,FrankenbergC,van der TolC,BerryJA,GuanterL et al.2013. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence.Proc. R. Soc. B280:176120130171
      [Google Scholar]
    89. LeitoldV,MortonDC,LongoM,dos-SantosMN,KellerM,ScaranelloM2018. El Niño drought increased canopy turnover in Amazon forests.New Phytol219:3959–71
      [Google Scholar]
    90. LevineNM,ZhangK,LongoM,BacciniA,PhillipsOL et al.2016. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change.PNAS113:3793–97
      [Google Scholar]
    91. LewisSL,BrandoPM,PhillipsOL,van der HeijdenGMF,NepstadD2011. The 2010 Amazon drought.Science331:6017554
      [Google Scholar]
    92. LewisSL,EdwardsDP,GalbraithD2015. Increasing human dominance of tropical forests.Science349:6250827–32
      [Google Scholar]
    93. LewisSL,LloydJ,SitchS,MitchardETA,LauranceWF2009a. Changing ecology of tropical forests: evidence and drivers.Annu. Rev. Ecol. Evol. Syst.40:1529–49
      [Google Scholar]
    94. LewisSL,Lopez-GonzalezG,SonkéB,Affum-BaffoeK,BakerTR et al.2009b. Increasing carbon storage in intact African tropical forests.Nature457:72321003–6
      [Google Scholar]
    95. LewisSL,SonkéB,SunderlandT,BegneSK,Lopez-GonzalezG et al.2013. Above-ground biomass and structure of 260 African tropical forests.Philos. Trans. R. Soc. B368:162520120295
      [Google Scholar]
    96. LiuJ,BowmanKW,SchimelDS,ParazooNC,JiangZ et al.2017. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño.Science358:6360eaam5690
      [Google Scholar]
    97. LongoM,KnoxRG,LevineNM,AlvesLF,BonalD et al.2018. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts.New Phytol219:914–31
      [Google Scholar]
    98. LuoX,KeenanTF,FisherJB,Jiménez-MuñozJ-C,ChenJM et al.2018. The impact of the 2015/2016 El Niño on global photosynthesis using satellite remote sensing.Philos. Trans. R. Soc. B373:176020170409
      [Google Scholar]
    99. MalhiY2011. The productivity, metabolism and carbon cycle of tropical forest vegetation.J. Ecol.100:165–75
      [Google Scholar]
    100. MalhiY,GardnerTA,GoldsmithGR,SilmanMR,ZelazowskiP2014. Tropical forests in the Anthropocene.Annu. Rev. Environ. Resour.39:125–59
      [Google Scholar]
    101. MalhiY,RowlandL,AragãoLEOC,FisherRA2018. New insights into the variability of the tropical land carbon cycle from the El Niño of 2015/2016.Philos. Trans. R. Soc. B373:20170298
      [Google Scholar]
    102. MarengoJA,TomasellaJ,AlvesLM,SoaresWR,RodriguezDA2011. The drought of 2010 in the context of historical droughts in the Amazon region.Geophys. Res. Lett.38:12L12703
      [Google Scholar]
    103. MarengoJA,TomasellaJ,SoaresWR,AlvesLM,NobreCA2012. Extreme climatic events in the Amazon basin.Theor. Appl. Climatol.107:1–273–85
      [Google Scholar]
    104. MastrandreaMD,FieldCB,StockerTF,EdenhoferO,EbiKL et al.2010.Guidance note for lead authors of the IPCC Fifth Assessment Report on consistent treatment of uncertainties Product prepared for IPCC Cross-Working Group Meeting on Consistent Treatment of Uncertainties. Jasper Ridge, CA, July 6–7
      [Google Scholar]
    105. McDowellNG,AllenCD,Anderson-TeixeiraK,BrandoP,BrienenR et al.2018a. Drivers and mechanisms of tree mortality in moist tropical forests.New Phytol219:851–69
      [Google Scholar]
    106. McDowellNG,BeerlingDJ,BreshearsDD,FisherRA,RaffaKF,StittM2011. The interdependence of mechanisms underlying climate-driven vegetation mortality.Trends Ecol. Evol.26:523–32
      [Google Scholar]
    107. McDowellNG,MichaletzST,BennettKE,SolanderKC,XuC et al.2018b. Predicting chronic climate-driven disturbances and their mitigation.Trends Ecol. Evol.33:115–27
      [Google Scholar]
    108. McDowellNG,PockmanWT,AllenCD,BreshearsDD,CobbN et al.2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?.New Phytol178:4719–39
      [Google Scholar]
    109. MeirP,BrandoPM,NepstadD,VasconcelosS,CostaACL et al.2009. The effects of drought on Amazonian rain forests.Geophys. Monogr. Ser.186:429–49
      [Google Scholar]
    110. MetcalfeDB,RochaW,BalchJK,BrandoPM,DoughtyCE,MalhiY2018. Impacts of fire on sources of soil CO2 efflux in a dry Amazon rain forest.Glob. Change Biol.24:83629–41
      [Google Scholar]
    111. MichaletzST,JohnsonEA2007. How forest fires kill trees: a review of the fundamental biophysical processes.Scand. J. For. Res.22:6500–15
      [Google Scholar]
    112. MiettinenJ,HooijerA,VernimmenR,LiewSC,PageSE2017. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990.Environ. Res. Lett.12:2024014
      [Google Scholar]
    113. MortonDC,Le PageY,DeFriesR,CollatzGJ,HurttGC2013. Understorey fire frequency and the fate of burned forests in southern Amazonia.Philos. Trans. R. Soc. B368:161920120163
      [Google Scholar]
    114. Natl. Acad. Sci. Eng. Med.2016.Attribution of Extreme Weather Events in the Context of Climate Change Washington, DC: Natl. Acad. Press
      [Google Scholar]
    115. NepstadDC,CarvalhoG,BarrosAC,AlencarA,CapobiancoJP et al.2001. Road paving, fire regime feedbacks, and the future of Amazon forests.For. Ecol. Manag.154:395–407
      [Google Scholar]
    116. NepstadDC,de CarvalhoCR,DavidsonEA,JippPH,LefebvreP et al.1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures.Nature372:666–69
      [Google Scholar]
    117. NepstadDC,LefebvreP,Lopes da SilvaU,TomasellaJ,SchlesingerP et al.2004. Amazon drought and its implications for forest flammability and tree growth: a basin‐wide analysis.Glob. Change Biol.10:704–17
      [Google Scholar]
    118. NepstadDC,SticklerCM,Soares-FilhoB,MerryF2008. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point.Philos. Trans. R. Soc. B363:14981737–46
      [Google Scholar]
    119. NepstadDC,TohverIM,RayD,MoutinhoP,CardinotG2007. Mortality of large trees and lianas following experimental drought in an Amazon forest.Ecology88:92259–69
      [Google Scholar]
    120. NepstadDC,VerssimoA,AlencarA,NobreC,LimaE et al.1999. Large-scale impoverishment of Amazonian forests by logging and fire.Nature398:6727505–8
      [Google Scholar]
    121. NobreCA,SampaioG,BormaLS,Castilla-RubioJC,SilvaJS,CardosoM2016. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm.PNAS113:3910759–68
      [Google Scholar]
    122. NumataI,SilvaSS,CochraneMA,d'OliveiraMV2017. Fire and edge effects in a fragmented tropical forest landscape in the southwestern Amazon.For. Ecol. Manag.401:135–46
      [Google Scholar]
    123. PageSE,HooijerA2016. In the line of fire: the peatlands of Southeast Asia.Philos. Trans. R. Soc. B371:169620150176
      [Google Scholar]
    124. PanX,ChinM,IchokuCM,FieldRD2018. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean Dipole during 1979–2016.J. Geophys. Res. Atmos.123:7974–88
      [Google Scholar]
    125. PanY,BirdseyRA,PhillipsOL,JacksonRB2013. The structure, distribution, and biomass of the world's forests.Annu. Rev. Ecol. Evol. Syst.44:1593–622
      [Google Scholar]
    126. PellegriniAFA,AhlströmA,HobbieSE,ReichPB,NieradzikLP et al.2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity.Nature553:194–98
      [Google Scholar]
    127. PhillipsOL,BrienenRJW2017. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions.Carbon Balance Manag12:11–9
      [Google Scholar]
    128. PhillipsOL,van der HeijdenG,LewisSL,López-GonzálezG,AragãoLEOC et al.2010. Drought-mortality relationships for tropical forests.New Phytol187:3631–46
      [Google Scholar]
    129. PutraEI2011. The effect of the precipitation pattern of the dry season on peat fire occurrence in the Mega Rice Project area, Central Kalimantan, Indonesia.Tropics19:4145–56
      [Google Scholar]
    130. RammigA,JuppT,ThonickeK,TietjenB,HeinkeJ et al.2010. Estimating the risk of Amazonian forest dieback.New Phytol187:3694–706
      [Google Scholar]
    131. RappaportDI,MortonDC,LongoM,KellerM,DubayahR,dos-SantosMN2018. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation.Environ. Res. Lett.13:6065013
      [Google Scholar]
    132. RayD,NepstadD,MoutinhoP2005. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape.Ecol. Appl.15:51664–78
      [Google Scholar]
    133. RifaiSW,GirardinCAJ,BerenguerE,del Aguila-PasquelJ,DahlsjöCAL et al.2018. ENSO drives interannual variation of forest woody growth across the tropics.Philos. Trans. R. Soc. B373:176020170410
      [Google Scholar]
    134. RopelewskiCF,HalpertMS1987. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation.Mon. Weather Rev.115:81606–26
      [Google Scholar]
    135. RowlandL,da CostaAC,GalbraithDR,OliveiraRS,BinksOJ et al.2015a. Death from drought in tropical forests is triggered by hydraulics not carbon starvation.Nature528:119–22
      [Google Scholar]
    136. RowlandL,Lobo-do-ValeRL,ChristoffersenBO,MelémEA,KruijtB et al.2015b. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.Glob. Change Biol.21:4662–72
      [Google Scholar]
    137. SaatchiSS,HarrisNL,BrownS,LefskyM,MitchardETA et al.2011. Benchmark map of forest carbon stocks in tropical regions across three continents.PNAS108:249899–904
      [Google Scholar]
    138. SajiNH,GoswamiBN,VinayachandranPN,YamagataT1999. A dipole mode in the tropical Indian Ocean.Nature401:6751360
      [Google Scholar]
    139. SantiagoLS,De GuzmanME,BaralotoC,VogenbergJE,BrodieM et al.2018. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species.New Phytol218:31015–24
      [Google Scholar]
    140. SantosVAHFD,FerreiraMJ,RodriguesJVFC,GarciaMN,CeronJVB et al.2018. Causes of reduced leaf-level photosynthesis during strong El Niño drought in a Central Amazon forest.Glob. Change Biol.24:4266–79
      [Google Scholar]
    141. SchroederW,AlencarA,ArimaE,SetzerA2009. The spatial distribution and interannual variability of fire in Amazonia.Amazon. Glob. Change186:43–60
      [Google Scholar]
    142. SchwalmCR,AndereggWRL,MichalakAM,FisherJB,BiondiF et al.2017. Global patterns of drought recovery.Nature548:7666202–5
      [Google Scholar]
    143. SeagerR,NaikN,VogelL2012. Does global warming cause intensified interannual hydroclimate variability?.J. Clim.25:3355–72
      [Google Scholar]
    144. SecchiF,PagliaraniC,ZwienieckiMA2017. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress.Plant Cell Environ40:6858–71
      [Google Scholar]
    145. SeddonAWR,Macias-FauriaM,LongPR,BenzD,WillisKJ2016. Sensitivity of global terrestrial ecosystems to climate variability.Nature531:7593229–32
      [Google Scholar]
    146. SeneviratneSI,NichollsN,EasterlingD,GoodessCM,KanaeS et al.2012. Changes in climate extremes and their impacts on the natural physical environment.Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change CB Field109–230 Cambridge, UK: Cambridge Univ. Press
      [Google Scholar]
    147. SilvaCVJ,AragãoLEOC,BarlowJ,Espirito-SantoF,YoungPJ et al.2018. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics.Philos. Trans. R. Soc. B373:20180043
      [Google Scholar]
    148. SilvérioDV,BrandoPM,BalchJK,PutzFE,NepstadDC et al.2013. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses.Philos. Trans. R. Soc. B368:161920120427
      [Google Scholar]
    149. SilvérioDV,BrandoPM,BustamanteMMC,PutzFE,MarraDM et al.2019. Fire, fragmentation, and windstorms: a recipe for tropical forest degradation.J. Ecol.107:2656–67
      [Google Scholar]
    150. SilvérioDV,BrandoPM,MacedoMN,BeckPS,BustamanteM,CoeMT2015. Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing.Environ. Res. Lett.10:10104015
      [Google Scholar]
    151. SilvestriniRA,Soares-FilhoBS,NepstadD,CoeM,RodriguesH,AssunçãoR2011. Simulating fire regimes in the Amazon in response to climate change and deforestation.Ecol. Appl.21:51573–90
      [Google Scholar]
    152. SlikJWF2004. El Niño droughts and their effects on tree species composition and diversity in tropical rain forests.Oecologia141:1114–20
      [Google Scholar]
    153. SlikJWF,EichhornKAO2003. Fire survival of lowland tropical rain forest trees in relation to stem diameter and topographic position.Oecologia137:3446–55
      [Google Scholar]
    154. SpessaAC,FieldRD,PappenbergerF,LangnerA,EnglhartS et al.2015. Seasonal forecasting of fire over Kalimantan, Indonesia.Nat. Hazards Earth Syst. Sci.15:3429–42
      [Google Scholar]
    155. StahlC,HéraultB,RossiV,BurbanB,BréchetC,BonalD2013. Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter?.Oecologia173:41191–201
      [Google Scholar]
    156. StaverAC,ArchibaldS,LevinSA2011. The global extent and determinants of savanna and forest as alternative biome states.Science334:6053230–32
      [Google Scholar]
    157. StottP2000. Combustion in tropical biomass fires: a critical review.Prog. Phys. Geogr.24:3355–77
      [Google Scholar]
    158. TedeschiRG,CavalcantiIF,GrimmAM2013. Influences of two types of ENSO on South American precipitation.Int. J. Climatol.33:61382–400
      [Google Scholar]
    159. TrugmanAT,DettoM,BartlettMK,MedvigyD,AndereggWRL et al.2018. Tree carbon allocation explains forest drought‐kill and recovery patterns.Ecol. Lett.21:101552–60
      [Google Scholar]
    160. TrumboreS,BrandoP,HartmannH2015. Forest health and global change.Science349:6250814–18
      [Google Scholar]
    161. TyreeMT,EwersFW1991. The hydraulic architecture of trees and other woody plants.New Phytol119:3345–60
      [Google Scholar]
    162. TyreeMT,SperryJS1988. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model.Plant Physiol88:3574–80
      [Google Scholar]
    163. UhlC,KauffmanJB1990. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon.Ecology71:2437–49
      [Google Scholar]
    164. UmmenhoferCC,MeehlGA2017. Extreme weather and climate events with ecological relevance: a review.Philos. Trans. R. Soc. B372:172320160135
      [Google Scholar]
    165. UsupA,HashimotoY,TakahashiH,HayasakaH2004. Combustion and thermal characteristics of peat fire in tropical peatland in Central Kalimantan, Indonesia.Tropics14:11–19
      [Google Scholar]
    166. van der WerfGR,DempewolfJ,TriggSN,RandersonJT,KasibhatlaPS et al.2008. Climate regulation of fire emissions and deforestation in equatorial Asia.PNAS105:5120350–55
      [Google Scholar]
    167. van der WerfGR,RandersonJT,GiglioL,CollatzGJ,MuM et al.2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009).Atmos. Chem. Phys.10:2311707–35
      [Google Scholar]
    168. Van NieuwstadtMGL,SheilD2005. Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia.J. Ecol.93:191–201
      [Google Scholar]
    169. WarrenM,FrolkingSE,DaiZ,KurniantoS2016. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the 21st century: implications for climate mitigation.Mitig. Adapt. Strateg. Glob. Change22:1041–61
      [Google Scholar]
    170. WebsterPJ,MooreAM,LoschniggJP,LebenRR1999. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98.Nature401:6751356–60
      [Google Scholar]
    171. WilhiteDA,GlantzMH1985. Understanding: the drought phenomenon: the role of definitions.Water Int10:3111–20
      [Google Scholar]
    172. WillisKJ,JeffersES,TovarC2018. What makes a terrestrial ecosystem resilient.?Science359:6379988–89
      [Google Scholar]
    173. WoosterMJ,PerryGLW,ZoumasA2012. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000).Biogeosciences9:1317–40
      [Google Scholar]
    174. WöstenJH,ClymansE,PageSE,RieleyJO,LiminSH2008. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia.Catena73:2212–24
      [Google Scholar]
    175. XingD,XuX,WuY,LiuY,WuY et al.2018. Leaf tensity: a method for rapid determination of water requirement information inBrassica napus L.J. Plant Interact.13:1380–87
      [Google Scholar]
    176. ZengN,YoonJ-H,MarengoJA,SubramaniamA,NobreCA et al.2008. Causes and impacts of the 2005 Amazon drought.Environ. Res. Lett.3:1014002
      [Google Scholar]
    177. ZhangY,XiaoX,WuX,ZhouS,ZhangG et al.2017. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016.Sci. Data4:170165
      [Google Scholar]
    178. ZhaoJ,HartmannH,TrumboreS,ZieglerW,ZhangY2013. High temperature causes negative whole-plant carbon balance under mild drought.New Phytol200:2330–39
      [Google Scholar]
    179. ZhaoM,RunningSW2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.Science329:5994940–43
      [Google Scholar]
    180. ZhouL,TianY,MyneniRB,CiaisP,SaatchiS et al.2014. Widespread decline of Congo rainforest greenness in the past decade.Nature509:749886–90
      [Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special


    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    Subscribe to Open. The current volume of the Annual Review of Earth and Planetary Sciences published Open Access

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-earth-082517-010235
    10.1146/annurev-earth-082517-010235
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp