Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content
  1. Home
  2. A-Z Publications
  3. Annual Review of Earth and Planetary Sciences
  4. Volume 48, 2020
  5. Article

Review Article

Free

Jupiter's Interior as Revealed by Juno

Abstract

Jupiter is in the class of planets that we call gas giants, not because they consist of gas but because they were primarily made from hydrogen-helium gas, which upon gravitational compression becomes a metallic fluid. Juno, in orbit about Jupiter since 2016, has changed our view: The gravity data are much improved, and the simplest interpretation of the higher order even harmonics implies that the planet may have a diluted central concentration of heavy elements. Jupiter has strong winds extending to perhaps ∼3,000-km depth that are evident in the odd zonal harmonics of the gravity field. Jupiter's distinctive magnetic field displays some limited local structure, most notably the Great Blue Spot (a region of downward flux near the equator), and some evidence for secular variation, possibly arising from the winds. However, Juno is ongoing; it has not answered all questions and has posed new ones.

  • ▪  Juno's mission reveals Jupiter's interior.
  • ▪  A core exists but is diluted by hydrogen.
  • ▪  The mission revealed wind depth and magnetic field.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-earth-081619-052855
    2020-05-30
    2025-05-18
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/earth/48/1/annurev-earth-081619-052855.html?itemId=/content/journals/10.1146/annurev-earth-081619-052855&mimeType=html&fmt=ahah

    Literature Cited

    1. BodenheimerP,PollackJB.1986. Calculations of the accretion and evolution of giant planets: the effects of solid cores.Icarus67:3391–408
      [Google Scholar]
    2. BodenheimerP,StevensonDJ,LissauerJJ,D'AngeloG2018. New formation models for the Kepler-36 system.Astrophys. J.868:2138
      [Google Scholar]
    3. BoltonSJ,AdrianiA,AdumitroaieV,AllisonM,AndersonJ et al.2017. Jupiter's interior and deep atmosphere: the initial pole-to-pole passes 327 with the Juno spacecraft.Science356:821–25
      [Google Scholar]
    4. BoltonSJ,LunineJ,StevensonD,ConnerneyJEP,LevinS et al.2019. The Juno mission.Space Sci. Rev.213:5–37
      [Google Scholar]
    5. BrownS,JanssenM,AdumitroaieV,AtreyaS,BoltonS et al.2018. Prevalent lightning sferics at 600 megahertz near Jupiter's poles.Nature558:770887–90
      [Google Scholar]
    6. BurkeBF,FranklinKL.1955. Observations of a variable radio source associated with the planet Jupiter.J. Geophys. Res.60:2213–17
      [Google Scholar]
    7. CaoH,DoughertyMK,HuntGJ,ProvanG,CowleySW et al.2019. The landscape of Saturn's internal magnetic field from the Cassini Grand Finale.Icarus11:1135411
      [Google Scholar]
    8. ChandrasekharS.1958.1939.An Introduction to the Study of Stellar Structure New York: Dover
      [Google Scholar]
    9. ConnerneyJE,AcunaMH,NessNF1996. Octupole model of Jupiter's magnetic field from Ulysses observations.J. Geophys. Res. Space Phys.101:A1227453–58
      [Google Scholar]
    10. DarwinGH.1899. The theory of the figure of the Earth carried to the second order in small quantities.Mon. Not. R. Astron. Soc.60:82–124
      [Google Scholar]
    11. de PaterI,SaultRJ,ButlerB,DeBoerD,WongMH2016. Peering through Jupiter's clouds with radio spectral imaging.Science352:62901198–201
      [Google Scholar]
    12. DebrasF,ChabrierG.2019. New models of Jupiter in the context of Juno and Galileo.Astrophys. J.872:1100
      [Google Scholar]
    13. DemarcusWC.1958. The constitution of Jupiter and Saturn.Astron. J.63:12–28
      [Google Scholar]
    14. DiasRP,SilveraIF.2017. Observation of the Wigner-Huntington transition to metallic hydrogen.Science355:715–18
      [Google Scholar]
    15. FortneyJJ,IkomaM,NettelmannN,GuillotT,MarleyMS2011. Self-consistent model atmospheres and the cooling of the Solar System's giant planets.Astrophys. J.729:132
      [Google Scholar]
    16. FortneyJJ,NettelmannN.2010. The interior structure, composition, and evolution of giant planets.Space Sci. Rev.152:1–4423–47
      [Google Scholar]
    17. FrenchM,BeckerA,LorenzenW,NettelmannN,BethkenhagenM et al.2012. Ab initio simulations for material properties along the Jupiter adiabat.Astrophys. J. Suppl.202:15
      [Google Scholar]
    18. GaoP,StevensonDJ.2013. Nonhydrostatic effects and the determination of icy satellites' moment of inertia.Icarus226:21185–91
      [Google Scholar]
    19. GrassetO,Castillo-RogezJ,GuillotT,FletcherLN,TosiF2017. Water and volatiles in the outer solar system.Space Sci. Rev.212:1–2835–75
      [Google Scholar]
    20. GuillotT.2005. The interiors of giant planets: models and outstanding questions.Annu. Rev. Earth Planet. Sci.33:493–530
      [Google Scholar]
    21. GuillotT,ChabrierG,MorelP,GautierD1994. Nonadiabatic models of Jupiter and Saturn.Icarus112:2354–67
      [Google Scholar]
    22. HelledR,AndersonJD,SchubertG,StevensonDJ2011. Jupiter's moment of inertia: a possible determination by Juno.Icarus216:2440–48
      [Google Scholar]
    23. HelledR,StevensonD.2017. The fuzziness of giant planets' cores.Astrophys. J. Lett.840:L4
      [Google Scholar]
    24. HubbardWB.1968. Thermal structure of Jupiter.Astrophys. J.152:745–54
      [Google Scholar]
    25. HubbardWB.1969. Thermal models of Jupiter and Saturn.Astrophys. J.155:333–44
      [Google Scholar]
    26. HubbardWB.1999. Gravitational signature of Jupiter's deep zonal flows.Icarus137:2357–59
      [Google Scholar]
    27. HubbardWB,SmoluchowskiR.1973. Structure of Jupiter and Saturn.Space Sci. Rev.14:5599–662
      [Google Scholar]
    28. IessL,MilitzerB,KaspiY,NicholsonP,DuranteD et al.2019. Measurement and implications of Saturn's gravity field and ring mass.Science364:6445eaat2965
      [Google Scholar]
    29. JeffreysH.1924. On the internal constitution of Jupiter and Saturn.Mon. Not. R. Astron. Soc.84:534–38
      [Google Scholar]
    30. KaspiY,GalantiE,HubbardWB,StevensonDJ,BoltonSJ et al.2018. Jupiter's atmospheric jet streams extend thousands of kilometres deep.Nature555:223–26
      [Google Scholar]
    31. KruijerTS,BurkhardtC,BuddeG,KleineT2017. Dating the formation of Jupiter using the distinct genetics and formation times of meteorites.Meteorit. Planet. Sci.52:A182(Abstr.)
      [Google Scholar]
    32. Le MaistreS,FolknerWM,JacobsonRA,SerraD2016. Jupiter spin-pole precession rate and moment of inertia from Juno radio-science observations.Planet. Space Sci.126:78–92
      [Google Scholar]
    33. LeconteJ,ChabrierG.2012. A new vision of giant planet interiors: impact of double diffusive convection.Astron. Astrophys.540:A20
      [Google Scholar]
    34. LiC,IngersollA,JanssenM,LevinS,BoltonS et al.2017. The distribution of ammonia on Jupiter from a preliminary inversion of Juno 323 microwave radiometer data.Geophys. Res. Lett.44:5317–25
      [Google Scholar]
    35. LiuJ,GoldreichPM,StevensonDJ2008. Constraints on deep-seated zonal winds inside Jupiter and Saturn.Icarus196:2653–64
      [Google Scholar]
    36. LiuS-F,HoriY,MullerS,ZhengX,HelledR et al.2019. The formation of Jupiter's diluted core by a giant impact.Nature572:355–57
      [Google Scholar]
    37. LowFJ.1966. Observations of Venus, Jupiter and Saturn at λ20 μ.Astron. J.71:391 (Abstr.)
      [Google Scholar]
    38. MankovichC,MarleyMS,FortneyJJ,MovshovitzN2019. Cassini ring seismology as a probe of Saturn's interior. I. Rigid rotation.Astrophys. J.871:11
      [Google Scholar]
    39. MarkhamS,StevensonD.2018. Excitation mechanisms for Jovian seismic modes.Icarus306:200–13
      [Google Scholar]
    40. MiguelY,GuillotT,FayonL2018. Jupiter internal structure: the effect of different equations of state (Corrigendum).Astron. Astrophys.618:C2
      [Google Scholar]
    41. MilitzerB,HubbardWB.2013. Ab initio equation of state for hydrogen-helium mixtures with recalibration of the giant-planet mass-radius relation.Astrophys. J.774:2148
      [Google Scholar]
    42. MooreKM,CaoH,BloxhamJ,StevensonDJ,ConnerneyJ,BoltonS2019. Time variation of Jupiter's magnetic field consistent with zonal wind advection.Nat. Astron.3:730–35
      [Google Scholar]
    43. MooreKM,YadavRK,KulowskiL,CaoH,BloxhamJ et al.2018. A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field.Nature561:772176–78
      [Google Scholar]
    44. MoralesMA,HamelS,CaspersenK,SchweglerE2013. Hydrogen-helium demixing from first principles: from diamond anvil cells to planetary interiors.Phys. Rev. B87:17174105
      [Google Scholar]
    45. NettelmannN,BeckerA,HolstB,RedmerR2012. Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2).Astrophys. J.750:152
      [Google Scholar]
    46. OwenT,EncrenazT.2003. Element abundances and isotope ratios in the giant planets and Titan.Space Sci. Rev.106:1–4121–38
      [Google Scholar]
    47. PollackJB,HubickyjO,BodenheimerP,LissauerJJ,PodolakM,GreenzweigY1996. Formation of the giant planets by concurrent accretion of solids and gas.Icarus124:162–85
      [Google Scholar]
    48. RadauR.1885. Sur la loi des densités à l'intérieur de la terre.C.R. Acad. Sci. Paris100:972–74
      [Google Scholar]
    49. RaymondSN,IzidoroA.2017. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion.Icarus297:134–48
      [Google Scholar]
    50. SoubiranF,MilitzerB.2016. The properties of heavy elements in giant planet envelopes.Astrophys. J.829:114
      [Google Scholar]
    51. StevensonDJ.1979. Solubility of helium in metallic hydrogen.J. Phys. F Metal Phys.9:5791–801
      [Google Scholar]
    52. StevensonDJ.1982a. Interiors of the giant planets.Annu. Rev. Earth Planet. Sci.10:257–95
      [Google Scholar]
    53. StevensonDJ.1982b. Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn.Geophys. Astrophys. Fluid Dyn.21:1–2113–27
      [Google Scholar]
    54. StevensonDJ.1985. Cosmochemistry and structure of the giant planets and their satellites.Icarus62:14–15
      [Google Scholar]
    55. StevensonDJ.2003. Planetary magnetic fields.Earth Planet. Sci. Lett.208:1–21–11
      [Google Scholar]
    56. StevensonDJ,SalpeterEE.1977a. Dynamics and helium distribution in hydrogen-helium fluid planets.Astrophys. J. Suppl.35:2239–61
      [Google Scholar]
    57. StevensonDJ,SalpeterEE.1977b. Phase-diagram and transport properties for hydrogen-helium fluid planets.Astrophys. J. Suppl.35:2221–37
      [Google Scholar]
    58. WahlSM,HubbardWB,MilitzerB2016. Tidal response of preliminary Jupiter model.Astrophys. J.831:114
      [Google Scholar]
    59. WahlSM,HubbardWB,MilitzerB,GuillotT,MiguelY et al.2017. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core.Geophys. Res. Lett.44:104649–59
      [Google Scholar]
    60. WignerE,HuntingtonHB.1935. On the possibility of a metallic modification of hydrogen.J. Chem. Phys.3:12764–70
      [Google Scholar]
    /content/journals/10.1146/annurev-earth-081619-052855
    Loading
    Jupiter's Interior as Revealed by Juno
    Annual Review of Earth and Planetary Sciences48, 465 (2020);https://doi.org/10.1146/annurev-earth-081619-052855
    /content/journals/10.1146/annurev-earth-081619-052855
    /content/journals/10.1146/annurev-earth-081619-052855
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/earth
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-earth-081619-052855
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. BodenheimerP,PollackJB.1986. Calculations of the accretion and evolution of giant planets: the effects of solid cores.Icarus67:3391–408
      [Google Scholar]
    2. BodenheimerP,StevensonDJ,LissauerJJ,D'AngeloG2018. New formation models for the Kepler-36 system.Astrophys. J.868:2138
      [Google Scholar]
    3. BoltonSJ,AdrianiA,AdumitroaieV,AllisonM,AndersonJ et al.2017. Jupiter's interior and deep atmosphere: the initial pole-to-pole passes 327 with the Juno spacecraft.Science356:821–25
      [Google Scholar]
    4. BoltonSJ,LunineJ,StevensonD,ConnerneyJEP,LevinS et al.2019. The Juno mission.Space Sci. Rev.213:5–37
      [Google Scholar]
    5. BrownS,JanssenM,AdumitroaieV,AtreyaS,BoltonS et al.2018. Prevalent lightning sferics at 600 megahertz near Jupiter's poles.Nature558:770887–90
      [Google Scholar]
    6. BurkeBF,FranklinKL.1955. Observations of a variable radio source associated with the planet Jupiter.J. Geophys. Res.60:2213–17
      [Google Scholar]
    7. CaoH,DoughertyMK,HuntGJ,ProvanG,CowleySW et al.2019. The landscape of Saturn's internal magnetic field from the Cassini Grand Finale.Icarus11:1135411
      [Google Scholar]
    8. ChandrasekharS.1958.1939.An Introduction to the Study of Stellar Structure New York: Dover
      [Google Scholar]
    9. ConnerneyJE,AcunaMH,NessNF1996. Octupole model of Jupiter's magnetic field from Ulysses observations.J. Geophys. Res. Space Phys.101:A1227453–58
      [Google Scholar]
    10. DarwinGH.1899. The theory of the figure of the Earth carried to the second order in small quantities.Mon. Not. R. Astron. Soc.60:82–124
      [Google Scholar]
    11. de PaterI,SaultRJ,ButlerB,DeBoerD,WongMH2016. Peering through Jupiter's clouds with radio spectral imaging.Science352:62901198–201
      [Google Scholar]
    12. DebrasF,ChabrierG.2019. New models of Jupiter in the context of Juno and Galileo.Astrophys. J.872:1100
      [Google Scholar]
    13. DemarcusWC.1958. The constitution of Jupiter and Saturn.Astron. J.63:12–28
      [Google Scholar]
    14. DiasRP,SilveraIF.2017. Observation of the Wigner-Huntington transition to metallic hydrogen.Science355:715–18
      [Google Scholar]
    15. FortneyJJ,IkomaM,NettelmannN,GuillotT,MarleyMS2011. Self-consistent model atmospheres and the cooling of the Solar System's giant planets.Astrophys. J.729:132
      [Google Scholar]
    16. FortneyJJ,NettelmannN.2010. The interior structure, composition, and evolution of giant planets.Space Sci. Rev.152:1–4423–47
      [Google Scholar]
    17. FrenchM,BeckerA,LorenzenW,NettelmannN,BethkenhagenM et al.2012. Ab initio simulations for material properties along the Jupiter adiabat.Astrophys. J. Suppl.202:15
      [Google Scholar]
    18. GaoP,StevensonDJ.2013. Nonhydrostatic effects and the determination of icy satellites' moment of inertia.Icarus226:21185–91
      [Google Scholar]
    19. GrassetO,Castillo-RogezJ,GuillotT,FletcherLN,TosiF2017. Water and volatiles in the outer solar system.Space Sci. Rev.212:1–2835–75
      [Google Scholar]
    20. GuillotT.2005. The interiors of giant planets: models and outstanding questions.Annu. Rev. Earth Planet. Sci.33:493–530
      [Google Scholar]
    21. GuillotT,ChabrierG,MorelP,GautierD1994. Nonadiabatic models of Jupiter and Saturn.Icarus112:2354–67
      [Google Scholar]
    22. HelledR,AndersonJD,SchubertG,StevensonDJ2011. Jupiter's moment of inertia: a possible determination by Juno.Icarus216:2440–48
      [Google Scholar]
    23. HelledR,StevensonD.2017. The fuzziness of giant planets' cores.Astrophys. J. Lett.840:L4
      [Google Scholar]
    24. HubbardWB.1968. Thermal structure of Jupiter.Astrophys. J.152:745–54
      [Google Scholar]
    25. HubbardWB.1969. Thermal models of Jupiter and Saturn.Astrophys. J.155:333–44
      [Google Scholar]
    26. HubbardWB.1999. Gravitational signature of Jupiter's deep zonal flows.Icarus137:2357–59
      [Google Scholar]
    27. HubbardWB,SmoluchowskiR.1973. Structure of Jupiter and Saturn.Space Sci. Rev.14:5599–662
      [Google Scholar]
    28. IessL,MilitzerB,KaspiY,NicholsonP,DuranteD et al.2019. Measurement and implications of Saturn's gravity field and ring mass.Science364:6445eaat2965
      [Google Scholar]
    29. JeffreysH.1924. On the internal constitution of Jupiter and Saturn.Mon. Not. R. Astron. Soc.84:534–38
      [Google Scholar]
    30. KaspiY,GalantiE,HubbardWB,StevensonDJ,BoltonSJ et al.2018. Jupiter's atmospheric jet streams extend thousands of kilometres deep.Nature555:223–26
      [Google Scholar]
    31. KruijerTS,BurkhardtC,BuddeG,KleineT2017. Dating the formation of Jupiter using the distinct genetics and formation times of meteorites.Meteorit. Planet. Sci.52:A182(Abstr.)
      [Google Scholar]
    32. Le MaistreS,FolknerWM,JacobsonRA,SerraD2016. Jupiter spin-pole precession rate and moment of inertia from Juno radio-science observations.Planet. Space Sci.126:78–92
      [Google Scholar]
    33. LeconteJ,ChabrierG.2012. A new vision of giant planet interiors: impact of double diffusive convection.Astron. Astrophys.540:A20
      [Google Scholar]
    34. LiC,IngersollA,JanssenM,LevinS,BoltonS et al.2017. The distribution of ammonia on Jupiter from a preliminary inversion of Juno 323 microwave radiometer data.Geophys. Res. Lett.44:5317–25
      [Google Scholar]
    35. LiuJ,GoldreichPM,StevensonDJ2008. Constraints on deep-seated zonal winds inside Jupiter and Saturn.Icarus196:2653–64
      [Google Scholar]
    36. LiuS-F,HoriY,MullerS,ZhengX,HelledR et al.2019. The formation of Jupiter's diluted core by a giant impact.Nature572:355–57
      [Google Scholar]
    37. LowFJ.1966. Observations of Venus, Jupiter and Saturn at λ20 μ.Astron. J.71:391 (Abstr.)
      [Google Scholar]
    38. MankovichC,MarleyMS,FortneyJJ,MovshovitzN2019. Cassini ring seismology as a probe of Saturn's interior. I. Rigid rotation.Astrophys. J.871:11
      [Google Scholar]
    39. MarkhamS,StevensonD.2018. Excitation mechanisms for Jovian seismic modes.Icarus306:200–13
      [Google Scholar]
    40. MiguelY,GuillotT,FayonL2018. Jupiter internal structure: the effect of different equations of state (Corrigendum).Astron. Astrophys.618:C2
      [Google Scholar]
    41. MilitzerB,HubbardWB.2013. Ab initio equation of state for hydrogen-helium mixtures with recalibration of the giant-planet mass-radius relation.Astrophys. J.774:2148
      [Google Scholar]
    42. MooreKM,CaoH,BloxhamJ,StevensonDJ,ConnerneyJ,BoltonS2019. Time variation of Jupiter's magnetic field consistent with zonal wind advection.Nat. Astron.3:730–35
      [Google Scholar]
    43. MooreKM,YadavRK,KulowskiL,CaoH,BloxhamJ et al.2018. A complex dynamo inferred from the hemispheric dichotomy of Jupiter's magnetic field.Nature561:772176–78
      [Google Scholar]
    44. MoralesMA,HamelS,CaspersenK,SchweglerE2013. Hydrogen-helium demixing from first principles: from diamond anvil cells to planetary interiors.Phys. Rev. B87:17174105
      [Google Scholar]
    45. NettelmannN,BeckerA,HolstB,RedmerR2012. Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2).Astrophys. J.750:152
      [Google Scholar]
    46. OwenT,EncrenazT.2003. Element abundances and isotope ratios in the giant planets and Titan.Space Sci. Rev.106:1–4121–38
      [Google Scholar]
    47. PollackJB,HubickyjO,BodenheimerP,LissauerJJ,PodolakM,GreenzweigY1996. Formation of the giant planets by concurrent accretion of solids and gas.Icarus124:162–85
      [Google Scholar]
    48. RadauR.1885. Sur la loi des densités à l'intérieur de la terre.C.R. Acad. Sci. Paris100:972–74
      [Google Scholar]
    49. RaymondSN,IzidoroA.2017. Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion.Icarus297:134–48
      [Google Scholar]
    50. SoubiranF,MilitzerB.2016. The properties of heavy elements in giant planet envelopes.Astrophys. J.829:114
      [Google Scholar]
    51. StevensonDJ.1979. Solubility of helium in metallic hydrogen.J. Phys. F Metal Phys.9:5791–801
      [Google Scholar]
    52. StevensonDJ.1982a. Interiors of the giant planets.Annu. Rev. Earth Planet. Sci.10:257–95
      [Google Scholar]
    53. StevensonDJ.1982b. Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn.Geophys. Astrophys. Fluid Dyn.21:1–2113–27
      [Google Scholar]
    54. StevensonDJ.1985. Cosmochemistry and structure of the giant planets and their satellites.Icarus62:14–15
      [Google Scholar]
    55. StevensonDJ.2003. Planetary magnetic fields.Earth Planet. Sci. Lett.208:1–21–11
      [Google Scholar]
    56. StevensonDJ,SalpeterEE.1977a. Dynamics and helium distribution in hydrogen-helium fluid planets.Astrophys. J. Suppl.35:2239–61
      [Google Scholar]
    57. StevensonDJ,SalpeterEE.1977b. Phase-diagram and transport properties for hydrogen-helium fluid planets.Astrophys. J. Suppl.35:2221–37
      [Google Scholar]
    58. WahlSM,HubbardWB,MilitzerB2016. Tidal response of preliminary Jupiter model.Astrophys. J.831:114
      [Google Scholar]
    59. WahlSM,HubbardWB,MilitzerB,GuillotT,MiguelY et al.2017. Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core.Geophys. Res. Lett.44:104649–59
      [Google Scholar]
    60. WignerE,HuntingtonHB.1935. On the possibility of a metallic modification of hydrogen.J. Chem. Phys.3:12764–70
      [Google Scholar]

    Read the latest from
    Knowable Magazine

    knowable magazine from Annual Reviews

    Climate Resource Center, Article Collection from Annual Reviews


    Political Science Perspectives on Climate Change, Article Collection from Annual Reviews


    Journal News

    Subscribe to Open. The current volume of the Annual Review of Earth and Planetary Sciences published Open Access

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-earth-081619-052855
    10.1146/annurev-earth-081619-052855
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp