Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content
  1. Home
  2. A-Z Publications
  3. Annual Review of Chemical and Biomolecular Engineering
  4. Volume 6, 2015
  5. Article

Abstract

Availability of safe drinking water, a vital natural resource, is still a distant dream to many around the world, especially in developing countries. Increasing human activity and industrialization have led to a wide range of physical, chemical, and biological pollutants entering water bodies and affecting human lives. Efforts to develop efficient, economical, and technologically sound methods to produce clean water for developing countries have increased worldwide. We focus on solar disinfection, filtration, hybrid filtration methods, treatment of harvested rainwater, herbal water disinfection, and arsenic removal technologies. Simple, yet innovative water treatment devices ranging from use of plant xylem as filters, terafilters, and hand pumps to tippy taps designed indigenously are methods mentioned here. By describing the technical aspects of major water disinfection methods relevant for developing countries on medium to small scales and emphasizing their merits, demerits, economics, and scalability, we highlight the current scenario and pave the way for further research and development and scaling up of these processes.

This review focuses on clean drinking water, especially for rural populations in developing countries. It describes various water disinfection techniques that are not only economically viable and energy efficient but also employ simple methodologies that are effective in reducing the physical, chemical, and biological pollutants found in drinking water to acceptable limits.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-chembioeng-061114-123432
    2015-07-24
    2025-03-28
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/chembioeng/6/1/annurev-chembioeng-061114-123432.html?itemId=/content/journals/10.1146/annurev-chembioeng-061114-123432&mimeType=html&fmt=ahah

    Literature Cited

    1. 1. World Health Organ2014.Health Through Safe Drinking Water and Basic Sanitation Geneva, Switz: World Health Organhttp://www.who.int/water_sanitation_health/mdg1/en/[Google Scholar]
    2. 2. Joint Monit. Progr2014.Progress on Drinking-Water and Sanitation 2014 Update. Geneva, Switz: Water Sanit. Hyg. Healthhttp://www.wssinfo.org/fileadmin/user_upload/resources/JMP-report2014Table_Final.pdf[Google Scholar]
    3. 3. RivaMA,LafranconiA,D'OrsoMI,CesanaG.2012. Lead poisoning: historical aspects of a paradigmatic occupational and environmental disease.Saf. Health Work3:111–16[Google Scholar]
    4. 4. Pollutionprobe2004.The Drinking Water Primer Ontario, Can: Pollutionprobehttp://www.pollutionprobe.org/report/dwprimerall.pdf[Google Scholar]
    5. 5. FawellJ,NieuwenhuijsenMJ.2003. Contaminants in drinking water.Br. Med. Bull.68:199–208[Google Scholar]
    6. 6. JyotiKK,PanditAB.2013.Drinking Water Disinfection Techniques New York: CRC Press[Google Scholar]
    7. 7. JeffreyWH,AasP,LyonsMM,CoffinRB,PledgerRJ,MitchellDL.1996. Ambient solar radiation-induced photodamage in marine bacterioplankton.Photochem. Photobiol.64:419–27[Google Scholar]
    8. 8. CiochettiD,MetcalfeR.1984. Pasteurization of naturally contaminated water with solar energy.Appl. Env. Microbiol.47:223–28[Google Scholar]
    9. 9. DownesA,BluntTP.1887. Researches on the effects of light uponBacteria and other organisms.Proc. R. Soc.28:488–501[Google Scholar]
    10. 10. MorleyD.1988. Sunlight and drinking water.Lancet332:686[Google Scholar]
    11. 11. ReedRH.1997. Solar inactivation of fecal bacteria in water: the critical role of oxygen.Lett. Appl. Microbiol.4:276–80[Google Scholar]
    12. 12. Davies-ColleyRG,BellRG,DonnisonAM.1994. Sunlight inactivation of enterococci and fecal coliforms in sewage effluent diluted in seawater.Appl. Env. Microbiol.60:2049–58[Google Scholar]
    13. 13. WegelinM.1999. Solar water disinfection through plastic bottles.Source Bull. 4, April[Google Scholar]
    14. 14. SODIS Found1998.Notas Técnicas No. 1. Cochabamba-Bolivia: SODIS[Google Scholar]
    15. 15. Am. Water Works Assoc1999.Water Quality and Treatment Mexico City: McGraw-Hill, 5th ed..[Google Scholar]
    16. 16. ConroyRM,MeeganME,JoyceT,McGuiganK,BarnesJ.1999. Solar disinfection of water reduces diarrheal disease: an update.Arch. Dis. Child.81:4337–38[Google Scholar]
    17. 17. McGuiganKG,JoyceTM,ConroyRM,GillespieJB,Elmore-MeeganM.1998. Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process.J. Appl. Microbiol.84:61138–48[Google Scholar]
    18. 18. SommerB.1995. Solar Water Disinfection: Impact on vibrio cholerae and fecal coliforms. Workshop Results organized by: CINARA- Universidad del Valle, Cali, Colombia EAWAG/SANDEC, Dübendorf, Switz.
    19. 19. ChilversKF,ReedRH,PerryJD.1999. Phototoxicity of rose bengal in mycological media—implications for laboratory practice.Lett. Appl. Microbiol.28:103–7[Google Scholar]
    20. 20. HarperJC,ChristensenPA,EgertonTA,CurtisTP,GuzlazuardiJ.2001. Effect of catalyst type on the kinetics of the photoelectrochemical disinfection of water inoculated withE. coli. J.Appl. Electrochem.31:623–28[Google Scholar]
    21. 21. OllisE,PelizzettiE,SerponeN.1991. Destruction of water contaminants.Environ. Sci. Technol.25:1523–29[Google Scholar]
    22. 22. DuffyE,Al-TouatiF,KehoeSC,McLoughlinOA,GillL. et al.2004. A novel TiQ2-assisted solar photocatalytic batch-process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in developing countries.Solar Energy77:266–70[Google Scholar]
    23. 23. SalihFM.2003. Enhancement of solar inactivation ofEscherichia coli by titanium dioxide photocatalytic oxidation.J. Appl. Microbiol.92:920–26[Google Scholar]
    24. 24. ChristiansenPA,CurtisTP,EgertonTA,KosaSAM,TinlinJR.2003. Photoelectrocatalytic and photocatalytic disinfection ofE. coli suspensions by titanium dioxide.Appl. Catal. B Environ.41:371–86[Google Scholar]
    25. 25. IbáñezJA,LitterMI,PizarroRA.2003. Photocatalytic bactericidal effect of TiO2 onEnterobacter cloacae: comparative study with other Gram (–) bacteria.J. Photochem. Photobiol. A Chem.157:81–85[Google Scholar]
    26. 26. SunDD,TayJH,TanKM.2003. Photocatalytic degradation ofE. coliform in water.Water Res.37:3452–62[Google Scholar]
    27. 27. LonnenJ,KilvingtonS,KehoeSC,Al-TouatiF,McGuiganKG.2005. Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water.Water Res.39:5877–83[Google Scholar]
    28. 28. WattsRJ,KongS,OrrMP,MillerGC,HenryBE.1995. Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent.Water Res.29:95–100[Google Scholar]
    29. 29. OtakiM,HirataT,OhgakiS.2000. Aqueous microorganisms inactivation by photocatalytic reaction.Water Sci. Technol.42:103–8[Google Scholar]
    30. 30. Martín-DomínguezA,Alarcón-Herrera MaT,Martín-DomínguezIR,González-HerreraA.2005. Efficiency in the disinfection of water for human consumption in rural communities using solar radiation.Solar Energy78:31–40[Google Scholar]
    31. 31. LiuS,LimM,AmalR.2014. TiO2-coated natural zeolite: rapid humic acid adsorption and effective photocatalytic regeneration.Chem. Eng. Sci.105:46–52[Google Scholar]
    32. 32. AminMT,HanMY.2009. Roof-harvested rainwater for potable purposes: application of solar collector disinfection (SOCO-DIS).Water Res.43:5225–35[Google Scholar]
    33. 33. hubpages2013.Drinking Jeera (Cumin)Water for Good Health Benefitshttp://lex123.hubpages.com/hub/Drinking-Jeera-Water-for-Good-Health[Google Scholar]
    34. 34. Remediespoint.com2011.Camphor (Kapoor)http://www.remediespoint.com/herbs/camphor-kapoor.html[Google Scholar]
    35. 35. LeaM.2008. Biological sand filters: low-cost bioremediation technique for production of clean drinking water.Curr. Protoc. Microbiol.11:G:1G.1.1–1G.1.28[Google Scholar]
    36. 36. BielefeldtAR,KowalskiK,SummersRS.2009. Bacterial treatment effectiveness of point-of-use ceramic water filters.Water Res.43:3559–65[Google Scholar]
    37. 37. BielefeldtAR,KowalskiK,SchillingC,SchreierS,KohlerA,SummersRS.2010. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.Water Res.44:1482–88[Google Scholar]
    38. 38. MwabiJK,AdeyemoFE,MahlanguTO,MambaBB,BrouckaertBM. et al.2011. Household water treatment systems: a solution to the production of safe drinking water by the low-income communities of Southern Africa.Phys. Chem. Earth36:1120–28[Google Scholar]
    39. 39. SimonisJJ,BassonAK.2012. Manufacturing a low-cost ceramic water filter and filter system for the elimination of common pathogenic bacteria.Phys. Chem. Earth50–52:269–76[Google Scholar]
    40. 40. HedegaardMJ,AlbrechtsenH.2014. Microbial pesticide removal in rapid sand filters for drinking water treatment—potential and kinetics.Water Res48:71–81[Google Scholar]
    41. 41. SatterfieldZ.2005. Filter backwashing.Tech. Brief.5:31–4[Google Scholar]
    42. 42. VieiraAS,WeeberM,GhisiE.2013. Self-cleaning filtration: a novel concept for rainwater harvesting systems.Resour. Conserv. Recycl.78:67–73[Google Scholar]
    43. 43. DhabadgaonkarSM.1982. Low-cost household water treatment for developing countries.Water and Waste Engineering in Asia: Proceedings of the 8th WEDC Conference47–50 Loughborough, UK: Water Eng. Dev. Cent.[Google Scholar]
    44. 44. VenkobacharC,JainRK.1983. Studies on development and performance of fixed bed disinfector.Water Supply1:4193–204[Google Scholar]
    45. 45. GrabowWOK,ClayCG,DhaliwalW,VreyMA,MýllerEE.1998–1999. Elimination of viruses, phages, bacteria andCrypfosporidium by a new generationAquaguard point-of-use water treatment unit.Zentralblatt Hyg. Umweltmed.202:399–410[Google Scholar]
    46. 46. MolloySL,IvesR,HoytA,TaylorR,RoseJB.2008. The use of copper and silver in carbon point-of-use filters for the suppression ofLegionella throughput in domestic water systems.J. Appl. Microbiol.104:998–1007[Google Scholar]
    47. 47. OhHK,TakizawaS,OhgakiS,KatayamaH,OgumaK,YuMJ.2007. Removal of organics and viruses using hybrid ceramic MF system without draining PAC.Desalination202:191–98[Google Scholar]
    48. 48. VarkeyAJ,DlaminiMD.2012. Point-of-use water purification using clay pot water filters and copper mesh.Water SA38:721[Google Scholar]
    49. 49. ZhangH,Oyanedel-CraverV.2013. Comparison of the bacterial removal performance of silver nanoparticles and a polymer based quaternary amine functionalized silsesquioxane coated point-of-use ceramic water filters.J. Hazard. Mater.260:272–77[Google Scholar]
    50. 50. van der LaanH,van HalemD,SmeetsPWMH,SoppeAIA,KroesbergenJ. et al.2014. Bacteria and virus removal effectiveness of ceramic pot filters with different silver applications in a long term experiment.Water Res.51:47–54[Google Scholar]
    51. 51. FanX,TaoY,WangL,ZhangX,LeiY. et al.2014. Performance of an integrated process combining ozonation with ceramic membrane ultra-filtration for advanced treatment of drinking water.Desalination335:47–54[Google Scholar]
    52. 52. AriffinSN,LimHN,JumeriFA,ZobirM,AbdullahAH. et al.2014. Modification of polypropylene filter with metaloxide and reduced graphene oxide for water treatment.Ceram. Int.40:6927–36[Google Scholar]
    53. 53. ZhangH,ZhongZ,LiW,XingW,JinW.2014. River water purificationvia a coagulation-porous ceramic membrane hybrid process.Chin. J. Chem. Eng.22:1113–19[Google Scholar]
    54. 54. KhuntiaS,SahuAK,BeuriaPC.2002. Terafil water filter for sustainable drinking water programme.Dev. by Des. (dyd02),2nd, Bangalore 2002. ThinkCycle.org[Google Scholar]
    55. 55. TiwariR,HerstattC.2012. Assessing India's lead market potential for cost-effective innovations.J. Indian Bus. Res.4:297–115[Google Scholar]
    56. 56. JahnSAA.1988. Using Moringa seeds as coagulants in developing countries.J. Am. Water Works Assoc.80:643–50[Google Scholar]
    57. 57. PritchardM,MkandawireT,EdmondsonA,O'NeillJG,KululangaG.2009. Potential of using plant extracts for purification of shallow well water in Malawi.Phys. Chem. Earth34:799–805[Google Scholar]
    58. 58. BarthVH,HabsM,KluteR,MüllerS,TauscherB.1982. Trinkwasseraufbereitung mit Samen vonMoringa oleifera Lam.Chemiker-Zeitung106:75–78[Google Scholar]
    59. 59. JahnSAA.1989.Moringa oleifera for food and water purification—selection of clones and growing of annual short stem.Entwickl. Ländl. Raum23:422–25[Google Scholar]
    60. 60. FuglieLJ.2001.The Miracle Tree: The Multiple Attributes of Moringa. New York: Tech. Cent. Agric. Rural Coop., Wageningen/Church World Serv172[Google Scholar]
    61. 61. OlsenA.1987. Low technology water purification by bentonite clay andMoringa oleifera seed flocculation as performed in Sudanese villages: effects onSchistosoma mansoni cercariae.Water Res.21:5517–22[Google Scholar]
    62. 62. MadsenM,SchlundtJ,OmerEFE.1987. Effect of water coagulation by seeds ofMoringa oleifera on bacterial concentrations.J. Trop. Med. Hygiene90:101–9[Google Scholar]
    63. 63. BoatengPD.2001.Comparative studies of the use of alum and Moringa oleiferain surface water treatment MSc Thesis, Dep. Civil Eng., Kwame Nkrumah Univ. Sci. Technol., Kumasi, Ghana[Google Scholar]
    64. 64. SenguptaME,KeraitaB,OlsenA,BoatengOK,ThamsborgSM. et al.2012. Use ofMoringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water.Water Res.46:3646–56[Google Scholar]
    65. 65. JahnSAA.1986.Proper Use of African Natural Coagulants for Rural Water Supplies: Research in the Sudan and a Guide for New Projects Eschborn, Ger: Dtsch. Ges. Tech. Zs.[Google Scholar]
    66. 66. SutherlandJP,FolkardGK,GrantWD.1990. Natural coagulants for appropriate water treatment: a novel approach.Waterlines8:430–32[Google Scholar]
    67. 67. PritchardM,CravenT,MkandawireT,EdmondsonAS,O'NeillJG.2010. A comparison betweenMoringa oleifera and chemical coagulants in the purification of drinking water—an alternative sustainable solution for developing countries.Phys. Chem. Earth35:798–805[Google Scholar]
    68. 68. NdabigengesereA,NarasiahKS.1998. Quality of water treated by coagulation usingMoringa oleifera seeds.Water Res.32:3781–91[Google Scholar]
    69. Adnan Al-AniziA,HellyerMT,ZhangD.69. 2014. Toxicity assessment and modelling ofMoringa oleifera seeds in water purification by whole cell bioreporter.Water Res.56:77–87[Google Scholar]
    70. 70. BhattacharjeeT,GiddeMR,BipinrajNK.2013. Disinfection of drinking water in rural area using natural herbs.Int. J. Eng. Res. Dev.5:107–10[Google Scholar]
    71. 71. Dep. Sci. Technol., Water Technol. Initiat2014.Purification of Drinking Water by Combined Treatment with Natural Coagulants and Solar Disinfection Mumbai: Dep. Sci. Technol.[Google Scholar]
    72. 72. SundaramurthiP,DhandapaniS,PonnusamyS,SubbaiyanM.2012. Effect of Tulsi (Ocimum sanctum) as a disinfectant for water treatment.Hitek J. Biol. Sci. Bioeng.1:11–7[Google Scholar]
    73. 73. SadulRR,GiddeMR,BipinrajNK.2009.Herbal disinfection of water Presented at Int. Conf. Emerg. Trends Waste Manag. Techn., MIT, Pune, India[Google Scholar]
    74. 74. SomaniSB,IngoleNW.2012. Formulation of kinetic model to predict disinfection of water by using natural herbs.Int. J. Environ. Sci.2:31344–54[Google Scholar]
    75. 75. IbetoCN,OparakuNF,OkparaCG.2012. Comparative study of renewable energy based water disinfection methods for developing countries.J. Environ. Sci. Technol.3:4226–31[Google Scholar]
    76. 76. AhiablameL,EngelB,VenortT.2012. Improving water supply systems for domestic uses in urban Togo: the case of a suburb in Lomé.Water4:123–34[Google Scholar]
    77. 77. CoelhoB,Andrade-CamposA.2014. Efficiency achievement in water supply systems—a review.Renew. Sustain. Energy Rev.30:59–84[Google Scholar]
    78. 78. GebauerH,SaulCJ.2014. Business model innovation in the water sector in developing countries.Sci. Total Environ.488–89:512–20[Google Scholar]
    79. 79. GadgilA.2014.Innovating technologies for the poorest two billion Presented at ICT, Jan. 25, Mumbai, India[Google Scholar]
    80. 80. BetancourtWQ,RoseJB.2004. Drinking water treatment processes for removal ofCryptosporidium andGiardia.Vet. Parasitol126:219–34[Google Scholar]
    81. 81. SazakliE,AlexopoulosA,LeotsinidisM.2007. Rainwater harvesting, quality assessment and utilization in Kefalonia Island, Greece.Water Res41:2039–47[Google Scholar]
    82. 82. LeeJY,BakG,HanM.2012. Quality of roof-harvested rainwater—comparison of different roofing materials.Environ. Pollut.162:422–29[Google Scholar]
    83. 83. MendezCB,KlenzendorfJB,AfsharBR,SimmonsMT,BarrettME. et al.2011. The effect of roofing material on the quality of harvested rainwater.Water Res.45:2049–59[Google Scholar]
    84. 84. NaddeoV,ScannapiecoD,BelgiornoV.2013. Enhanced drinking water supply through harvested rainwater treatment.J. Hydrol.498:287–91[Google Scholar]
    85. 85. NawazM,HanMY,KimT,ManzoorU,AminMT.2012. Silver disinfection ofPseudomonas aeruginosa andE. coli in rooftop harvested rainwater for potable purposes.Sci. Total Environ.431:20–25[Google Scholar]
    86. 86. AminMT,HanMY.2011. Improvement of solar based rainwater disinfection by using lemon and vinegar as catalysts.Desalination276:1–3416–24[Google Scholar]
    87. 87. BoutilierMSH,LeeJ,ChambersV,VenkateshV,KarnikR.2014. Water filtration using plant xylem.PLOS ONE9:2e89934[Google Scholar]
    88. 88. World Health Organ2008.Drinking Water Guidelines and Standards Geneva, Switz: World Health Organ.[Google Scholar]
    89. 89. D'souzaS,BootwalaY,PatilV.2014.Wipro Earthian Internship Project Report 96 Bangalore, India: Biome Environ. Solut. Pvt. Ltd.[Google Scholar]
    90. 90. JyotiKK,PanditAB.2001. Water disinfection by acoustic and hydrodynamic cavitation.Biochem. Eng. J.7:201–12[Google Scholar]
    91. 91. MoholkarVS,PanditAB.1997. Bubble behavior in hydrodynamic cavitation: effect of turbulence.AIChE J.43:1641–48[Google Scholar]
    92. 92. SaveSS,PanditAB,JoshiJB.1994. Microbial cell disruption: role of cavitation.Chem. Eng. J. Biochem. Eng. J.55:B67–72[Google Scholar]
    93. 93. U.N2012.World Economic Situation and Prospects Geneva, Switz: U.Nhttp://www.un.org/en/development/desa/policy/wesp/wesp_archive/2012wesp.pdf[Google Scholar]
    94. 94. AcraA,RaffoulZ,KarahagopianY.1984.Solar Disinfection of Drinking Water and Oral Rehydration Solutions: Guidelines for Household Application in Developing Countries New York: UNICEF[Google Scholar]
    95. 95. AcraA,JurdiM,Mu'allemH,KarahagopianY,RaffoulZ.1990.Water Disinfection by Solar Radiation Ottawa: Int. Dev. Res. Cent.[Google Scholar]
    96. 96. KehoeSC.2001.Batch process solar disinfection of drinking water: process and pathogenicity PhD Thesis, R. Coll. Surg., Dublin, Irel.[Google Scholar]
    97. 97. LonnenJ,KilvingtonS,KehoeSC,Al-TouatiF,McGuiganKG.2005. Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water.Water Res.39:877–83[Google Scholar]
    98. 98. Méndez-HermidaF,Ares-MazásE,McGuiganKG,BoyleM,SichelC,Fernández-IbáñezP.2007. Disinfection of drinking water contaminated withCryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2.J. Photochem. Photobiol. B Biol.88:105–11[Google Scholar]
    99. 99. Gómez-CousoH,Fontán-SaínzM,SichelC,Fernández-IbáñezP,Ares-MazásE.2009. Efficacy of the solar water disinfection method in turbid waters experimentally contaminated withCryptosporidium parvum oocysts under real field conditions.Trop. Med. Int. Health14:6620–27[Google Scholar]
    100. 100. HeaselgraveW,KilvingtonS.2011. The efficacy of simulated solar disinfection (SODIS) againstAscaris,Giardia,Acanthamoeba,Naegleria,Entamoeba andCryptosporidium.Acta Trop.119:2–3138–43[Google Scholar]
    101. 101. HindiyehM,AliA.2010. Investigating the efficiency of solar energy system for drinking water disinfection.Desalination259:208–15[Google Scholar]
    102. 102. NalwangaR,QuiltyB,MuyanjaC,Fernandez-IbañezP,McGuiganKG.2014. Evaluation of solar disinfection ofE. coli under Sub-Saharan field conditions using a 25L borosilicate glass batch reactor fitted with a compound parabolic collector.Solar Energy100:195–202[Google Scholar]
    103. 103. GohCW.2005.Effect of room temperature on coagulation performance of Moringa oleifera seeds. BSc Diss., Fac. Eng., Univ. Putra Malaysia
    104. 104. DoerrB.2005.Moringa water treatment Echo Tech. Note, North Fort Myers, FL.http://www.echotech.org/mambo/images/DocMan/MorWaterTreat.pdf[Google Scholar]
    105. 105. www.google.co.inTata swach imageshttps://www.google.co.in/search?q=tata+swach+images&biw=1280&bih=641&tbm=isch&tbo=u&source=univ&sa=X&ei=1cIWVLLoFMKUuASgm4CQBg&ved=0CCkQsAQ[Google Scholar]
    106. 106. MohanD,PittmanCUJr.2007. Arsenic removal from water/wastewater using adsorbents—a critical review.J. Hazard. Mater.142:1–21–53[Google Scholar]
    107. 107. INCID2009. Groundwater arsenic contamination in India: vulnerability and scope for remedy.Proc. 5th Asian Reg. Conf. INCID, Dec. 9–11. New Dehli: INCID[Google Scholar]
    /content/journals/10.1146/annurev-chembioeng-061114-123432
    Loading
    Clean Water for Developing Countries
    Annual Review of Chemical and Biomolecular Engineering6, 217 (2015);https://doi.org/10.1146/annurev-chembioeng-061114-123432
    /content/journals/10.1146/annurev-chembioeng-061114-123432
    /content/journals/10.1146/annurev-chembioeng-061114-123432
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/chembioeng
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-chembioeng-061114-123432
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. 1. World Health Organ2014.Health Through Safe Drinking Water and Basic Sanitation Geneva, Switz: World Health Organhttp://www.who.int/water_sanitation_health/mdg1/en/[Google Scholar]
    2. 2. Joint Monit. Progr2014.Progress on Drinking-Water and Sanitation 2014 Update. Geneva, Switz: Water Sanit. Hyg. Healthhttp://www.wssinfo.org/fileadmin/user_upload/resources/JMP-report2014Table_Final.pdf[Google Scholar]
    3. 3. RivaMA,LafranconiA,D'OrsoMI,CesanaG.2012. Lead poisoning: historical aspects of a paradigmatic occupational and environmental disease.Saf. Health Work3:111–16[Google Scholar]
    4. 4. Pollutionprobe2004.The Drinking Water Primer Ontario, Can: Pollutionprobehttp://www.pollutionprobe.org/report/dwprimerall.pdf[Google Scholar]
    5. 5. FawellJ,NieuwenhuijsenMJ.2003. Contaminants in drinking water.Br. Med. Bull.68:199–208[Google Scholar]
    6. 6. JyotiKK,PanditAB.2013.Drinking Water Disinfection Techniques New York: CRC Press[Google Scholar]
    7. 7. JeffreyWH,AasP,LyonsMM,CoffinRB,PledgerRJ,MitchellDL.1996. Ambient solar radiation-induced photodamage in marine bacterioplankton.Photochem. Photobiol.64:419–27[Google Scholar]
    8. 8. CiochettiD,MetcalfeR.1984. Pasteurization of naturally contaminated water with solar energy.Appl. Env. Microbiol.47:223–28[Google Scholar]
    9. 9. DownesA,BluntTP.1887. Researches on the effects of light uponBacteria and other organisms.Proc. R. Soc.28:488–501[Google Scholar]
    10. 10. MorleyD.1988. Sunlight and drinking water.Lancet332:686[Google Scholar]
    11. 11. ReedRH.1997. Solar inactivation of fecal bacteria in water: the critical role of oxygen.Lett. Appl. Microbiol.4:276–80[Google Scholar]
    12. 12. Davies-ColleyRG,BellRG,DonnisonAM.1994. Sunlight inactivation of enterococci and fecal coliforms in sewage effluent diluted in seawater.Appl. Env. Microbiol.60:2049–58[Google Scholar]
    13. 13. WegelinM.1999. Solar water disinfection through plastic bottles.Source Bull. 4, April[Google Scholar]
    14. 14. SODIS Found1998.Notas Técnicas No. 1. Cochabamba-Bolivia: SODIS[Google Scholar]
    15. 15. Am. Water Works Assoc1999.Water Quality and Treatment Mexico City: McGraw-Hill, 5th ed..[Google Scholar]
    16. 16. ConroyRM,MeeganME,JoyceT,McGuiganK,BarnesJ.1999. Solar disinfection of water reduces diarrheal disease: an update.Arch. Dis. Child.81:4337–38[Google Scholar]
    17. 17. McGuiganKG,JoyceTM,ConroyRM,GillespieJB,Elmore-MeeganM.1998. Solar disinfection of drinking water contained in transparent plastic bottles: characterizing the bacterial inactivation process.J. Appl. Microbiol.84:61138–48[Google Scholar]
    18. 18. SommerB.1995. Solar Water Disinfection: Impact on vibrio cholerae and fecal coliforms. Workshop Results organized by: CINARA- Universidad del Valle, Cali, Colombia EAWAG/SANDEC, Dübendorf, Switz.
    19. 19. ChilversKF,ReedRH,PerryJD.1999. Phototoxicity of rose bengal in mycological media—implications for laboratory practice.Lett. Appl. Microbiol.28:103–7[Google Scholar]
    20. 20. HarperJC,ChristensenPA,EgertonTA,CurtisTP,GuzlazuardiJ.2001. Effect of catalyst type on the kinetics of the photoelectrochemical disinfection of water inoculated withE. coli. J.Appl. Electrochem.31:623–28[Google Scholar]
    21. 21. OllisE,PelizzettiE,SerponeN.1991. Destruction of water contaminants.Environ. Sci. Technol.25:1523–29[Google Scholar]
    22. 22. DuffyE,Al-TouatiF,KehoeSC,McLoughlinOA,GillL. et al.2004. A novel TiQ2-assisted solar photocatalytic batch-process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in developing countries.Solar Energy77:266–70[Google Scholar]
    23. 23. SalihFM.2003. Enhancement of solar inactivation ofEscherichia coli by titanium dioxide photocatalytic oxidation.J. Appl. Microbiol.92:920–26[Google Scholar]
    24. 24. ChristiansenPA,CurtisTP,EgertonTA,KosaSAM,TinlinJR.2003. Photoelectrocatalytic and photocatalytic disinfection ofE. coli suspensions by titanium dioxide.Appl. Catal. B Environ.41:371–86[Google Scholar]
    25. 25. IbáñezJA,LitterMI,PizarroRA.2003. Photocatalytic bactericidal effect of TiO2 onEnterobacter cloacae: comparative study with other Gram (–) bacteria.J. Photochem. Photobiol. A Chem.157:81–85[Google Scholar]
    26. 26. SunDD,TayJH,TanKM.2003. Photocatalytic degradation ofE. coliform in water.Water Res.37:3452–62[Google Scholar]
    27. 27. LonnenJ,KilvingtonS,KehoeSC,Al-TouatiF,McGuiganKG.2005. Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water.Water Res.39:5877–83[Google Scholar]
    28. 28. WattsRJ,KongS,OrrMP,MillerGC,HenryBE.1995. Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent.Water Res.29:95–100[Google Scholar]
    29. 29. OtakiM,HirataT,OhgakiS.2000. Aqueous microorganisms inactivation by photocatalytic reaction.Water Sci. Technol.42:103–8[Google Scholar]
    30. 30. Martín-DomínguezA,Alarcón-Herrera MaT,Martín-DomínguezIR,González-HerreraA.2005. Efficiency in the disinfection of water for human consumption in rural communities using solar radiation.Solar Energy78:31–40[Google Scholar]
    31. 31. LiuS,LimM,AmalR.2014. TiO2-coated natural zeolite: rapid humic acid adsorption and effective photocatalytic regeneration.Chem. Eng. Sci.105:46–52[Google Scholar]
    32. 32. AminMT,HanMY.2009. Roof-harvested rainwater for potable purposes: application of solar collector disinfection (SOCO-DIS).Water Res.43:5225–35[Google Scholar]
    33. 33. hubpages2013.Drinking Jeera (Cumin)Water for Good Health Benefitshttp://lex123.hubpages.com/hub/Drinking-Jeera-Water-for-Good-Health[Google Scholar]
    34. 34. Remediespoint.com2011.Camphor (Kapoor)http://www.remediespoint.com/herbs/camphor-kapoor.html[Google Scholar]
    35. 35. LeaM.2008. Biological sand filters: low-cost bioremediation technique for production of clean drinking water.Curr. Protoc. Microbiol.11:G:1G.1.1–1G.1.28[Google Scholar]
    36. 36. BielefeldtAR,KowalskiK,SummersRS.2009. Bacterial treatment effectiveness of point-of-use ceramic water filters.Water Res.43:3559–65[Google Scholar]
    37. 37. BielefeldtAR,KowalskiK,SchillingC,SchreierS,KohlerA,SummersRS.2010. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.Water Res.44:1482–88[Google Scholar]
    38. 38. MwabiJK,AdeyemoFE,MahlanguTO,MambaBB,BrouckaertBM. et al.2011. Household water treatment systems: a solution to the production of safe drinking water by the low-income communities of Southern Africa.Phys. Chem. Earth36:1120–28[Google Scholar]
    39. 39. SimonisJJ,BassonAK.2012. Manufacturing a low-cost ceramic water filter and filter system for the elimination of common pathogenic bacteria.Phys. Chem. Earth50–52:269–76[Google Scholar]
    40. 40. HedegaardMJ,AlbrechtsenH.2014. Microbial pesticide removal in rapid sand filters for drinking water treatment—potential and kinetics.Water Res48:71–81[Google Scholar]
    41. 41. SatterfieldZ.2005. Filter backwashing.Tech. Brief.5:31–4[Google Scholar]
    42. 42. VieiraAS,WeeberM,GhisiE.2013. Self-cleaning filtration: a novel concept for rainwater harvesting systems.Resour. Conserv. Recycl.78:67–73[Google Scholar]
    43. 43. DhabadgaonkarSM.1982. Low-cost household water treatment for developing countries.Water and Waste Engineering in Asia: Proceedings of the 8th WEDC Conference47–50 Loughborough, UK: Water Eng. Dev. Cent.[Google Scholar]
    44. 44. VenkobacharC,JainRK.1983. Studies on development and performance of fixed bed disinfector.Water Supply1:4193–204[Google Scholar]
    45. 45. GrabowWOK,ClayCG,DhaliwalW,VreyMA,MýllerEE.1998–1999. Elimination of viruses, phages, bacteria andCrypfosporidium by a new generationAquaguard point-of-use water treatment unit.Zentralblatt Hyg. Umweltmed.202:399–410[Google Scholar]
    46. 46. MolloySL,IvesR,HoytA,TaylorR,RoseJB.2008. The use of copper and silver in carbon point-of-use filters for the suppression ofLegionella throughput in domestic water systems.J. Appl. Microbiol.104:998–1007[Google Scholar]
    47. 47. OhHK,TakizawaS,OhgakiS,KatayamaH,OgumaK,YuMJ.2007. Removal of organics and viruses using hybrid ceramic MF system without draining PAC.Desalination202:191–98[Google Scholar]
    48. 48. VarkeyAJ,DlaminiMD.2012. Point-of-use water purification using clay pot water filters and copper mesh.Water SA38:721[Google Scholar]
    49. 49. ZhangH,Oyanedel-CraverV.2013. Comparison of the bacterial removal performance of silver nanoparticles and a polymer based quaternary amine functionalized silsesquioxane coated point-of-use ceramic water filters.J. Hazard. Mater.260:272–77[Google Scholar]
    50. 50. van der LaanH,van HalemD,SmeetsPWMH,SoppeAIA,KroesbergenJ. et al.2014. Bacteria and virus removal effectiveness of ceramic pot filters with different silver applications in a long term experiment.Water Res.51:47–54[Google Scholar]
    51. 51. FanX,TaoY,WangL,ZhangX,LeiY. et al.2014. Performance of an integrated process combining ozonation with ceramic membrane ultra-filtration for advanced treatment of drinking water.Desalination335:47–54[Google Scholar]
    52. 52. AriffinSN,LimHN,JumeriFA,ZobirM,AbdullahAH. et al.2014. Modification of polypropylene filter with metaloxide and reduced graphene oxide for water treatment.Ceram. Int.40:6927–36[Google Scholar]
    53. 53. ZhangH,ZhongZ,LiW,XingW,JinW.2014. River water purificationvia a coagulation-porous ceramic membrane hybrid process.Chin. J. Chem. Eng.22:1113–19[Google Scholar]
    54. 54. KhuntiaS,SahuAK,BeuriaPC.2002. Terafil water filter for sustainable drinking water programme.Dev. by Des. (dyd02),2nd, Bangalore 2002. ThinkCycle.org[Google Scholar]
    55. 55. TiwariR,HerstattC.2012. Assessing India's lead market potential for cost-effective innovations.J. Indian Bus. Res.4:297–115[Google Scholar]
    56. 56. JahnSAA.1988. Using Moringa seeds as coagulants in developing countries.J. Am. Water Works Assoc.80:643–50[Google Scholar]
    57. 57. PritchardM,MkandawireT,EdmondsonA,O'NeillJG,KululangaG.2009. Potential of using plant extracts for purification of shallow well water in Malawi.Phys. Chem. Earth34:799–805[Google Scholar]
    58. 58. BarthVH,HabsM,KluteR,MüllerS,TauscherB.1982. Trinkwasseraufbereitung mit Samen vonMoringa oleifera Lam.Chemiker-Zeitung106:75–78[Google Scholar]
    59. 59. JahnSAA.1989.Moringa oleifera for food and water purification—selection of clones and growing of annual short stem.Entwickl. Ländl. Raum23:422–25[Google Scholar]
    60. 60. FuglieLJ.2001.The Miracle Tree: The Multiple Attributes of Moringa. New York: Tech. Cent. Agric. Rural Coop., Wageningen/Church World Serv172[Google Scholar]
    61. 61. OlsenA.1987. Low technology water purification by bentonite clay andMoringa oleifera seed flocculation as performed in Sudanese villages: effects onSchistosoma mansoni cercariae.Water Res.21:5517–22[Google Scholar]
    62. 62. MadsenM,SchlundtJ,OmerEFE.1987. Effect of water coagulation by seeds ofMoringa oleifera on bacterial concentrations.J. Trop. Med. Hygiene90:101–9[Google Scholar]
    63. 63. BoatengPD.2001.Comparative studies of the use of alum and Moringa oleiferain surface water treatment MSc Thesis, Dep. Civil Eng., Kwame Nkrumah Univ. Sci. Technol., Kumasi, Ghana[Google Scholar]
    64. 64. SenguptaME,KeraitaB,OlsenA,BoatengOK,ThamsborgSM. et al.2012. Use ofMoringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water.Water Res.46:3646–56[Google Scholar]
    65. 65. JahnSAA.1986.Proper Use of African Natural Coagulants for Rural Water Supplies: Research in the Sudan and a Guide for New Projects Eschborn, Ger: Dtsch. Ges. Tech. Zs.[Google Scholar]
    66. 66. SutherlandJP,FolkardGK,GrantWD.1990. Natural coagulants for appropriate water treatment: a novel approach.Waterlines8:430–32[Google Scholar]
    67. 67. PritchardM,CravenT,MkandawireT,EdmondsonAS,O'NeillJG.2010. A comparison betweenMoringa oleifera and chemical coagulants in the purification of drinking water—an alternative sustainable solution for developing countries.Phys. Chem. Earth35:798–805[Google Scholar]
    68. 68. NdabigengesereA,NarasiahKS.1998. Quality of water treated by coagulation usingMoringa oleifera seeds.Water Res.32:3781–91[Google Scholar]
    69. Adnan Al-AniziA,HellyerMT,ZhangD.69. 2014. Toxicity assessment and modelling ofMoringa oleifera seeds in water purification by whole cell bioreporter.Water Res.56:77–87[Google Scholar]
    70. 70. BhattacharjeeT,GiddeMR,BipinrajNK.2013. Disinfection of drinking water in rural area using natural herbs.Int. J. Eng. Res. Dev.5:107–10[Google Scholar]
    71. 71. Dep. Sci. Technol., Water Technol. Initiat2014.Purification of Drinking Water by Combined Treatment with Natural Coagulants and Solar Disinfection Mumbai: Dep. Sci. Technol.[Google Scholar]
    72. 72. SundaramurthiP,DhandapaniS,PonnusamyS,SubbaiyanM.2012. Effect of Tulsi (Ocimum sanctum) as a disinfectant for water treatment.Hitek J. Biol. Sci. Bioeng.1:11–7[Google Scholar]
    73. 73. SadulRR,GiddeMR,BipinrajNK.2009.Herbal disinfection of water Presented at Int. Conf. Emerg. Trends Waste Manag. Techn., MIT, Pune, India[Google Scholar]
    74. 74. SomaniSB,IngoleNW.2012. Formulation of kinetic model to predict disinfection of water by using natural herbs.Int. J. Environ. Sci.2:31344–54[Google Scholar]
    75. 75. IbetoCN,OparakuNF,OkparaCG.2012. Comparative study of renewable energy based water disinfection methods for developing countries.J. Environ. Sci. Technol.3:4226–31[Google Scholar]
    76. 76. AhiablameL,EngelB,VenortT.2012. Improving water supply systems for domestic uses in urban Togo: the case of a suburb in Lomé.Water4:123–34[Google Scholar]
    77. 77. CoelhoB,Andrade-CamposA.2014. Efficiency achievement in water supply systems—a review.Renew. Sustain. Energy Rev.30:59–84[Google Scholar]
    78. 78. GebauerH,SaulCJ.2014. Business model innovation in the water sector in developing countries.Sci. Total Environ.488–89:512–20[Google Scholar]
    79. 79. GadgilA.2014.Innovating technologies for the poorest two billion Presented at ICT, Jan. 25, Mumbai, India[Google Scholar]
    80. 80. BetancourtWQ,RoseJB.2004. Drinking water treatment processes for removal ofCryptosporidium andGiardia.Vet. Parasitol126:219–34[Google Scholar]
    81. 81. SazakliE,AlexopoulosA,LeotsinidisM.2007. Rainwater harvesting, quality assessment and utilization in Kefalonia Island, Greece.Water Res41:2039–47[Google Scholar]
    82. 82. LeeJY,BakG,HanM.2012. Quality of roof-harvested rainwater—comparison of different roofing materials.Environ. Pollut.162:422–29[Google Scholar]
    83. 83. MendezCB,KlenzendorfJB,AfsharBR,SimmonsMT,BarrettME. et al.2011. The effect of roofing material on the quality of harvested rainwater.Water Res.45:2049–59[Google Scholar]
    84. 84. NaddeoV,ScannapiecoD,BelgiornoV.2013. Enhanced drinking water supply through harvested rainwater treatment.J. Hydrol.498:287–91[Google Scholar]
    85. 85. NawazM,HanMY,KimT,ManzoorU,AminMT.2012. Silver disinfection ofPseudomonas aeruginosa andE. coli in rooftop harvested rainwater for potable purposes.Sci. Total Environ.431:20–25[Google Scholar]
    86. 86. AminMT,HanMY.2011. Improvement of solar based rainwater disinfection by using lemon and vinegar as catalysts.Desalination276:1–3416–24[Google Scholar]
    87. 87. BoutilierMSH,LeeJ,ChambersV,VenkateshV,KarnikR.2014. Water filtration using plant xylem.PLOS ONE9:2e89934[Google Scholar]
    88. 88. World Health Organ2008.Drinking Water Guidelines and Standards Geneva, Switz: World Health Organ.[Google Scholar]
    89. 89. D'souzaS,BootwalaY,PatilV.2014.Wipro Earthian Internship Project Report 96 Bangalore, India: Biome Environ. Solut. Pvt. Ltd.[Google Scholar]
    90. 90. JyotiKK,PanditAB.2001. Water disinfection by acoustic and hydrodynamic cavitation.Biochem. Eng. J.7:201–12[Google Scholar]
    91. 91. MoholkarVS,PanditAB.1997. Bubble behavior in hydrodynamic cavitation: effect of turbulence.AIChE J.43:1641–48[Google Scholar]
    92. 92. SaveSS,PanditAB,JoshiJB.1994. Microbial cell disruption: role of cavitation.Chem. Eng. J. Biochem. Eng. J.55:B67–72[Google Scholar]
    93. 93. U.N2012.World Economic Situation and Prospects Geneva, Switz: U.Nhttp://www.un.org/en/development/desa/policy/wesp/wesp_archive/2012wesp.pdf[Google Scholar]
    94. 94. AcraA,RaffoulZ,KarahagopianY.1984.Solar Disinfection of Drinking Water and Oral Rehydration Solutions: Guidelines for Household Application in Developing Countries New York: UNICEF[Google Scholar]
    95. 95. AcraA,JurdiM,Mu'allemH,KarahagopianY,RaffoulZ.1990.Water Disinfection by Solar Radiation Ottawa: Int. Dev. Res. Cent.[Google Scholar]
    96. 96. KehoeSC.2001.Batch process solar disinfection of drinking water: process and pathogenicity PhD Thesis, R. Coll. Surg., Dublin, Irel.[Google Scholar]
    97. 97. LonnenJ,KilvingtonS,KehoeSC,Al-TouatiF,McGuiganKG.2005. Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water.Water Res.39:877–83[Google Scholar]
    98. 98. Méndez-HermidaF,Ares-MazásE,McGuiganKG,BoyleM,SichelC,Fernández-IbáñezP.2007. Disinfection of drinking water contaminated withCryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2.J. Photochem. Photobiol. B Biol.88:105–11[Google Scholar]
    99. 99. Gómez-CousoH,Fontán-SaínzM,SichelC,Fernández-IbáñezP,Ares-MazásE.2009. Efficacy of the solar water disinfection method in turbid waters experimentally contaminated withCryptosporidium parvum oocysts under real field conditions.Trop. Med. Int. Health14:6620–27[Google Scholar]
    100. 100. HeaselgraveW,KilvingtonS.2011. The efficacy of simulated solar disinfection (SODIS) againstAscaris,Giardia,Acanthamoeba,Naegleria,Entamoeba andCryptosporidium.Acta Trop.119:2–3138–43[Google Scholar]
    101. 101. HindiyehM,AliA.2010. Investigating the efficiency of solar energy system for drinking water disinfection.Desalination259:208–15[Google Scholar]
    102. 102. NalwangaR,QuiltyB,MuyanjaC,Fernandez-IbañezP,McGuiganKG.2014. Evaluation of solar disinfection ofE. coli under Sub-Saharan field conditions using a 25L borosilicate glass batch reactor fitted with a compound parabolic collector.Solar Energy100:195–202[Google Scholar]
    103. 103. GohCW.2005.Effect of room temperature on coagulation performance of Moringa oleifera seeds. BSc Diss., Fac. Eng., Univ. Putra Malaysia
    104. 104. DoerrB.2005.Moringa water treatment Echo Tech. Note, North Fort Myers, FL.http://www.echotech.org/mambo/images/DocMan/MorWaterTreat.pdf[Google Scholar]
    105. 105. www.google.co.inTata swach imageshttps://www.google.co.in/search?q=tata+swach+images&biw=1280&bih=641&tbm=isch&tbo=u&source=univ&sa=X&ei=1cIWVLLoFMKUuASgm4CQBg&ved=0CCkQsAQ[Google Scholar]
    106. 106. MohanD,PittmanCUJr.2007. Arsenic removal from water/wastewater using adsorbents—a critical review.J. Hazard. Mater.142:1–21–53[Google Scholar]
    107. 107. INCID2009. Groundwater arsenic contamination in India: vulnerability and scope for remedy.Proc. 5th Asian Reg. Conf. INCID, Dec. 9–11. New Dehli: INCID[Google Scholar]

    Read the latest from
    Knowable Magazine

    knowable magazine from Annual Reviews

    Climate Resource Center, Article Collection from Annual Reviews


    Political Science Perspectives on Climate Change, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-chembioeng-061114-123432
    10.1146/annurev-chembioeng-061114-123432
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp