Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Open Access

Life on the Edge: The Cambrian Marine Realm and Oxygenation

  • Sara B. Pruss1 andBenjamin C. Gill2
  • 1Department of Geosciences, Smith College, Northampton, Massachusetts, USA; email:[email protected]2Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
  • Vol. 52:109-132(Volume publication date July 2024)
  • First published as a Review in Advance on December 08, 2023
  • Copyright © 2024 by the author(s).
    This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See credit lines of images or other third-party material in this article for license information.

Abstract

The beginning of the Phanerozoic saw two biological events that set the stage for all life that was to come: (a) the Cambrian Explosion (the appearance of most marine invertebrate phyla) and (b) the Great Ordovician Biodiversification Event (GOBE), the subsequent substantial accumulation of marine biodiversity. Here, we examine the current state of understanding of marine environments and ecosystems from the late Ediacaran through the Early Ordovician, which spans this biologically important interval. Through a compilation and review of the existing geochemical, mineralogical, sedimentological, and fossil records, we argue that this interval was one of sustained low and variable marine oxygen levels that both led to animal extinction and fostered biodiversification events throughout the Cambrian and Early Ordovician. Therefore, marine ecosystems of this interval existed on the edge—with enough oxygen to sustain them but with the perennial risk of environmental stressors that could overwhelm them.

  • ▪ We review the current research on geochemistry and paleontology of the Cambrian and Early Ordovician periods.
  • ▪ Low and oscillating oxygen levels in the marine realm promoted diversification and evolutionary innovation but also drove several extinction events.
  • ▪ Taphonomic modes and marine authigenic pathways that were abundant in the Cambrian were supported by oceans that were persistently less oxygenated than today's oceans.
    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-earth-031621-070316
    2024-07-23
    2025-11-27
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/earth/52/1/annurev-earth-031621-070316.html?itemId=/content/journals/10.1146/annurev-earth-031621-070316&mimeType=html&fmt=ahah

    Literature Cited

    1. AdachiN,EzakiY,LiuJ.2014.. The late early Cambrian microbial reefs immediately after the demise of archaeocyathan reefs, Hunan Province, South China..Palaeogeogr. Palaeoclimatol. Palaeoecol.407::4555
      [Crossref][Google Scholar]
    2. AlgeoTJ,LuoGM,SongHY,LyonsTW,CanfieldDE.2015.. Reconstruction of secular variation in seawater sulfate concentrations..Biogeosciences12:(7):213151
      [Crossref][Google Scholar]
    3. AllisonPA,BrettCE.1995.. In situ benthos and paleo-oxygenation in the middle Cambrian Burgess Shale, British Columbia, Canada..Geology23:(12):107982
      [Crossref][Google Scholar]
    4. AllisonPA,BriggsDE.1993.. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic..Geology21:(6):52730
      [Crossref][Google Scholar]
    5. AndersonRP,ToscaNJ,GainesRR,KochNM,BriggsDE.2018.. A mineralogical signature for Burgess Shale–type fossilization..Geology46:(4):34750
      [Crossref][Google Scholar]
    6. BambachRK,KnollAH,WangSC.2004.. Origination, extinction, and mass depletions of marine diversity..Paleobiology30:(4):52242
      [Crossref][Google Scholar]
    7. BerknerLV,MarshallLC.1965.. On the origin and rise of oxygen concentration in the Earth's atmosphere..J. Atmos. Sci.22:(3):22561
      [Crossref][Google Scholar]
    8. BerryWBN,WildeP.1978.. Progressive ventilation of the oceans; an explanation for the distribution of the lower Paleozoic black shales..Am. J. Sci.278:(3):25775
      [Crossref][Google Scholar]
    9. BicknellRD,HolmesJD,PatesS,García-BellidoDC,PatersonJR.2022.. Cambrian carnage: trilobite predator-prey interactions in the Emu Bay Shale of South Australia..Palaeogeogr. Palaeoclimatol. Palaeoecol.591::110877
      [Crossref][Google Scholar]
    10. BottjerDJ,HagadornJW,DornbosSQ.2000.. The Cambrian substrate revolution..GSA Today10:(9):17
      [Google Scholar]
    11. BowyerFT,ZhuravlevAY,WoodR,ShieldsGA,ZhouY, et al.2022.. Calibrating the temporal and spatial dynamics of the Ediacaran-Cambrian radiation of animals..Earth-Sci. Rev.225::103913
      [Crossref][Google Scholar]
    12. BoyleRA,DahlTW,BjerrumCJ,CanfieldDE.2018.. Bioturbation and directionality in Earth's carbon isotope record across the Neoproterozoic–Cambrian transition..Geobiology16:(3):25278
      [Crossref][Google Scholar]
    13. BrasierM.1980.. The Lower Cambrian transgression and glauconite-phosphate facies in western Europe..J. Geolog. Soc.137:(6):695703
      [Crossref][Google Scholar]
    14. BrasierM.1990.. Phosphogenic events and skeletal preservation across the Precambrian-Cambrian boundary interval..Geolog. Soc. Lond. Spec. Publ.52:(1):289303
      [Crossref][Google Scholar]
    15. BrasierM.1992.. Background to the Cambrian explosion..J. Geolog. Soc. Lond.149:(4):58587
      [Crossref][Google Scholar]
    16. BrennanST,LowensteinTK,HoritaJ.2004.. Seawater chemistry and the advent of biocalcification..Geology32:(6):47376
      [Crossref][Google Scholar]
    17. BriggsD,KearA,MartillD,WilbyP.1993.. Phosphatization of soft-tissue in experiments and fossils..J. Geolog. Soc.150:(6):103538
      [Crossref][Google Scholar]
    18. BriggsDE.2003.. The role of decay and mineralization in the preservation of soft-bodied fossils..Annu. Rev. Earth Planet. Sci.31::275301
      [Crossref][Google Scholar]
    19. BriggsDE,WilbyPR.1996.. The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils..J. Geolog. Soc. Lond.153:(5):66568
      [Crossref][Google Scholar]
    20. ButterfieldNJ.1995.. Secular distribution of Burgess-Shale-type preservation..Lethaia28:(1):113
      [Crossref][Google Scholar]
    21. ButterfieldNJ.2003.. Exceptional fossil preservation and the Cambrian explosion..Integr. Comp. Biol.43:(1):16677
      [Crossref][Google Scholar]
    22. CaiY,XiaoS,LiG,HuaH.2019.. Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion..Geology47:(4):38084
      [Crossref][Google Scholar]
    23. ChafetzH,ReidA.2000.. Syndepositional shallow-water precipitation of glauconitic minerals..Sediment. Geol.136:(1–2):2942
      [Crossref][Google Scholar]
    24. ColeDB,MillsDB,ErwinDH,SperlingEA,PorterSM, et al.2020.. On the co-evolution of surface oxygen levels and animals..Geobiology18:(3):26081
      [Crossref][Google Scholar]
    25. Conway MorrisS.1992.. Burgess Shale-type faunas in the context of the ‘Cambrian explosion’: a review..J. Geolog. Soc.149:(4):63136
      [Crossref][Google Scholar]
    26. Conway MorrisS.2000.. The Cambrian “explosion”: slow-fuse or megatonnage?.PNAS97:(9):442629
      [Crossref][Google Scholar]
    27. Conway MorrisS,BengtsonS.1994.. Cambrian predators: possible evidence from boreholes..J. Paleontol.68:(1):123
      [Crossref][Google Scholar]
    28. CookPJ,ShergoldJH.1984.. Phosphorus, phosphorites and skeletal evolution at the Precambrian–Cambrian boundary..Nature308:(5956):23136
      [Crossref][Google Scholar]
    29. CrevelingJR,JohnstonDT,PoultonSW,KotrcB,MärzC, et al.2014.. Phosphorus sources for phosphatic Cambrian carbonates..Bull. Geolog. Soc. Am.126:(1–2):14563
      [Crossref][Google Scholar]
    30. CribbAT,Van de VeldeSJ,BerelsonWM,BottjerDJ,CorsettiFA.2023.. Ediacaran–Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems..Geobiology21:(4):43553
      [Crossref][Google Scholar]
    31. CrimesTP,AndersonMM.1985.. Trace fossils from late Precambrian–Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications..J. Paleontol.59::31043
      [Google Scholar]
    32. DahlTW,BoyleRA,CanfieldDE,ConnellyJN,GillBC, et al.2014.. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event..Earth Planet. Sci. Lett.401::31326
      [Crossref][Google Scholar]
    33. DahlTW,ConnellyJN,KouchinskyA,GillBC,MånssonSF,BizzarroM.2017.. Reorganisation of Earth's biogeochemical cycles briefly oxygenated the oceans 520 Myr ago..Geochem. Perspect. Lett.3:(2):21020
      [Crossref][Google Scholar]
    34. DahlTW,ConnellyJN,LiD,KouchinskyA,GillBC, et al.2019.. Atmosphere–ocean oxygen and productivity dynamics during early animal radiations..PNAS116:(39):1935261
      [Crossref][Google Scholar]
    35. DaleyAC,AntcliffeJB,DrageHB,PatesS.2018.. Early fossil record of Euarthropoda and the Cambrian Explosion..PNAS115:(21):532331
      [Crossref][Google Scholar]
    36. DarrochSA,CribbAT,BuatoisLA,GermsGJ,KenchingtonCG, et al.2021.. The trace fossil record of the Nama Group, Namibia: exploring the terminal Ediacaran roots of the Cambrian explosion..Earth-Sci. Rev.212::103435
      [Crossref][Google Scholar]
    37. DattiloBF,FreemanRL,ZubovicYM,BrettCE,StrawAM, et al.2019.. Time-richness and phosphatic microsteinkern accumulation in the Cincinnatian (Katian) Ordovician, USA: an example of polycyclic phosphogenic condensation..Palaeogeogr. Palaeoclimatol. Palaeoecol.535::109362
      [Crossref][Google Scholar]
    38. DroserML,GehlingJG,JensenS.1999.. When the worm turned: concordance of Early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia..Geology27:(7):62528
      [Crossref][Google Scholar]
    39. DroserML,JensenS,GehlingJG.2002.. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: implications for the record of early bilaterians and sediment mixing..PNAS99:(20):1257276
      [Crossref][Google Scholar]
    40. DroserML,TarhanLG,GehlingJG.2017.. The rise of animals in a changing environment: global ecological innovation in the late Ediacaran..Annu. Rev. Earth Planet. Sci.45::593617
      [Crossref][Google Scholar]
    41. DuK,Ortega-HernándezJ,YangJ,YangX,GuoQ, et al.2020.. A new early Cambrian Konservat-Lagerstätte expands the occurrence of Burgess Shale-type deposits on the Yangtze Platform..Earth-Sci. Rev.211::103409
      [Crossref][Google Scholar]
    42. DzikJ.1994.. Evolution of ‘small shelly fossils’ assemblages of the Early Paleozoic..Acta Palaeontol. Pol.39:(3):247313
      [Google Scholar]
    43. DzikJ.2005.. Behavioral and anatomical unity of the earliest burrowing animals and the cause of the “Cambrian explosion..”Paleobiology31:(3):50321
      [Crossref][Google Scholar]
    44. EdwardsCT,FikeDA,SaltzmanMR,LuW,LuZ.2018.. Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction..Earth Planet. Sci. Lett.481::12535
      [Crossref][Google Scholar]
    45. EdwardsCT,SaltzmanMR,LeslieSA,BergströmSM,SedlacekARC, et al.2015.. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: implications for preservation of primary seawater values..Geolog. Soc. Am. Bull.127:(9–10):127589
      [Crossref][Google Scholar]
    46. EdwardsCT,SaltzmanMR,RoyerDL,FikeDA.2017.. Oxygenation as a driver of the Great Ordovician Biodiversification Event..Nat. Geosci.10:(12):92529
      [Crossref][Google Scholar]
    47. ErwinDH,LaflammeM,TweedtSM,SperlingEA,PisaniD,PetersonKJ.2011.. The Cambrian conundrum: early divergence and later ecological success in the early history of animals..Science334:(6059):109197
      [Crossref][Google Scholar]
    48. ErwinDH,ValentineJW.2013..The Cambrian Explosion. Genwodd Village, CO:: Roberts & Co.
      [Google Scholar]
    49. FanH,WenH,ZhuX.2016.. Marine redox conditions in the Early Cambrian ocean: insights from the Lower Cambrian phosphorite deposits, South China..J. Earth Sci.27::28296
      [Crossref][Google Scholar]
    50. FanJ,ShenS,ErwinDH,SadlerPM,MacLeodN, et al.2020.. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity..Science367:(6475):27277
      [Crossref][Google Scholar]
    51. ForteyR.2000.. Olenid trilobites: the oldest known chemoautotrophic symbionts?.PNAS97:(12):657478
      [Crossref][Google Scholar]
    52. GainesRR.2014.. Burgess Shale-type preservation and its distribution in space and time..Paleontol. Soc. Pap.20::12346
      [Crossref][Google Scholar]
    53. GehlingJG,JensenS,DroserML,MyrowPM,NarbonneGM.2001.. Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland..Geol. Mag.138:(2):21318
      [Crossref][Google Scholar]
    54. GillBC,DahlTW,HammarlundEU,LeRoyMA,GordonGW, et al.2021.. Redox dynamics of later Cambrian oceans..Palaeogeogr. Palaeoclimatol. Palaeoecol.581::110623
      [Crossref][Google Scholar]
    55. GillBC,LyonsTW,SaltzmanMR.2007.. Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir..Palaeogeogr. Palaeoclimatol. Palaeoecol.256:(3–4):15673
      [Crossref][Google Scholar]
    56. GillBC,LyonsTW,YoungSA,KumpLR,KnollAH,SaltzmanMR.2011.. Geochemical evidence for widespread euxinia in the Later Cambrian ocean..Nature469:(7328):8083
      [Crossref][Google Scholar]
    57. GlassLM,PhillipsD.2006.. The Kalkarindji continental flood basalt province: a new Cambrian large igneous province in Australia with possible links to faunal extinctions..Geology34:(6):46164
      [Crossref][Google Scholar]
    58. GoldbergSL,PresentTM,FinneganS,BergmannKD.2021.. A high-resolution record of early Paleozoic climate..PNAS118:(6):e2013083118
      [Crossref][Google Scholar]
    59. GrotzingerJ,AdamsE,SchroderS.2005.. Microbial–metazoan reefs of the terminal Proterozoic Nama Group (c. 550–543 Ma), Namibia..Geol. Mag.142:(5):499517
      [Crossref][Google Scholar]
    60. GuilbaudR,SlaterBJ,PoultonSW,HarveyTHP,BrocksJJ, et al.2018.. Oxygen minimum zones in the early Cambrian ocean..Geochem. Perspect. Lett.6::3338
      [Crossref][Google Scholar]
    61. HammarlundEU,Von StedingkK,PåhlmanS.2018.. Refined control of cell stemness allowed animal evolution in the oxic realm..Nat. Ecol. Evol.2:(2):22028
      [Crossref][Google Scholar]
    62. HarperDA,TopperTP,Cascales-MiñanaB,ServaisT,ZhangY-D,AhlbergP.2019.. The Furongian (late Cambrian) biodiversity gap: real or apparent?.Palaeoworld28:(1–2):412
      [Crossref][Google Scholar]
    63. HeT,ZhuM,MillsBJ,WynnPM,ZhuravlevAY, et al.2019.. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals..Nat. Geosci.12:(6):46874
      [Crossref][Google Scholar]
    64. HearingTW,HarveyTHP,WilliamsM,LengMJ,LambAL, et al.2018.. An early Cambrian greenhouse climate..Sci. Adv.4:(5):eaar5690
      [Crossref][Google Scholar]
    65. HsiehS,PlotnickRE,BushAM.2022.. The Phanerozoic aftermath of the Cambrian information revolution: sensory and cognitive complexity in marine faunas..Paleobiology48:(3):397419
      [Crossref][Google Scholar]
    66. IvantsovAY,ZhuravlevAY,LegutaAV,KrassilovVA,MelnikovaLM,UshatinskayaGT.2005.. Palaeoecology of the early Cambrian Sinsk biota from the Siberian platform..Palaeogeogr. Palaeoclimatol. Palaeoecol.220:(1–2):6988
      [Crossref][Google Scholar]
    67. KendallB,DahlTW,AnbarAD.2017.. The stable isotope geochemistry of molybdenum..Rev. Mineral. Geochem.82:(1):683732
      [Crossref][Google Scholar]
    68. KnollAH,BambachRK,PayneJL,PrussS,FischerWW.2007.. Paleophysiology and end-Permian mass extinction..Earth Planet. Sci. Lett.256:(3–4):295313
      [Crossref][Google Scholar]
    69. KnollAH,CarrollSB.1999.. Early animal evolution: emerging views from comparative biology and geology..Science284:(5423):212937
      [Crossref][Google Scholar]
    70. KnollAH,FischerWW,2011.. Skeletons and ocean chemistry: the long view.. InOcean Acidification, ed. JP Gattuso, L Hansson, pp.6782. Oxford, UK:: Oxford Univ. Press
      [Google Scholar]
    71. KnollAH,SperlingEA.2014.. Oxygen and animals in Earth history..PNAS111:(11):39078
      [Crossref][Google Scholar]
    72. KrauseAJ,MillsBJW,ZhangS,PlanavskyNJ,LentonTM,PoultonSW.2018.. Stepwise oxygenation of the Paleozoic atmosphere..Nat. Commun.9:(1):4081
      [Crossref][Google Scholar]
    73. KrögerBJ,DesrochersA,ErnstA.2017.. The reengineering of reef habitats during the Great Ordovician Biodiversification Event..Palaios32:(9):58499
      [Crossref][Google Scholar]
    74. LauKV,RomanielloSJ,ZhangF.2019.. The uranium isotope paleoredox proxy.. InElements in Geochemical Tracers in Earth System Science, Vol.6454, ed. TW Lyons, AV Turchyn, CT Reinhard, p.27. New York:: Cambridge Univ. Press
      [Google Scholar]
    75. LeeJ-H,ChenJ,ChoughSK.2015.. The middle–late Cambrian reef transition and related geological events: a review and new view..Earth-Sci. Rev.145::6684
      [Crossref][Google Scholar]
    76. LeeJ-H,RidingR.2018.. Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs..Earth-Sci. Rev.181::98121
      [Crossref][Google Scholar]
    77. LeeMS,SoubrierJ,EdgecombeGD.2013.. Rates of phenotypic and genomic evolution during the Cambrian explosion..Curr. Biol.23:(19):188995
      [Crossref][Google Scholar]
    78. LentonTM,DainesSJ,MillsBJW.2018.. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time..Earth-Sci. Rev.178::128
      [Crossref][Google Scholar]
    79. LeRoyMA,GillBC.2019.. Evidence for the development of local anoxia during the Cambrian SPICE event in eastern North America..Geobiology17:(4):381400
      [Crossref][Google Scholar]
    80. LeRoyMA,GillBC,SperlingEA,McKenzieNR,ParkT-YS.2021.. Variable redox conditions as an evolutionary driver? A multi-basin comparison of redox in the middle and later Cambrian oceans (Drumian-Paibian)..Palaeogeogr. Palaeoclimatol. Palaeoecol.566::110209
      [Crossref][Google Scholar]
    81. LiC,JinC,PlanavskyNJ,AlgeoTJ,ChengM, et al.2017.. Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian?.Geology39:(8):70710
      [Crossref][Google Scholar]
    82. LiX,DroserML.1997.. Nature and distribution of Cambrian shell concentrations: evidence from the Basin and Range Province of the western United States (California, Nevada, and Utah)..Palaios12:(2):11126
      [Crossref][Google Scholar]
    83. LuW,RidgwellA,ThomasE,HardistyDS,LuoG, et al.2018.. Late inception of a resiliently oxygenated upper ocean..Science361::17477
      [Crossref][Google Scholar]
    84. MaasA,BraunA,DongX-P,DonoghuePCJ,MüllerKJ, et al.2006.. The ‘Orsten’—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation..Palaeoworld15:(3):26682
      [Crossref][Google Scholar]
    85. MaloofAC,PorterSM,MooreJL,DudasFO,BowringSA, et al.2010.. The earliest Cambrian record of animals and ocean geochemical change..Geol. Soc. Am. Bull.122:(11–12):173174
      [Crossref][Google Scholar]
    86. MánganoMG,BuatoisLA.2017.. The Cambrian revolutions: trace-fossil record, timing, links and geobiological impact..Earth-Sci. Rev.173::96108
      [Crossref][Google Scholar]
    87. MarshallCR.2006.. Explaining the Cambrian “explosion” of animals..Annu. Rev. Earth Planet. Sci.34::35584
      [Crossref][Google Scholar]
    88. MaxwellV,ThuyB,PrussSB.2021.. An Early Triassic small shelly fossil-style assemblage from the Virgin Limestone Member, Moenkopi Formation, western United States..Lethaia54:(3):36877
      [Crossref][Google Scholar]
    89. McKenzieNR,HughesNC,GillBC,MyrowPM.2014.. Plate tectonic influences on Neoproterozoic–early Paleozoic climate and animal evolution..Geology42:(2):12730
      [Crossref][Google Scholar]
    90. MillsDB,WardLM,JonesC,SweetenB,ForthM, et al.2014.. Oxygen requirements of the earliest animals..PNAS111:(11):416872
      [Crossref][Google Scholar]
    91. MontañezIP,BannerJL,OslegerDA,BorgLE,BossermanPJ.1996.. Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: implications for the evolution of Cambrian seawater87Sr/86Sr..Geology24:(10):91720
      [Crossref][Google Scholar]
    92. MurdockDJ.2020.. The ‘biomineralization toolkit’ and the origin of animal skeletons..Biol. Rev.95:(5):137292
      [Crossref][Google Scholar]
    93. NelsonLL,RamezaniJ,AlmondJE,DarrochSA,TaylorWL, et al.2022.. Pushing the boundary: a calibrated Ediacaran-Cambrian stratigraphic record from the Nama Group in northwestern Republic of South Africa..Earth Planet. Sci. Lett.580::117396
      [Crossref][Google Scholar]
    94. NewmanS,DayeM,FakraS,MarcusMA,PajusaluM, et al.2019.. Experimental preservation of muscle tissue in quartz sand and kaolinite..Palaios34:(9):43751
      [Crossref][Google Scholar]
    95. NewmanS,Klepac-CerajV,MariottiG,PrussS,WatsonN,BosakT.2017.. Experimental fossilization of mat-forming cyanobacteria in coarse-grained siliciclastic sediments..Geobiology15:(4):48498
      [Crossref][Google Scholar]
    96. NursallJR.1959.. Oxygen as a prerequisite to the origin of the Metazoa..Nature183:(4669):117072
      [Crossref][Google Scholar]
    97. O'BrienG,MilnesA,VeehH,HeggieD,RiggsS, et al.1990.. Sedimentation dynamics and redox iron-cycling: controlling factors for the apatite–glauconite association on the East Australian continental margin..Geol. Soc. Lond. Spec. Publ.52:(1):6186
      [Crossref][Google Scholar]
    98. OrrPJ,BriggsDE,KearnsSL.1998.. Cambrian Burgess Shale animals replicated in clay minerals..Science281:(5380):117375
      [Crossref][Google Scholar]
    99. PagèsA,SchmidS,EdwardsD,BarnesS,HeN,GriceK.2016.. A molecular and isotopic study of palaeoenvironmental conditions through the middle Cambrian in the Georgina Basin, central Australia..Earth Planet. Sci. Lett.447::2132
      [Crossref][Google Scholar]
    100. PatersonJR,EdgecombeGD,García-BellidoDC.2020.. Disparate compound eyes of Cambrian radiodonts reveal their developmental growth mode and diverse visual ecology..Sci. Adv.6:(49):eabc6721
      [Crossref][Google Scholar]
    101. PatersonJR,EdgecombeGD,LeeMS.2019.. Trilobite evolutionary rates constrain the duration of the Cambrian explosion..PNAS116:(10):439499
      [Crossref][Google Scholar]
    102. PatersonJR,García-BellidoDC,LeeMS,BrockGA,JagoJB,EdgecombeGD.2011.. Acute vision in the giant Cambrian predatorAnomalocaris and the origin of compound eyes..Nature480:(7376):23740
      [Crossref][Google Scholar]
    103. PatesS,BicknellRDC.2019.. Elongated thoracic spines as potential predatory deterrents in olenelline trilobites from the lower Cambrian of Nevada..Palaeogeogr. Palaeoclimatol. Palaeoecol.516::295306
      [Crossref][Google Scholar]
    104. PetersSE,GainesRR.2012.. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion..Nature484:(7394):36366
      [Crossref][Google Scholar]
    105. PlanavskyNJ.2014.. The elements of marine life..Nat. Geosci.7:(12):85556
      [Crossref][Google Scholar]
    106. PorterSM.2004.. Closing the phosphatization window: testing for the influence of taphonomic megabias on the pattern of small shelly fossil decline..Palaios19:(2):17883
      [Crossref][Google Scholar]
    107. PrussSB,DwyerCH,SmithEF,MacdonaldFA,ToscaNJ.2019c.. Phosphatized early Cambrian archaeocyaths and small shelly fossils (SSFs) of southwestern Mongolia..Palaeogeogr. Palaeoclimatol. Palaeoecol.513::16677
      [Crossref][Google Scholar]
    108. PrussSB,FinneganS,FischerWW,KnollAH.2010.. Carbonates in skeleton-poor seas: new insights from Cambrian and Ordovician strata of Laurentia..Palaios25:(2):7384
      [Crossref][Google Scholar]
    109. PrussSB,JonesDS,FikeDA,ToscaNJ,WignallPB.2019a.. Marine anoxia and sedimentary mercury enrichments during the Late Cambrian SPICE event in northern Scotland..Geology47:(5):47578
      [Crossref][Google Scholar]
    110. PrussSB,SmithEF,LeadbetterO,NolanRZ,HicksM,FikeDA.2019b.. Palaeoecology of the archaeocyathan reefs from the lower Cambrian Harkless Formation, southern Nevada, western United States and carbon isotopic evidence for their demise..Palaeogeogr. Palaeoclimatol. Palaeoecol.536::109389
      [Crossref][Google Scholar]
    111. PrussSB,ToscaNJ,StarkC.2018.. Small shelly fossil preservation and the role of early diagenetic redox in the Early Triassic..Palaios33:(10):44150
      [Crossref][Google Scholar]
    112. ReinhardCT,PlanavskyNJ,GillBC,OzakiK,RobbinsLJ, et al.2017.. Evolution of the global phosphorus cycle..Nature541:(7637):38689
      [Crossref][Google Scholar]
    113. RowlandSM,GangloffRA.1988.. Structure and paleoecology of Lower Cambrian reefs..Palaios3:(2):11135
      [Crossref][Google Scholar]
    114. SaltzmanMR,EdwardsCT,AdrainJM,WestropSR.2015.. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations..Geology43:(9):80710
      [Crossref][Google Scholar]
    115. SaltzmanMR,RipperdanRL,BrasierM,LohmannKC,RobisonRA, et al.2000.. A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level..Palaeogeogr. Palaeoclimatol. Palaeoecol.162:(3–4):21123
      [Crossref][Google Scholar]
    116. SaltzmanMR,YoungSA,KumpLR,GillBC,LyonsTW,RunnegarB.2011.. Pulse of atmospheric oxygen during the late Cambrian..PNAS108:(10):387681
      [Crossref][Google Scholar]
    117. SeilacherA,PflügerF.1994.. From biomats to benthic agriculture: a biohistoric revolution.. InBiostabilization of Sediments, ed. WE Krumbein, DM Paterson, LJ Stal, pp.97105. Oldenburg, Ger:.: Bibl. Informationsyst. Univ. Oldenberg
      [Google Scholar]
    118. ServaisT,Cascales-MiñanaB,HarperDAT,LefebvreB,MunneckeA, et al.2023.. No (Cambrian) explosion and no (Ordovician) event: a single long-term radiation in the early Palaeozoic..Palaeogeogr. Palaeoclimatol. Palaeoecol.623::111592
      [Crossref][Google Scholar]
    119. ServaisT,OwenAW,HarperDA,KrögerB,MunneckeA.2010.. The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension..Palaeogeogr. Palaeoclimatol. Palaeoecol.294:(3–4):99119
      [Crossref][Google Scholar]
    120. ServaisT,PerrierV,DanelianT,KlugC,MartinR, et al.2016.. The onset of the ‘Ordovician Plankton Revolution’ in the late Cambrian..Palaeogeogr. Palaeoclimatol. Palaeoecol.458::1228
      [Crossref][Google Scholar]
    121. ShieldsG,StilleP.2001.. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites..Chem. Geol.175:(1–2):2948
      [Crossref][Google Scholar]
    122. ShieldsGA,CardenGAF,VeizerJ,MeidlaT,RongJ-Y,LiR-Y.2003.. Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition..Geochim. Cosmochim. Acta67:(11):200525
      [Crossref][Google Scholar]
    123. SkovstedCB,PeelJS.2007.. Small shelly fossils from the argillaceous facies of the Lower Cambrian Forteau Formation of western Newfoundland..Acta Palaeontol. Pol.52:(4):72948
      [Google Scholar]
    124. SperlingEA,FriederCA,RamanAV,GirguisPR,LevinLA,KnollAH.2013.. Oxygen, ecology, and the Cambrian radiation of animals..PNAS110:(33):1344651
      [Crossref][Google Scholar]
    125. SperlingEA,MelchinMJ,FraserT,StockeyRG,FarrellUC, et al.2021.. A long-term record of early to mid-Paleozoic marine redox change..Sci. Adv.7:(28):eabf4382
      [Crossref][Google Scholar]
    126. SperlingEA,StockeyRG.2018.. The temporal and environmental context of early animal evolution: considering all the ingredients of an “explosion..”Integr. Comp. Biol.58:(4):60522
      [Crossref][Google Scholar]
    127. SperlingEA,WolockCJ,MorganAS,GillBC,KunzmannM, et al.2015.. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation..Nature523:(7561):45154
      [Crossref][Google Scholar]
    128. StigallAL,FreemanRL,EdwardsCT,RasmussenCM.2020.. A multidisciplinary perspective on the Great Ordovician Biodiversification Event and the development of the early Paleozoic world..Palaeogeogr. Palaeoclimatol. Palaeoecol.543::109521
      [Crossref][Google Scholar]
    129. TarhanLG.2018.. The early Paleozoic development of bioturbation—evolutionary and geobiological consequences..Earth-Sci. Rev.178::177207
      [Crossref][Google Scholar]
    130. TarhanLG,DroserML.2014.. Widespread delayed mixing in early to middle Cambrian marine shelfal settings..Palaeogeogr. Palaeoclimatol. Palaeoecol.399::31022
      [Crossref][Google Scholar]
    131. TarhanLG,NolanRZ,WestacottS,ShawJO,PrussSB.2023.. Environmental and temporal patterns in bioturbation in the Cambrian–Ordovician of Western Newfoundland..Geobiology21:(5):57191
      [Crossref][Google Scholar]
    132. TaylorJF.2006.. History and status of the biomere concept..Mem. Assoc. Australas. Palaeontol.32::247
      [Google Scholar]
    133. TopperT,BettsMJ,DorjnamjaaD,LiG,LiL, et al.2022.. Locating the BACE of the Cambrian: Bayan Gol in southwestern Mongolia and global correlation of the Ediacaran–Cambrian boundary..Earth-Sci. Rev.229::104017
      [Crossref][Google Scholar]
    134. TostevinR,WoodR,ShieldsG,PoultonS,GuilbaudR, et al.2016.. Low-oxygen waters limited habitable space for early animals..Nat. Commun.7:(1):12818
      [Crossref][Google Scholar]
    135. TrotterJA,WilliamsIS,BarnesCR,LécuyerC,NicollRS.2008.. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry..Science321:(5888):55054
      [Crossref][Google Scholar]
    136. van de VeldeS,MillsBJW,MeysmanFJR,LentonTM,PoultonSW.2018.. Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing..Nat Commun.9::2554
      [Crossref][Google Scholar]
    137. VermeijGJ.1989.. The origin of skeletons..Palaios4:(6):58589
      [Crossref][Google Scholar]
    138. WangJ,TarhanLG,JacobsonAD,OehlertAM,PlanavskyNJ.2023.. The evolution of the marine carbonate factory..Nature615::26569
      [Crossref][Google Scholar]
    139. WeiG-Y,PlanavskyNJ,HeT,ZhangF,StockeyRG, et al.2021.. Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records..Earth-Sci. Rev.214::103506
      [Crossref][Google Scholar]
    140. WeiG-Y,PlanavskyNJ,TarhanLG,ChenX,WeiW, et al.2018.. Marine redox fluctuation as a potential trigger for the Cambrian explosion..Geology46:(8):58790
      [Crossref][Google Scholar]
    141. WoodR,ErwinDH.2018.. Innovation not recovery: Dynamic redox promotes metazoan radiations..Biol. Rev.93:(2):86373
      [Crossref][Google Scholar]
    142. WoodR,LiuAG,BowyerF,WilbyPR,DunnFS, et al.2019.. Integrated records of environmental change and evolution challenge the Cambrian Explosion..Nat. Ecol. Evol.3:(4):52838
      [Crossref][Google Scholar]
    143. WotteT,StraussH,FugmannA,Garbe-SchönbergD.2012.. Paired δ34S data from carbonate-associated sulfate and chromium-reducible sulfur across the traditional Lower–Middle Cambrian boundary of W-Gondwana..Geochim. Cosmochim. Acta85::22853
      [Crossref][Google Scholar]
    144. ZhangH,FanH,WenH,HanT,ZhouT,XiaY.2022.. Controls of REY enrichment in the early Cambrian phosphorites..Geochim. Cosmochim. Acta324::11739
      [Crossref][Google Scholar]
    145. ZhangH,XiaoS.2017.. Three-dimensionally phosphatized meiofaunal bivalved arthropods from the Upper Cambrian of Western Hunan, South China..Neues Jahrb. Geol. Paläontol. Abh.285:(1):3952
      [Crossref][Google Scholar]
    146. ZhangL,AlgeoTJ,ZhaoL,DahlTW,ChenZ-Q, et al.2023.. Environmental and trilobite diversity changes during the middle-late Cambrian SPICE event..Geol. Soc. Am. Bull.https://doi.org/10.1130/B36421.1
      [Google Scholar]
    147. ZhaoZ,PangX,ZouC,DicksonAJ,BasuA, et al.2023.. Dynamic oceanic redox conditions across the late Cambrian SPICE event constrained by molybdenum and uranium isotopes..Earth Planet. Sci. Lett.604::118013
      [Crossref][Google Scholar]
    148. ZhuravlevAY,MitchellEG,BowyerF,WoodR,PennyA.2022.. Increases in reef size, habitat and metacommunity complexity associated with Cambrian radiation oxygenation pulses..Nat. Commun.13:(1):7523
      [Crossref][Google Scholar]
    149. ZhuravlevAY,WoodRA.1996.. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event..Geology24:(4):31114
      [Crossref][Google Scholar]
    /content/journals/10.1146/annurev-earth-031621-070316
    Loading
    Life on the Edge: The Cambrian Marine Realm and Oxygenation
    Annual Review of Earth and Planetary Sciences52, 109 (2024);https://doi.org/10.1146/annurev-earth-031621-070316
    /content/journals/10.1146/annurev-earth-031621-070316
    /content/journals/10.1146/annurev-earth-031621-070316
    Loading

    Data & Media loading...

    Supplemental Materials

    • Supplemental Table 1

    Most Read This Month

    Article
    content/journals/earth
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-earth-031621-070316
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. AdachiN,EzakiY,LiuJ.2014.. The late early Cambrian microbial reefs immediately after the demise of archaeocyathan reefs, Hunan Province, South China..Palaeogeogr. Palaeoclimatol. Palaeoecol.407::4555
      [Crossref][Google Scholar]
    2. AlgeoTJ,LuoGM,SongHY,LyonsTW,CanfieldDE.2015.. Reconstruction of secular variation in seawater sulfate concentrations..Biogeosciences12:(7):213151
      [Crossref][Google Scholar]
    3. AllisonPA,BrettCE.1995.. In situ benthos and paleo-oxygenation in the middle Cambrian Burgess Shale, British Columbia, Canada..Geology23:(12):107982
      [Crossref][Google Scholar]
    4. AllisonPA,BriggsDE.1993.. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic..Geology21:(6):52730
      [Crossref][Google Scholar]
    5. AndersonRP,ToscaNJ,GainesRR,KochNM,BriggsDE.2018.. A mineralogical signature for Burgess Shale–type fossilization..Geology46:(4):34750
      [Crossref][Google Scholar]
    6. BambachRK,KnollAH,WangSC.2004.. Origination, extinction, and mass depletions of marine diversity..Paleobiology30:(4):52242
      [Crossref][Google Scholar]
    7. BerknerLV,MarshallLC.1965.. On the origin and rise of oxygen concentration in the Earth's atmosphere..J. Atmos. Sci.22:(3):22561
      [Crossref][Google Scholar]
    8. BerryWBN,WildeP.1978.. Progressive ventilation of the oceans; an explanation for the distribution of the lower Paleozoic black shales..Am. J. Sci.278:(3):25775
      [Crossref][Google Scholar]
    9. BicknellRD,HolmesJD,PatesS,García-BellidoDC,PatersonJR.2022.. Cambrian carnage: trilobite predator-prey interactions in the Emu Bay Shale of South Australia..Palaeogeogr. Palaeoclimatol. Palaeoecol.591::110877
      [Crossref][Google Scholar]
    10. BottjerDJ,HagadornJW,DornbosSQ.2000.. The Cambrian substrate revolution..GSA Today10:(9):17
      [Google Scholar]
    11. BowyerFT,ZhuravlevAY,WoodR,ShieldsGA,ZhouY, et al.2022.. Calibrating the temporal and spatial dynamics of the Ediacaran-Cambrian radiation of animals..Earth-Sci. Rev.225::103913
      [Crossref][Google Scholar]
    12. BoyleRA,DahlTW,BjerrumCJ,CanfieldDE.2018.. Bioturbation and directionality in Earth's carbon isotope record across the Neoproterozoic–Cambrian transition..Geobiology16:(3):25278
      [Crossref][Google Scholar]
    13. BrasierM.1980.. The Lower Cambrian transgression and glauconite-phosphate facies in western Europe..J. Geolog. Soc.137:(6):695703
      [Crossref][Google Scholar]
    14. BrasierM.1990.. Phosphogenic events and skeletal preservation across the Precambrian-Cambrian boundary interval..Geolog. Soc. Lond. Spec. Publ.52:(1):289303
      [Crossref][Google Scholar]
    15. BrasierM.1992.. Background to the Cambrian explosion..J. Geolog. Soc. Lond.149:(4):58587
      [Crossref][Google Scholar]
    16. BrennanST,LowensteinTK,HoritaJ.2004.. Seawater chemistry and the advent of biocalcification..Geology32:(6):47376
      [Crossref][Google Scholar]
    17. BriggsD,KearA,MartillD,WilbyP.1993.. Phosphatization of soft-tissue in experiments and fossils..J. Geolog. Soc.150:(6):103538
      [Crossref][Google Scholar]
    18. BriggsDE.2003.. The role of decay and mineralization in the preservation of soft-bodied fossils..Annu. Rev. Earth Planet. Sci.31::275301
      [Crossref][Google Scholar]
    19. BriggsDE,WilbyPR.1996.. The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils..J. Geolog. Soc. Lond.153:(5):66568
      [Crossref][Google Scholar]
    20. ButterfieldNJ.1995.. Secular distribution of Burgess-Shale-type preservation..Lethaia28:(1):113
      [Crossref][Google Scholar]
    21. ButterfieldNJ.2003.. Exceptional fossil preservation and the Cambrian explosion..Integr. Comp. Biol.43:(1):16677
      [Crossref][Google Scholar]
    22. CaiY,XiaoS,LiG,HuaH.2019.. Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion..Geology47:(4):38084
      [Crossref][Google Scholar]
    23. ChafetzH,ReidA.2000.. Syndepositional shallow-water precipitation of glauconitic minerals..Sediment. Geol.136:(1–2):2942
      [Crossref][Google Scholar]
    24. ColeDB,MillsDB,ErwinDH,SperlingEA,PorterSM, et al.2020.. On the co-evolution of surface oxygen levels and animals..Geobiology18:(3):26081
      [Crossref][Google Scholar]
    25. Conway MorrisS.1992.. Burgess Shale-type faunas in the context of the ‘Cambrian explosion’: a review..J. Geolog. Soc.149:(4):63136
      [Crossref][Google Scholar]
    26. Conway MorrisS.2000.. The Cambrian “explosion”: slow-fuse or megatonnage?.PNAS97:(9):442629
      [Crossref][Google Scholar]
    27. Conway MorrisS,BengtsonS.1994.. Cambrian predators: possible evidence from boreholes..J. Paleontol.68:(1):123
      [Crossref][Google Scholar]
    28. CookPJ,ShergoldJH.1984.. Phosphorus, phosphorites and skeletal evolution at the Precambrian–Cambrian boundary..Nature308:(5956):23136
      [Crossref][Google Scholar]
    29. CrevelingJR,JohnstonDT,PoultonSW,KotrcB,MärzC, et al.2014.. Phosphorus sources for phosphatic Cambrian carbonates..Bull. Geolog. Soc. Am.126:(1–2):14563
      [Crossref][Google Scholar]
    30. CribbAT,Van de VeldeSJ,BerelsonWM,BottjerDJ,CorsettiFA.2023.. Ediacaran–Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems..Geobiology21:(4):43553
      [Crossref][Google Scholar]
    31. CrimesTP,AndersonMM.1985.. Trace fossils from late Precambrian–Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications..J. Paleontol.59::31043
      [Google Scholar]
    32. DahlTW,BoyleRA,CanfieldDE,ConnellyJN,GillBC, et al.2014.. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event..Earth Planet. Sci. Lett.401::31326
      [Crossref][Google Scholar]
    33. DahlTW,ConnellyJN,KouchinskyA,GillBC,MånssonSF,BizzarroM.2017.. Reorganisation of Earth's biogeochemical cycles briefly oxygenated the oceans 520 Myr ago..Geochem. Perspect. Lett.3:(2):21020
      [Crossref][Google Scholar]
    34. DahlTW,ConnellyJN,LiD,KouchinskyA,GillBC, et al.2019.. Atmosphere–ocean oxygen and productivity dynamics during early animal radiations..PNAS116:(39):1935261
      [Crossref][Google Scholar]
    35. DaleyAC,AntcliffeJB,DrageHB,PatesS.2018.. Early fossil record of Euarthropoda and the Cambrian Explosion..PNAS115:(21):532331
      [Crossref][Google Scholar]
    36. DarrochSA,CribbAT,BuatoisLA,GermsGJ,KenchingtonCG, et al.2021.. The trace fossil record of the Nama Group, Namibia: exploring the terminal Ediacaran roots of the Cambrian explosion..Earth-Sci. Rev.212::103435
      [Crossref][Google Scholar]
    37. DattiloBF,FreemanRL,ZubovicYM,BrettCE,StrawAM, et al.2019.. Time-richness and phosphatic microsteinkern accumulation in the Cincinnatian (Katian) Ordovician, USA: an example of polycyclic phosphogenic condensation..Palaeogeogr. Palaeoclimatol. Palaeoecol.535::109362
      [Crossref][Google Scholar]
    38. DroserML,GehlingJG,JensenS.1999.. When the worm turned: concordance of Early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia..Geology27:(7):62528
      [Crossref][Google Scholar]
    39. DroserML,JensenS,GehlingJG.2002.. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: implications for the record of early bilaterians and sediment mixing..PNAS99:(20):1257276
      [Crossref][Google Scholar]
    40. DroserML,TarhanLG,GehlingJG.2017.. The rise of animals in a changing environment: global ecological innovation in the late Ediacaran..Annu. Rev. Earth Planet. Sci.45::593617
      [Crossref][Google Scholar]
    41. DuK,Ortega-HernándezJ,YangJ,YangX,GuoQ, et al.2020.. A new early Cambrian Konservat-Lagerstätte expands the occurrence of Burgess Shale-type deposits on the Yangtze Platform..Earth-Sci. Rev.211::103409
      [Crossref][Google Scholar]
    42. DzikJ.1994.. Evolution of ‘small shelly fossils’ assemblages of the Early Paleozoic..Acta Palaeontol. Pol.39:(3):247313
      [Google Scholar]
    43. DzikJ.2005.. Behavioral and anatomical unity of the earliest burrowing animals and the cause of the “Cambrian explosion..”Paleobiology31:(3):50321
      [Crossref][Google Scholar]
    44. EdwardsCT,FikeDA,SaltzmanMR,LuW,LuZ.2018.. Evidence for local and global redox conditions at an Early Ordovician (Tremadocian) mass extinction..Earth Planet. Sci. Lett.481::12535
      [Crossref][Google Scholar]
    45. EdwardsCT,SaltzmanMR,LeslieSA,BergströmSM,SedlacekARC, et al.2015.. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: implications for preservation of primary seawater values..Geolog. Soc. Am. Bull.127:(9–10):127589
      [Crossref][Google Scholar]
    46. EdwardsCT,SaltzmanMR,RoyerDL,FikeDA.2017.. Oxygenation as a driver of the Great Ordovician Biodiversification Event..Nat. Geosci.10:(12):92529
      [Crossref][Google Scholar]
    47. ErwinDH,LaflammeM,TweedtSM,SperlingEA,PisaniD,PetersonKJ.2011.. The Cambrian conundrum: early divergence and later ecological success in the early history of animals..Science334:(6059):109197
      [Crossref][Google Scholar]
    48. ErwinDH,ValentineJW.2013..The Cambrian Explosion. Genwodd Village, CO:: Roberts & Co.
      [Google Scholar]
    49. FanH,WenH,ZhuX.2016.. Marine redox conditions in the Early Cambrian ocean: insights from the Lower Cambrian phosphorite deposits, South China..J. Earth Sci.27::28296
      [Crossref][Google Scholar]
    50. FanJ,ShenS,ErwinDH,SadlerPM,MacLeodN, et al.2020.. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity..Science367:(6475):27277
      [Crossref][Google Scholar]
    51. ForteyR.2000.. Olenid trilobites: the oldest known chemoautotrophic symbionts?.PNAS97:(12):657478
      [Crossref][Google Scholar]
    52. GainesRR.2014.. Burgess Shale-type preservation and its distribution in space and time..Paleontol. Soc. Pap.20::12346
      [Crossref][Google Scholar]
    53. GehlingJG,JensenS,DroserML,MyrowPM,NarbonneGM.2001.. Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland..Geol. Mag.138:(2):21318
      [Crossref][Google Scholar]
    54. GillBC,DahlTW,HammarlundEU,LeRoyMA,GordonGW, et al.2021.. Redox dynamics of later Cambrian oceans..Palaeogeogr. Palaeoclimatol. Palaeoecol.581::110623
      [Crossref][Google Scholar]
    55. GillBC,LyonsTW,SaltzmanMR.2007.. Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir..Palaeogeogr. Palaeoclimatol. Palaeoecol.256:(3–4):15673
      [Crossref][Google Scholar]
    56. GillBC,LyonsTW,YoungSA,KumpLR,KnollAH,SaltzmanMR.2011.. Geochemical evidence for widespread euxinia in the Later Cambrian ocean..Nature469:(7328):8083
      [Crossref][Google Scholar]
    57. GlassLM,PhillipsD.2006.. The Kalkarindji continental flood basalt province: a new Cambrian large igneous province in Australia with possible links to faunal extinctions..Geology34:(6):46164
      [Crossref][Google Scholar]
    58. GoldbergSL,PresentTM,FinneganS,BergmannKD.2021.. A high-resolution record of early Paleozoic climate..PNAS118:(6):e2013083118
      [Crossref][Google Scholar]
    59. GrotzingerJ,AdamsE,SchroderS.2005.. Microbial–metazoan reefs of the terminal Proterozoic Nama Group (c. 550–543 Ma), Namibia..Geol. Mag.142:(5):499517
      [Crossref][Google Scholar]
    60. GuilbaudR,SlaterBJ,PoultonSW,HarveyTHP,BrocksJJ, et al.2018.. Oxygen minimum zones in the early Cambrian ocean..Geochem. Perspect. Lett.6::3338
      [Crossref][Google Scholar]
    61. HammarlundEU,Von StedingkK,PåhlmanS.2018.. Refined control of cell stemness allowed animal evolution in the oxic realm..Nat. Ecol. Evol.2:(2):22028
      [Crossref][Google Scholar]
    62. HarperDA,TopperTP,Cascales-MiñanaB,ServaisT,ZhangY-D,AhlbergP.2019.. The Furongian (late Cambrian) biodiversity gap: real or apparent?.Palaeoworld28:(1–2):412
      [Crossref][Google Scholar]
    63. HeT,ZhuM,MillsBJ,WynnPM,ZhuravlevAY, et al.2019.. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals..Nat. Geosci.12:(6):46874
      [Crossref][Google Scholar]
    64. HearingTW,HarveyTHP,WilliamsM,LengMJ,LambAL, et al.2018.. An early Cambrian greenhouse climate..Sci. Adv.4:(5):eaar5690
      [Crossref][Google Scholar]
    65. HsiehS,PlotnickRE,BushAM.2022.. The Phanerozoic aftermath of the Cambrian information revolution: sensory and cognitive complexity in marine faunas..Paleobiology48:(3):397419
      [Crossref][Google Scholar]
    66. IvantsovAY,ZhuravlevAY,LegutaAV,KrassilovVA,MelnikovaLM,UshatinskayaGT.2005.. Palaeoecology of the early Cambrian Sinsk biota from the Siberian platform..Palaeogeogr. Palaeoclimatol. Palaeoecol.220:(1–2):6988
      [Crossref][Google Scholar]
    67. KendallB,DahlTW,AnbarAD.2017.. The stable isotope geochemistry of molybdenum..Rev. Mineral. Geochem.82:(1):683732
      [Crossref][Google Scholar]
    68. KnollAH,BambachRK,PayneJL,PrussS,FischerWW.2007.. Paleophysiology and end-Permian mass extinction..Earth Planet. Sci. Lett.256:(3–4):295313
      [Crossref][Google Scholar]
    69. KnollAH,CarrollSB.1999.. Early animal evolution: emerging views from comparative biology and geology..Science284:(5423):212937
      [Crossref][Google Scholar]
    70. KnollAH,FischerWW,2011.. Skeletons and ocean chemistry: the long view.. InOcean Acidification, ed. JP Gattuso, L Hansson, pp.6782. Oxford, UK:: Oxford Univ. Press
      [Google Scholar]
    71. KnollAH,SperlingEA.2014.. Oxygen and animals in Earth history..PNAS111:(11):39078
      [Crossref][Google Scholar]
    72. KrauseAJ,MillsBJW,ZhangS,PlanavskyNJ,LentonTM,PoultonSW.2018.. Stepwise oxygenation of the Paleozoic atmosphere..Nat. Commun.9:(1):4081
      [Crossref][Google Scholar]
    73. KrögerBJ,DesrochersA,ErnstA.2017.. The reengineering of reef habitats during the Great Ordovician Biodiversification Event..Palaios32:(9):58499
      [Crossref][Google Scholar]
    74. LauKV,RomanielloSJ,ZhangF.2019.. The uranium isotope paleoredox proxy.. InElements in Geochemical Tracers in Earth System Science, Vol.6454, ed. TW Lyons, AV Turchyn, CT Reinhard, p.27. New York:: Cambridge Univ. Press
      [Google Scholar]
    75. LeeJ-H,ChenJ,ChoughSK.2015.. The middle–late Cambrian reef transition and related geological events: a review and new view..Earth-Sci. Rev.145::6684
      [Crossref][Google Scholar]
    76. LeeJ-H,RidingR.2018.. Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs..Earth-Sci. Rev.181::98121
      [Crossref][Google Scholar]
    77. LeeMS,SoubrierJ,EdgecombeGD.2013.. Rates of phenotypic and genomic evolution during the Cambrian explosion..Curr. Biol.23:(19):188995
      [Crossref][Google Scholar]
    78. LentonTM,DainesSJ,MillsBJW.2018.. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time..Earth-Sci. Rev.178::128
      [Crossref][Google Scholar]
    79. LeRoyMA,GillBC.2019.. Evidence for the development of local anoxia during the Cambrian SPICE event in eastern North America..Geobiology17:(4):381400
      [Crossref][Google Scholar]
    80. LeRoyMA,GillBC,SperlingEA,McKenzieNR,ParkT-YS.2021.. Variable redox conditions as an evolutionary driver? A multi-basin comparison of redox in the middle and later Cambrian oceans (Drumian-Paibian)..Palaeogeogr. Palaeoclimatol. Palaeoecol.566::110209
      [Crossref][Google Scholar]
    81. LiC,JinC,PlanavskyNJ,AlgeoTJ,ChengM, et al.2017.. Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian?.Geology39:(8):70710
      [Crossref][Google Scholar]
    82. LiX,DroserML.1997.. Nature and distribution of Cambrian shell concentrations: evidence from the Basin and Range Province of the western United States (California, Nevada, and Utah)..Palaios12:(2):11126
      [Crossref][Google Scholar]
    83. LuW,RidgwellA,ThomasE,HardistyDS,LuoG, et al.2018.. Late inception of a resiliently oxygenated upper ocean..Science361::17477
      [Crossref][Google Scholar]
    84. MaasA,BraunA,DongX-P,DonoghuePCJ,MüllerKJ, et al.2006.. The ‘Orsten’—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation..Palaeoworld15:(3):26682
      [Crossref][Google Scholar]
    85. MaloofAC,PorterSM,MooreJL,DudasFO,BowringSA, et al.2010.. The earliest Cambrian record of animals and ocean geochemical change..Geol. Soc. Am. Bull.122:(11–12):173174
      [Crossref][Google Scholar]
    86. MánganoMG,BuatoisLA.2017.. The Cambrian revolutions: trace-fossil record, timing, links and geobiological impact..Earth-Sci. Rev.173::96108
      [Crossref][Google Scholar]
    87. MarshallCR.2006.. Explaining the Cambrian “explosion” of animals..Annu. Rev. Earth Planet. Sci.34::35584
      [Crossref][Google Scholar]
    88. MaxwellV,ThuyB,PrussSB.2021.. An Early Triassic small shelly fossil-style assemblage from the Virgin Limestone Member, Moenkopi Formation, western United States..Lethaia54:(3):36877
      [Crossref][Google Scholar]
    89. McKenzieNR,HughesNC,GillBC,MyrowPM.2014.. Plate tectonic influences on Neoproterozoic–early Paleozoic climate and animal evolution..Geology42:(2):12730
      [Crossref][Google Scholar]
    90. MillsDB,WardLM,JonesC,SweetenB,ForthM, et al.2014.. Oxygen requirements of the earliest animals..PNAS111:(11):416872
      [Crossref][Google Scholar]
    91. MontañezIP,BannerJL,OslegerDA,BorgLE,BossermanPJ.1996.. Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: implications for the evolution of Cambrian seawater87Sr/86Sr..Geology24:(10):91720
      [Crossref][Google Scholar]
    92. MurdockDJ.2020.. The ‘biomineralization toolkit’ and the origin of animal skeletons..Biol. Rev.95:(5):137292
      [Crossref][Google Scholar]
    93. NelsonLL,RamezaniJ,AlmondJE,DarrochSA,TaylorWL, et al.2022.. Pushing the boundary: a calibrated Ediacaran-Cambrian stratigraphic record from the Nama Group in northwestern Republic of South Africa..Earth Planet. Sci. Lett.580::117396
      [Crossref][Google Scholar]
    94. NewmanS,DayeM,FakraS,MarcusMA,PajusaluM, et al.2019.. Experimental preservation of muscle tissue in quartz sand and kaolinite..Palaios34:(9):43751
      [Crossref][Google Scholar]
    95. NewmanS,Klepac-CerajV,MariottiG,PrussS,WatsonN,BosakT.2017.. Experimental fossilization of mat-forming cyanobacteria in coarse-grained siliciclastic sediments..Geobiology15:(4):48498
      [Crossref][Google Scholar]
    96. NursallJR.1959.. Oxygen as a prerequisite to the origin of the Metazoa..Nature183:(4669):117072
      [Crossref][Google Scholar]
    97. O'BrienG,MilnesA,VeehH,HeggieD,RiggsS, et al.1990.. Sedimentation dynamics and redox iron-cycling: controlling factors for the apatite–glauconite association on the East Australian continental margin..Geol. Soc. Lond. Spec. Publ.52:(1):6186
      [Crossref][Google Scholar]
    98. OrrPJ,BriggsDE,KearnsSL.1998.. Cambrian Burgess Shale animals replicated in clay minerals..Science281:(5380):117375
      [Crossref][Google Scholar]
    99. PagèsA,SchmidS,EdwardsD,BarnesS,HeN,GriceK.2016.. A molecular and isotopic study of palaeoenvironmental conditions through the middle Cambrian in the Georgina Basin, central Australia..Earth Planet. Sci. Lett.447::2132
      [Crossref][Google Scholar]
    100. PatersonJR,EdgecombeGD,García-BellidoDC.2020.. Disparate compound eyes of Cambrian radiodonts reveal their developmental growth mode and diverse visual ecology..Sci. Adv.6:(49):eabc6721
      [Crossref][Google Scholar]
    101. PatersonJR,EdgecombeGD,LeeMS.2019.. Trilobite evolutionary rates constrain the duration of the Cambrian explosion..PNAS116:(10):439499
      [Crossref][Google Scholar]
    102. PatersonJR,García-BellidoDC,LeeMS,BrockGA,JagoJB,EdgecombeGD.2011.. Acute vision in the giant Cambrian predatorAnomalocaris and the origin of compound eyes..Nature480:(7376):23740
      [Crossref][Google Scholar]
    103. PatesS,BicknellRDC.2019.. Elongated thoracic spines as potential predatory deterrents in olenelline trilobites from the lower Cambrian of Nevada..Palaeogeogr. Palaeoclimatol. Palaeoecol.516::295306
      [Crossref][Google Scholar]
    104. PetersSE,GainesRR.2012.. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion..Nature484:(7394):36366
      [Crossref][Google Scholar]
    105. PlanavskyNJ.2014.. The elements of marine life..Nat. Geosci.7:(12):85556
      [Crossref][Google Scholar]
    106. PorterSM.2004.. Closing the phosphatization window: testing for the influence of taphonomic megabias on the pattern of small shelly fossil decline..Palaios19:(2):17883
      [Crossref][Google Scholar]
    107. PrussSB,DwyerCH,SmithEF,MacdonaldFA,ToscaNJ.2019c.. Phosphatized early Cambrian archaeocyaths and small shelly fossils (SSFs) of southwestern Mongolia..Palaeogeogr. Palaeoclimatol. Palaeoecol.513::16677
      [Crossref][Google Scholar]
    108. PrussSB,FinneganS,FischerWW,KnollAH.2010.. Carbonates in skeleton-poor seas: new insights from Cambrian and Ordovician strata of Laurentia..Palaios25:(2):7384
      [Crossref][Google Scholar]
    109. PrussSB,JonesDS,FikeDA,ToscaNJ,WignallPB.2019a.. Marine anoxia and sedimentary mercury enrichments during the Late Cambrian SPICE event in northern Scotland..Geology47:(5):47578
      [Crossref][Google Scholar]
    110. PrussSB,SmithEF,LeadbetterO,NolanRZ,HicksM,FikeDA.2019b.. Palaeoecology of the archaeocyathan reefs from the lower Cambrian Harkless Formation, southern Nevada, western United States and carbon isotopic evidence for their demise..Palaeogeogr. Palaeoclimatol. Palaeoecol.536::109389
      [Crossref][Google Scholar]
    111. PrussSB,ToscaNJ,StarkC.2018.. Small shelly fossil preservation and the role of early diagenetic redox in the Early Triassic..Palaios33:(10):44150
      [Crossref][Google Scholar]
    112. ReinhardCT,PlanavskyNJ,GillBC,OzakiK,RobbinsLJ, et al.2017.. Evolution of the global phosphorus cycle..Nature541:(7637):38689
      [Crossref][Google Scholar]
    113. RowlandSM,GangloffRA.1988.. Structure and paleoecology of Lower Cambrian reefs..Palaios3:(2):11135
      [Crossref][Google Scholar]
    114. SaltzmanMR,EdwardsCT,AdrainJM,WestropSR.2015.. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations..Geology43:(9):80710
      [Crossref][Google Scholar]
    115. SaltzmanMR,RipperdanRL,BrasierM,LohmannKC,RobisonRA, et al.2000.. A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level..Palaeogeogr. Palaeoclimatol. Palaeoecol.162:(3–4):21123
      [Crossref][Google Scholar]
    116. SaltzmanMR,YoungSA,KumpLR,GillBC,LyonsTW,RunnegarB.2011.. Pulse of atmospheric oxygen during the late Cambrian..PNAS108:(10):387681
      [Crossref][Google Scholar]
    117. SeilacherA,PflügerF.1994.. From biomats to benthic agriculture: a biohistoric revolution.. InBiostabilization of Sediments, ed. WE Krumbein, DM Paterson, LJ Stal, pp.97105. Oldenburg, Ger:.: Bibl. Informationsyst. Univ. Oldenberg
      [Google Scholar]
    118. ServaisT,Cascales-MiñanaB,HarperDAT,LefebvreB,MunneckeA, et al.2023.. No (Cambrian) explosion and no (Ordovician) event: a single long-term radiation in the early Palaeozoic..Palaeogeogr. Palaeoclimatol. Palaeoecol.623::111592
      [Crossref][Google Scholar]
    119. ServaisT,OwenAW,HarperDA,KrögerB,MunneckeA.2010.. The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension..Palaeogeogr. Palaeoclimatol. Palaeoecol.294:(3–4):99119
      [Crossref][Google Scholar]
    120. ServaisT,PerrierV,DanelianT,KlugC,MartinR, et al.2016.. The onset of the ‘Ordovician Plankton Revolution’ in the late Cambrian..Palaeogeogr. Palaeoclimatol. Palaeoecol.458::1228
      [Crossref][Google Scholar]
    121. ShieldsG,StilleP.2001.. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites..Chem. Geol.175:(1–2):2948
      [Crossref][Google Scholar]
    122. ShieldsGA,CardenGAF,VeizerJ,MeidlaT,RongJ-Y,LiR-Y.2003.. Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition..Geochim. Cosmochim. Acta67:(11):200525
      [Crossref][Google Scholar]
    123. SkovstedCB,PeelJS.2007.. Small shelly fossils from the argillaceous facies of the Lower Cambrian Forteau Formation of western Newfoundland..Acta Palaeontol. Pol.52:(4):72948
      [Google Scholar]
    124. SperlingEA,FriederCA,RamanAV,GirguisPR,LevinLA,KnollAH.2013.. Oxygen, ecology, and the Cambrian radiation of animals..PNAS110:(33):1344651
      [Crossref][Google Scholar]
    125. SperlingEA,MelchinMJ,FraserT,StockeyRG,FarrellUC, et al.2021.. A long-term record of early to mid-Paleozoic marine redox change..Sci. Adv.7:(28):eabf4382
      [Crossref][Google Scholar]
    126. SperlingEA,StockeyRG.2018.. The temporal and environmental context of early animal evolution: considering all the ingredients of an “explosion..”Integr. Comp. Biol.58:(4):60522
      [Crossref][Google Scholar]
    127. SperlingEA,WolockCJ,MorganAS,GillBC,KunzmannM, et al.2015.. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation..Nature523:(7561):45154
      [Crossref][Google Scholar]
    128. StigallAL,FreemanRL,EdwardsCT,RasmussenCM.2020.. A multidisciplinary perspective on the Great Ordovician Biodiversification Event and the development of the early Paleozoic world..Palaeogeogr. Palaeoclimatol. Palaeoecol.543::109521
      [Crossref][Google Scholar]
    129. TarhanLG.2018.. The early Paleozoic development of bioturbation—evolutionary and geobiological consequences..Earth-Sci. Rev.178::177207
      [Crossref][Google Scholar]
    130. TarhanLG,DroserML.2014.. Widespread delayed mixing in early to middle Cambrian marine shelfal settings..Palaeogeogr. Palaeoclimatol. Palaeoecol.399::31022
      [Crossref][Google Scholar]
    131. TarhanLG,NolanRZ,WestacottS,ShawJO,PrussSB.2023.. Environmental and temporal patterns in bioturbation in the Cambrian–Ordovician of Western Newfoundland..Geobiology21:(5):57191
      [Crossref][Google Scholar]
    132. TaylorJF.2006.. History and status of the biomere concept..Mem. Assoc. Australas. Palaeontol.32::247
      [Google Scholar]
    133. TopperT,BettsMJ,DorjnamjaaD,LiG,LiL, et al.2022.. Locating the BACE of the Cambrian: Bayan Gol in southwestern Mongolia and global correlation of the Ediacaran–Cambrian boundary..Earth-Sci. Rev.229::104017
      [Crossref][Google Scholar]
    134. TostevinR,WoodR,ShieldsG,PoultonS,GuilbaudR, et al.2016.. Low-oxygen waters limited habitable space for early animals..Nat. Commun.7:(1):12818
      [Crossref][Google Scholar]
    135. TrotterJA,WilliamsIS,BarnesCR,LécuyerC,NicollRS.2008.. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry..Science321:(5888):55054
      [Crossref][Google Scholar]
    136. van de VeldeS,MillsBJW,MeysmanFJR,LentonTM,PoultonSW.2018.. Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing..Nat Commun.9::2554
      [Crossref][Google Scholar]
    137. VermeijGJ.1989.. The origin of skeletons..Palaios4:(6):58589
      [Crossref][Google Scholar]
    138. WangJ,TarhanLG,JacobsonAD,OehlertAM,PlanavskyNJ.2023.. The evolution of the marine carbonate factory..Nature615::26569
      [Crossref][Google Scholar]
    139. WeiG-Y,PlanavskyNJ,HeT,ZhangF,StockeyRG, et al.2021.. Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records..Earth-Sci. Rev.214::103506
      [Crossref][Google Scholar]
    140. WeiG-Y,PlanavskyNJ,TarhanLG,ChenX,WeiW, et al.2018.. Marine redox fluctuation as a potential trigger for the Cambrian explosion..Geology46:(8):58790
      [Crossref][Google Scholar]
    141. WoodR,ErwinDH.2018.. Innovation not recovery: Dynamic redox promotes metazoan radiations..Biol. Rev.93:(2):86373
      [Crossref][Google Scholar]
    142. WoodR,LiuAG,BowyerF,WilbyPR,DunnFS, et al.2019.. Integrated records of environmental change and evolution challenge the Cambrian Explosion..Nat. Ecol. Evol.3:(4):52838
      [Crossref][Google Scholar]
    143. WotteT,StraussH,FugmannA,Garbe-SchönbergD.2012.. Paired δ34S data from carbonate-associated sulfate and chromium-reducible sulfur across the traditional Lower–Middle Cambrian boundary of W-Gondwana..Geochim. Cosmochim. Acta85::22853
      [Crossref][Google Scholar]
    144. ZhangH,FanH,WenH,HanT,ZhouT,XiaY.2022.. Controls of REY enrichment in the early Cambrian phosphorites..Geochim. Cosmochim. Acta324::11739
      [Crossref][Google Scholar]
    145. ZhangH,XiaoS.2017.. Three-dimensionally phosphatized meiofaunal bivalved arthropods from the Upper Cambrian of Western Hunan, South China..Neues Jahrb. Geol. Paläontol. Abh.285:(1):3952
      [Crossref][Google Scholar]
    146. ZhangL,AlgeoTJ,ZhaoL,DahlTW,ChenZ-Q, et al.2023.. Environmental and trilobite diversity changes during the middle-late Cambrian SPICE event..Geol. Soc. Am. Bull.https://doi.org/10.1130/B36421.1
      [Google Scholar]
    147. ZhaoZ,PangX,ZouC,DicksonAJ,BasuA, et al.2023.. Dynamic oceanic redox conditions across the late Cambrian SPICE event constrained by molybdenum and uranium isotopes..Earth Planet. Sci. Lett.604::118013
      [Crossref][Google Scholar]
    148. ZhuravlevAY,MitchellEG,BowyerF,WoodR,PennyA.2022.. Increases in reef size, habitat and metacommunity complexity associated with Cambrian radiation oxygenation pulses..Nat. Commun.13:(1):7523
      [Crossref][Google Scholar]
    149. ZhuravlevAY,WoodRA.1996.. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event..Geology24:(4):31114
      [Crossref][Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special


    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    Subscribe to Open. The current volume of the Annual Review of Earth and Planetary Sciences published Open Access

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-earth-031621-070316
    10.1146/annurev-earth-031621-070316
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp