Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

Atmospheric Aerosols: Clouds, Chemistry, and Climate

Abstract

Although too small to be seen with the human eye, atmospheric particulate matter has major impacts on the world around us, from our health to global climate. Understanding the sources, properties, and transformations of these particles in the atmosphere is among the major challenges in air quality and climate research today. Significant progress has been made over the past two decades in understanding atmospheric aerosol chemistry and its connections to climate. Advances in technology for characterizing aerosol chemical composition and physical properties have enabled rapid discovery in this area. This article reviews fundamental concepts and recent developments surrounding ambient aerosols, their chemical composition and sources, light-absorbing aerosols, aerosols and cloud formation, and aerosol-based solar radiation management (also known as solar geoengineering).

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-chembioeng-060816-101538
    2017-06-07
    2025-07-18
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/chembioeng/8/1/annurev-chembioeng-060816-101538.html?itemId=/content/journals/10.1146/annurev-chembioeng-060816-101538&mimeType=html&fmt=ahah

    Literature Cited

    1. LeckC,BiggEK.1. 2005. Source and evolution of the marine aerosol—a new perspective.Geophys. Res. Lett.32:1928–31[Google Scholar]
    2. YouY,Renbaum-WolffL,Carreras-SospedraM,HannaSJ,HiranumaN.2.  et al.2012. Images reveal that atmospheric particles can undergo liquid-liquid phase separations.PNAS109:3313188–93[Google Scholar]
    3. VirtanenA,JoutsensaariJ,KoopT,KannostoJ,Yli-PiriläP.3.  et al.2010. An amorphous solid state of biogenic secondary organic aerosol particles.Nature467:7317824–27[Google Scholar]
    4. WangX,SultanaCM,TruebloodJ,HillTCJ,MalfattiF.4.  et al.2015. Microbial control of sea spray aerosol composition: a tale of two blooms.ACS Cent. Sci.1:3124–31[Google Scholar]
    5. AultAP,MoffetRC,BaltrusaitisJ,CollinsDB,RuppelMJ.5.  et al.2013. Size-dependent changes in sea spray aerosol composition and properties with different seawater conditions.Environ. Sci. Technol.47:115603–12[Google Scholar]
    6. HatchLE,CreameanJM,AultAP,SurrattJD,ChanMN.6.  et al.2011. Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry—Part 1: Single particle atmospheric observations in Atlanta.Environ. Sci. Technol.45:125105–11[Google Scholar]
    7. MoffetRC,de FoyB,MolinaLT,MolinaMJ,PratherKA.7. 2008. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry.Atmos. Chem. Phys.8:164499–516[Google Scholar]
    8. NguyenTKV,ZhangQ,JimenezJLL,PikeM,CarltonAMG.8. 2016. Liquid water: ubiquitous contributor to aerosol mass.Environ. Sci. Technol. Lett.3:7257–63[Google Scholar]
    9. PszennyAAP,MoldanováJ,KeeneWC,SanderR,MabenJR.9.  et al.2004. Halogen cycling and aerosol pH in the Hawaiian marine boundary layer.Atmos. Chem. Phys.4:147–68[Google Scholar]
    10. KeeneWC,PszennyAAP,MabenJR,StevensonE,WallA.10. 2004. Closure evaluation of size-resolved aerosol pH in the New England coastal atmosphere during summer.J. Geophys. Res.109:D23D23307[Google Scholar]
    11. WeberRJ,GuoH,RussellAG,NenesA.11. 2016. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years.Nat. Geosci.9:4282–85[Google Scholar]
    12. TangIN.12. 1997. Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance.J. Geophys. Res.102:D21883–93[Google Scholar]
    13. NizkorodovSA,LaskinJ,LaskinA.13. 2011. Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry.Phys. Chem. Chem. Phys.13:93612–29[Google Scholar]
    14. YatavelliRLN,Lopez-HilfikerF,WargoJD,KimmelJR,CubisonMJ.14.  et al.2012. A chemical ionization high-resolution time-of-flight mass spectrometer coupled to a micro orifice volatilization impactor (MOVI-HRToF-CIMS) for analysis of gas and particle-phase organic species.Aerosol. Sci. Technol.46:1313–27[Google Scholar]
    15. LeeL,WooldridgePJ,deGouwJ,BrownSS,BatesTS.15.  et al.2015. Particulate organic nitrates observed in an oil and natural gas production region during wintertime.Atmos. Chem. Phys.15:169313–25[Google Scholar]
    16. DeCarloPF,KimmelJR,TrimbornA,NorthwayMJ,JayneJT.16.  et al.2006. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer.Anal. Chem.78:248281–89[Google Scholar]
    17. CanagaratnaMR,JimenezJL,KrollJH,ChenQ,KesslerSH.17.  et al.2015. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications.Atmos. Chem. Phys.15:1253–72[Google Scholar]
    18. SilvernRF,JacobDJ,KimPS,MaraisEA,TurnerJR.18. 2016. Incomplete sulfate aerosol neutralization despite excess ammonia in the eastern US: a possible role of organic aerosol.Atmos. Chem. Phys. Discuss.16:1–21[Google Scholar]
    19. DonahueNM,EpsteinSA,PandisSN,RobinsonAL.19. 2011. A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics.Atmos. Chem. Phys.11:73303–18[Google Scholar]
    20. McNeillVF.20. 2015. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.Environ. Sci. Technol.49:31237–44[Google Scholar]
    21. MongeME,RosenørnT,FavezO,MüllerM,AdlerG.21.  et al.2012. Alternative pathway for atmospheric particles growth.PNAS109:186840–44[Google Scholar]
    22. AregahegnKZ,NozièreB,GeorgeC.22. 2013. Organic aerosol formation photo-enhanced by the formation of secondary photosensitizers in aerosols.Faraday Discuss165:123–34[Google Scholar]
    23. SumnerA,WooJL-M,McNeillVF.23. 2014. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.Environ. Sci. Technol.48:2011919–25[Google Scholar]
    24. MyhreG,ShindellD,BréonF-M,CollinsW,FuglestvedtJ.24.  et al.2013. Anthropogenic and natural radiative forcing.Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen, et al.659–740 Cambridge, UK/New York: Cambridge Univ. Press[Google Scholar]
    25. RubinoM,D'OnofrioA,SekiO,BendleJA.25. 2016. Ice-core records of biomass burning.Anthr. Rev.3:2140–62[Google Scholar]
    26. CarslawKS,LeeLA,ReddingtonCL,PringleKJ,RapA.26.  et al.2013. Large contribution of natural aerosols to uncertainty in indirect forcing.Nature503:67–71[Google Scholar]
    27. TröstlJ,ChuangWK,GordonH,HeinritziM,YanC.27.  et al.2016. The role of low-volatility organic compounds in initial particle growth in the atmosphere.Nature533:527–31[Google Scholar]
    28. BianchiF,TröstlJ,JunninenH,FregeC,HenneS.28.  et al.2016. New particle formation in the free troposphere: a question of chemistry and timing.Science352:1109–12[Google Scholar]
    29. KirkbyJ,DuplissyJ,SenguptaK,FregeC,GordonH.29.  et al.2016. Ion-induced nucleation of pure biogenic particles.Nature533:521–26[Google Scholar]
    30. BallSM,HansonDR,EiseleFL,McMurryPH.30. 1999. Laboratory studies of particle nucleation: initial results for H2SO4, H2O, and NH3 vapors.J. Geophys. Res. Atmos.104:D1923709–18[Google Scholar]
    31. AlmeidaJ,SchobesbergerS,KürtenA,OrtegaIK,Kupiainen-MäättäO.31.  et al.2013. Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere.Nature502:359–63[Google Scholar]
    32. HansenJ,SatoM,RuedyR.32. 1997. Radiative forcing and climate response.J. Geophys. Res.102:D66831–64[Google Scholar]
    33. 33. US EPA (Environ. Prot. Agency).2015.The Benefits and Costs of the Clean Air Act, 1970 to 1990 Washington, DC: US EPAhttps://www.epa.gov/sites/production/files/2015-06/documents/contsetc.pdf[Google Scholar]
    34. FioreAM,NaikV,LeibenspergerEM.34. 2015. Air quality and climate connections.J. Air Waste Manag. Assoc.65:6645–85[Google Scholar]
    35. BahadurR,PraveenPS,XuY,RamanathanV.35. 2012. Solar absorption by elemental and brown carbon determined from spectral observations.PNAS109:4317366–71[Google Scholar]
    36. BondTC,DohertySJ,FaheyDW,ForsterPM,BerntsenT.36.  et al.2013. Bounding the role of black carbon in the climate system: a scientific assessment.J. Geophys. Res. Atmos.118:115380–552[Google Scholar]
    37. RamanathanV,CarmichaelG.37. 2008. Global and regional climate changes due to black carbon.Nat. Geosci.1:4221–27[Google Scholar]
    38. ShindellD,KuylenstiernaJCI,VignatiE,van DingenenR,AmannM.38.  et al.2012. Simultaneously mitigating near-term climate change and improving human health and food security.Science335:183–89[Google Scholar]
    39. AndreaeMO,GelencserA.39. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols.Atmos. Chem. Phys.6:3131–48[Google Scholar]
    40. PósfaiM.40. 2004. Atmospheric tar balls: particles from biomass and biofuel burning.J. Geophys. Res.109:D61–9[Google Scholar]
    41. ChakrabartyRK,MoosmüllerH,ChenL-WA,LewisK,ArnottWP.41.  et al.2010. Brown carbon in tar balls from smoldering biomass combustion.Atmos. Chem. Phys.10:136363–70[Google Scholar]
    42. AlexanderDTL,CrozierPA,AndersonJR.42. 2008. Brown carbon spheres in East Asian outflow and their optical properties.Science321:833–36[Google Scholar]
    43. MeskhidzeN,PettersMD,TsigaridisK,BatesT,O'DowdC.43.  et al.2013. Production mechanisms, number concentration, size distribution, chemical composition, and optical properties of sea spray aerosols.Atmos. Sci. Lett.14:4207–13[Google Scholar]
    44. HofferA,GelencsérA,GuyonP,KissG,SchmidO.44.  et al.2006. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols.Atmos. Chem. Phys.6:3563–70[Google Scholar]
    45. GraberER,RudichY.45. 2006. Atmospheric HULIS: How humic-like are they? A comprehensive and critical review.Atmos. Chem. Phys.6:3729–53[Google Scholar]
    46. LiuJ,ScheuerE,DibbJ,DiskinGS,ZiembaLD.46.  et al.2015. Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing.Atmos. Chem. Phys.15:147841–58[Google Scholar]
    47. LaskinA,LaskinJ,NizkorodovSA.47. 2015. Chemistry of atmospheric brown carbon.Chem. Rev.115:104335–82[Google Scholar]
    48. HecobianA,ZhangX,ZhengM,FrankN,EdgertonES,WeberRJ.48. 2010. Water-Soluble Organic Aerosol Material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States.Atmos. Chem. Phys.10:135965–77[Google Scholar]
    49. ShapiroEL,SzprengielJ,SareenN,JenCN,GiordanoMR,McNeillVF.49. 2009. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics.Atmos. Chem. Phys.9:2289–300[Google Scholar]
    50. SareenN,SchwierAN,ShapiroEL,MitrooD,McNeillVF.50. 2010. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics.Atmos. Chem. Phys.10:3997–1016[Google Scholar]
    51. SchwierAN,SareenN,MitrooD,ShapiroEL,McNeillVF.51. 2010. Glyoxal-methylglyoxal cross-reactions in secondary organic aerosol formation.Environ. Sci. Technol.44:166174–82[Google Scholar]
    52. LinP,LiuJ,ShillingJE,KathmannSM,LaskinJ,LaskinA.52. 2015. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene.Phys. Chem. Chem. Phys.17:3623312–25[Google Scholar]
    53. De HaanDO,CorriganAL,SmithKW,StroikDR,TurleyJJ.53.  et al.2009. Secondary organic aerosol-forming reactions of glyoxal with amino acids.Environ. Sci. Technol.43:82818–24[Google Scholar]
    54. HawkinsLN,LemireAN,GallowayMM,CorriganAL,TurleyJJ.54.  et al.2016. Maillard chemistry in clouds and aqueous aerosol as a source of atmospheric humic-like substances.Environ. Sci. Technol.50:147443–52[Google Scholar]
    55. PittsJN,Van CauwenbergheKA,GrosjeanD,SchmidJP,FitzDR.55.  et al.1978. Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives.Science202:4367515–19[Google Scholar]
    56. BonesDL,HenricksenDK,MangSA,GonsiorM,BatemanAP.56.  et al.2010. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales.J. Geophys. Res.115:D052031–14[Google Scholar]
    57. PhillipsSM,SmithGD.57. 2014. Light absorption by charge transfer complexes in brown carbon aerosols.Environ. Sci. Technol. Lett.1:10382–86[Google Scholar]
    58. PhillipsSM,SmithGD.58. 2015. Further evidence for charge transfer complexes in brown carbon aerosols from excitation-emission matrix fluorescence spectroscopy.J. Phys. Chem. A119:194545–51[Google Scholar]
    59. LyamaniH,OlmoF,AladosarboledasL.59. 2008. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain.Atmos. Environ.42:112630–42[Google Scholar]
    60. SareenN,MoussaSG,McNeillVF.60. 2013. Photochemical aging of light-absorbing secondary organic aerosol material.J. Phys. Chem. A.117:142987–96[Google Scholar]
    61. LeeHJJ,AionaP,LaskinA,LaskinJ,NizkorodovSA.61. 2014. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon.Environ. Sci. Technol.48:1710217–26[Google Scholar]
    62. ZhaoR,LeeAKY,HuangL,LiX,YangF,AbbattJPD.62. 2015. Photochemical processing of aqueous atmospheric brown carbon.Atmos. Chem. Phys.15:116087–100[Google Scholar]
    63. WooJL,KimDD,SchwierAN,LiR,McNeillVF.63. 2013. Aqueous aerosol SOA formation: impact on aerosol physical properties.Faraday Discuss165:357–67[Google Scholar]
    64. HolbenBN,EckTF,SlutskerI,TanréD,BuisJP,SetzerA.64.  et al.1998. AERONET—a federated instrument network and data archive for aerosol characterization.Remote Sens. Environ.66:1–16[Google Scholar]
    65. WangX,HealdCL,SedlacekAJ,de SáSS,MartinST.65.  et al.2016. Deriving brown carbon from multi-wavelength absorption measurements: Method and application to AERONET and surface observations.Atmos. Chem. Phys.16:12733–52[Google Scholar]
    66. ChungCE,RamanathanV,DecremerD.66. 2012. Observationally constrained estimates of carbonaceous aerosol radiative forcing.PNAS109:2911624–29[Google Scholar]
    67. TwomeyS.67. 1977. The influence of pollution on the shortwave albedo of clouds.J. Atmos. Sci.34:1149–52[Google Scholar]
    68. AlbrechtBA.68. 1989. Aerosols, cloud microphysics, and fractional cloudiness.Science245:49231227–30[Google Scholar]
    69. SeinfeldJH,BrethertonC,CarslawKS,CoeH,DeMottPJ.69.  et al.2016. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system.PNAS113:215781–90[Google Scholar]
    70. KarydisVA,CappsSL,RussellAG,NenesA.70. 2012. Adjoint sensitivity of global cloud droplet number to aerosol and dynamical parameters.Atmos. Chem. Phys.12:199041–55[Google Scholar]
    71. KohlerH.71. 1936. The nucleus in and the growth of hygroscopic droplets.Trans. Faraday Soc.32:1152–61[Google Scholar]
    72. DusekU,FrankGP,HildebrandtL,CurtiusJ,SchneiderJ.72.  et al.2006. Size matters more than chemistry for cloud-nucleating ability of aerosol particles.Science312:57781375–78[Google Scholar]
    73. PettersMD,KreidenweisSM.73. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity.Atmos. Chem. Phys.7:81961–71[Google Scholar]
    74. NenesA,CharlsonRJ,FacchiniMC,KulmalaM,LaaksonenA,SeinfeldJH.74. 2002. Can chemical effects on cloud droplet number rival the first indirect effect?.Geophys. Res. Lett.29:171848[Google Scholar]
    75. Asa-AwukuA,NenesA.75. 2007. Effect of solute dissolution kinetics on cloud droplet formation: extended Köhler theory.J. Geophys. Res.112:D221–10[Google Scholar]
    76. McNeillVF,SareenN,SchwierAN.76. 2014. Surface-active organics in atmospheric aerosols.Top. Curr. Chem.339:201–59[Google Scholar]
    77. GérardVMF,NozièreB,BaduelC,FineL,FrossardAA,CohenRC.77. 2016. Anionic, cationic, and non-ionic surfactants in atmospheric aerosols from the Baltic coast at Askö, Sweden: implications for cloud droplet activation.Environ. Sci. Technol.50:2974–82[Google Scholar]
    78. KulmalaM,LaaksonenA,KorhonenP,VesalaT,AhonenT,BarrettJC.78. 1993. The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation.J. Geophys. Res.98:D1222949[Google Scholar]
    79. ToppingD,ConnollyP,McFiggansG.79. 2013. Cloud droplet number enhanced by co-condensation of organic vapours.Nat. Geosci.6:61–4[Google Scholar]
    80. SareenN,SchwierAN,LathemTL,NenesA,McNeillVF.80. 2013. Surfactants from the gas phase may promote cloud droplet formation.PNAS110:82723–28[Google Scholar]
    81. SorjamaaR,SvenningssonB,RaatikainenT,HenningS,BildeM,LaaksonenA.81. 2004. The role of surfactants in Köhler theory reconsidered.Atmos. Chem. Phys.4:2107–17[Google Scholar]
    82. LiZ,WilliamsAL,RoodMJ.82. 1998. Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute.J. Atmos. Sci.55:101859–66[Google Scholar]
    83. BzdekBR,PowerRM,SimpsonSH,ReidJP,RoyallCP.83. 2016. Precise, contactless measurements of the surface tension of picolitre aerosol droplets.Chem. Sci.7:1274–85[Google Scholar]
    84. RuehlCR,ChuangPY,NenesA.84. 2010. Aerosol hygroscopicity at high (99 to 100%) relative humidities.Atmos. Chem. Phys.10:31329–44[Google Scholar]
    85. RuehlCR,ChuangPY,NenesA,CappaCD,KolesarKR,GoldsteinAH.85. 2012. Strong evidence of surface tension reduction in microscopic aqueous droplets.Geophys. Res. Lett.39:23L23801[Google Scholar]
    86. RuehlCR,DaviesJF,WilsonKR,KöhlerH,PettersMD.86.  et al.2016. An interfacial mechanism for cloud droplet formation on organic aerosols.Science351:62801447–50[Google Scholar]
    87. PruppacherHR,KlettJD.87. 2010.Microphysics of Clouds and Precipitation Atmospheric and Oceanographic Sciences Library18 Dordrecht, Neth.: Springer, 2nd ed..[Google Scholar]
    88. CziczoDJ,FroydKD,HooseC,JensenEJ,DiaoM.88.  et al.2013. Clarifying the dominant sources and mechanisms of cirrus cloud formation.Science340:61381320–24[Google Scholar]
    89. JohnsonKS,ZuberiB,MolinaLT,MolinaMJ,IedemaMJ.89.  et al.2005. Processing of soot in an urban environment: case study from the Mexico City metropolitan area.Atmos. Chem. Phys. Discuss.5:45585–614[Google Scholar]
    90. AbbattJPD,BenzS,CziczoDJ,KanjiZ,LohmannU,MöhlerO.90. 2006. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation.Science313:57941770–73[Google Scholar]
    91. WangB,LambeAT,MassoliP,OnaschTB,DavidovitsP.91.  et al.2012. The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: pathways for ice and mixed-phase cloud formation.J. Geophys. Res. Atmos.117:D16D16209[Google Scholar]
    92. DeMottPJ.92. 1990. An exploratory study of ice nucleation by soot aerosols.J. Appl. Meteorol.29:101072–79[Google Scholar]
    93. PrattKA,DeMottPJ,FrenchJR,WangZ,WestphalDL.93.  et al.2009. In situ detection of biological particles in cloud ice-crystals.Nat. Geosci.2:6398–401[Google Scholar]
    94. WilsonTW,LadinoLA,AlpertPA,BreckelsMN,BrooksIM.94.  et al.2015. A marine biogenic source of atmospheric ice-nucleating particles.Nature525:7568234–38[Google Scholar]
    95. DeMottPJ,HillTCJ,McCluskeyCS,PratherKA,CollinsDB.95.  et al.2015. Sea spray aerosol as a unique source of ice nucleating particles.PNAS113:215797–803[Google Scholar]
    96. KnopfDA,AlpertPA,WangB,O'BrienRE,KellyST.96.  et al.2014. Microspectroscopic imaging and characterization of individually identified ice nucleating particles from a case field study.J. Geophys. Res. Atmos.119:1710365–81[Google Scholar]
    97. CaldeiraK,BalaG,CaoL.97. 2013. The science of geoengineering.Annu. Rev. Earth Planet. Sci.41:231–56[Google Scholar]
    98. KeithDW.98. 2010. Photophoretic levitation of engineered aerosols for geoengineering.PNAS107:3816428–31[Google Scholar]
    99. PopeFD,BraesickeP,GraingerRG,KalbererM,WatsonIM.99.  et al.2012. Stratospheric aerosol particles and solar-radiation management.Nat. Clim. Chang.2:10713–19[Google Scholar]
    100. RobockA.100. 2000. Volcanic eruptions and climate.Rev. Geophys.38:2191–219[Google Scholar]
    101. ParkerD,WilsonH,JonesP,ChristyJ,FollandC.101. 1996. The impact of Mount Pinatubo on worldwide temperatures.Int. J. Climatol.16:May487–97[Google Scholar]
    102. HansenJ,SatoM,RuedyR,LacisA,AsamoahK.102.  et al.1996. A Pinatubo climate modeling investigation.The Mount Pinatubo Eruption G Fiocco, D Fua, G Visconti233–72 Berlin/Heidelberg: Springer[Google Scholar]
    103. RobockA,MarquardtA,KravitzB,StenchikovG.103. 2009. Benefits, risks, and costs of stratospheric geoengineering.Geophys. Res. Lett.36:19L19703[Google Scholar]
    104. CrutzenPJ.104. 2006. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?.Clim. Chang.77:3–4211–19[Google Scholar]
    105. 105. Natl. Acad. Sci., Eng. Med.2015.Climate Intervention Washington, DC: Natl. Acad. Press[Google Scholar]
    106. MolinaMJ,TsoTL,MolinaLT,WangFC.106. 1987. Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine.Science238:48311253–57[Google Scholar]
    107. PitariG,AquilaV,KravitzB,RobockA,WatanabeS.107.  et al.2014. Stratospheric ozone response to sulfate geoengineering: results from the geoengineering model intercomparison project (GEOMIP).J. Geophys. Res. Atmos.119:52629–53[Google Scholar]
    108. PierceJR,WeisensteinDK,HeckendornP,PeterT,KeithDW.108. 2010. Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft.Geophys. Res. Lett.37:18L18805[Google Scholar]
    109. JonesAC,HaywoodJM,JonesA.109. 2016. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection.Atmos. Chem. Phys.16:2843–62[Google Scholar]
    110. FerraroAJ,Charlton-PerezAJ,HighwoodEJ.110. 2015. Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols.J. Geophys. Res. Atmos.120:2414–29[Google Scholar]
    111. Hoegh-GuldbergO,MumbyPJ,HootenAJ,SteneckRS,GreenfieldP.111.  et al.2007. Coral reefs under rapid climate change and ocean acidification.Science318:58571737–42[Google Scholar]
    112. AlbrightR,CaldeiraL,HosfeltJ,KwiatkowskiL,MaclarenJK.112.  et al.2016. Reversal of ocean acidification enhances net coral reef calcification.Nature531:7594362–65[Google Scholar]
    113. 113. UNEP.2010.Decision adopted by the Conference of the Parties to the Convention on Biological Diversity at its tenth meeting Conf. Parties Conv. Biol. Divers., Oct. 18–29, Nagoya, Jpn., UNEP/CBD/COP/DEC/X/33.https://www.cbd.int/doc/decisions/cop-10/cop-10-dec-33-en.pdf[Google Scholar]
    114. JimenezJL,CanagaratnaMR,DonahueNM,PrevotASH,ZhangQ.114.  et al.2009. Evolution of organic aerosols in the atmosphere.Science326:59591525–29[Google Scholar]
    115. HäkkinenSAK,McNeillVF,RiipinenIA.115. 2014. Effect of inorganic salts on the volatility of organic acids.Environ. Sci. Technol.48:2313718–26[Google Scholar]
    116. DrozdG,WooJ,HäkkinenSAK,NenesA,McNeillVF.116. 2014. Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility.Atmos. Chem. Phys.14:5205–15[Google Scholar]
    117. ZhangR,KhalizovAF,PagelsJ,ZhangD,XueH,McMurryPH.117. 2008. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing.PNAS105:3010291–96[Google Scholar]
    118. LaskinA,WietsmaTW,KruegerBJ,GrassianVH.118. 2005. Heterogeneous chemistry of individual mineral dust particles with nitric acid: a combined CCSEM/EDX, ESEM, and ICP-MS study.J. Geophys. Res.110:D10D10208[Google Scholar]
    119. WooJL.119. 2014.Gas-aerosol model for mechanism analysis: kinetic prediction of gas- and aqueous-phase chemistry of atmospheric aerosols PhD Thesis, Columbia Univ New York:[Google Scholar]
    120. JayneJT,LeardDC,ZhangX,DavidovitsP,SmithKA.120.  et al.2000. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles.Aerosol Sci. Technol.33:1–249–70[Google Scholar]
    121. Lopez-HilfikerFD,MohrC,EhnM,RubachF,KleistE.121.  et al.2014. A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO).Atmos. Meas. Tech.7:983–1001[Google Scholar]
    122. WilliamsBJ,GoldsteinAH,MilletDB,HolzingerR,KreisbergNM.122.  et al.2007. Chemical speciation of organic aerosol during the international consortium for atmospheric research on transport and transformation 2004: results from in situ measurements.J. Geophys. Res.112:D101–14[Google Scholar]
    123. GardE,MayerJE,MorricalBD,DienesT,FergensonDP,PratherKA.123. 1997. Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS.Anal. Chem.69:204083–91[Google Scholar]
    124. RussellLM,BahadurR,ZiemannPJ.124. 2011. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles.PNAS108:93516–21[Google Scholar]
    125. IsaacmanG,KreisbergNM,YeeLD,WortonDR,ChanAWH.125.  et al.2014. Online derivatization for hourly measurements of gas- and particle-phase semi-volatile oxygenated organic compounds by thermal desorption aerosol gas chromatography (SV-TAG).Atmos. Meas. Tech.7:124417–29[Google Scholar]
    126. KulmalaM,KontkanenJ,JunninenH,LehtipaloK,ManninenHE.126.  et al.2013. Direct observations of atmospheric aerosol nucleation.Science339:6122943–46[Google Scholar]
    127. RobertsGC,NenesA.127. 2005. A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements.Aerosol Sci. Technol.39:3206–21[Google Scholar]
    128. Abo RiziqA,ErlickC,DinarE,RudichY.128. 2007. Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy.Atmos. Chem. Phys.7:61523–36[Google Scholar]
    129. LeeAKY,WillisMD,HealyRM,OnaschTB,AbbattJPD.129. 2015. Mixing state of carbonaceous aerosol in an urban environment: single particle characterization using the soot particle aerosol mass spectrometer (SP-AMS).Atmos. Chem. Phys.15:41823–41[Google Scholar]
    130. SharmaN,ArnoldIJ,MoosmüllerH,ArnottWP,MazzoleniC.130. 2013. Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source.Atmos. Meas. Tech.6:3501–13[Google Scholar]
    131. ÄijäläM,HeikkinenL,FröhlichR,CanonacoF,PrévôtASH.131.  et al.2017. Resolving anthropogenic aerosol pollution types—deconvolution and exploratory classification of pollution events.Atmos. Chem. Phys.17:3165–97[Google Scholar]
    132. MonteleoniC,SchmidtGA,McQuadeS.132. 2013. Climate informatics: accelerating discovering in climate science with machine learning.Comput. Sci. Eng.15:532–40[Google Scholar]
    133. TurányiT,TomlinAS.133. 2014.Analysis of Kinetic Reaction Mechanisms Berlin/Heidelberg: Springer-Verlag[Google Scholar]
    134. KarplusVJ,XiliangZ,Chiao-TingL,MingweiL,SelinN.134.  et al.2015.Double Impact: Why China Needs Coordinated Air Quality and Climate Strategies Paulson Pap. Energy Environ Chicago: Paulson Insthttp://www.paulsoninstitute.org/wp-content/uploads/2015/04/PPEE_Air-and-Climate_-Karplus_English.pdf[Google Scholar]
    135. WangG,ZhangR,GomezME,YangL,ZamoraML.135.  et al.2016. Persistent sulfate formation from London Fog to Chinese haze.PNAS113:4813630–35[Google Scholar]
    136. ChengY,ZhengG,WeiC,MuQ,ZhengB.136.  et al.2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China.Sci. Adv.2:12e1601530[Google Scholar]
    137. 137. Natl. Acad. Sci., Eng. Med.2016.The Future of Atmospheric Chemistry Research Washington, DC: Natl. Acad. Sci.[Google Scholar]
    138. BrauerM,FreedmanG,FrostadJ,van DonkelaarA,MartinRV.138.  et al.2016. Ambient air pollution exposure estimation for the global burden of disease 2013.Environ. Sci. Technol.50:179–88[Google Scholar]
    139. FannN,LamsonAD,AnenbergSC,WessonK,RisleyD,HubbellBJ.139 2012. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone.Risk Anal32:181–95[Google Scholar]
    140. BurnettRT,Arden PopeC,EzzatiM,OlivesC,LimSS.140.  et al.2014. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure.Environ. Health Perspect.122:4397–403[Google Scholar]
    141. OudinA,BråbäckL,ÅströmDO,StrömgrenM,ForsbergB.141. 2016. Association between neighbourhood air pollution concentrations and dispensed medication for psychiatric disorders in a large longitudinal cohort of Swedish children and adolescents.BMJ Open6:6e010004[Google Scholar]
    142. DrakakiE,DessiniotiC,AntoniouCV.142. 2014. Air pollution and the skin.Front. Environ. Sci.2:11[Google Scholar]
    143. SrámR.143. 1999. Impact of air pollution on reproductive health.Environ. Health Perspect.107:11A542–43[Google Scholar]
    144. AkhtarUS,McWhinneyRD,RastogiN,AbbattJPD,EvansGJ,ScottJA.144. 2010. Cytotoxic and proinflammatory effects of ambient and source-related particulate matter (PM) in relation to the production of reactive oxygen species (ROS) and cytokine adsorption by particles.Inhal. Toxicol.22:Suppl. 237–47[Google Scholar]
    145. LinY-H,ArashiroM,MartinE,ChenY,ZhangZ.145.  et al.2016. Isoprene-derived secondary organic aerosol induces the expression of oxidative stress response genes in human lung cells.Environ. Sci. Technol. Lett.3:6250–54[Google Scholar]
    146. McWhinneyRD,GaoSS,ZhouS,AbbattJPD.146. 2011. Evaluation of the effects of ozone oxidation on redox cycling activity of two-stroke engine exhaust particles.Environ. Sci. Technol.45:62131–36[Google Scholar]
    147. LiaoH,SeinfeldJH,AdamsPJ,MickleyLJ.147. 2004. Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model.J. Geophys. Res.109:D16D16207[Google Scholar]
    148. LiaoH,AdamsPJ,ChungSH,SeinfeldJH,MickleyLJ,JacobDJ.148. 2003. Interactions between tropospheric chemistry and aerosols in a unified general circulation model.J. Geophys. Res.108:D14001[Google Scholar]
    149. HuneeusN,SchulzM,BalkanskiY,GriesfellerJ,ProsperoJ.149.  et al.2011. Global dust model intercomparison in AEROCOM phase I.Atmos. Chem. Phys.11:157781–816[Google Scholar]
    150. O'DowdCD,de LeeuwG.150. 2007. Marine aerosol production: a review of the current knowledge.Philos. Trans. A. Math. Phys. Eng. Sci.365:18561753–74[Google Scholar]
    151. BondTC,StreetsDG,YarberKF,NelsonSM,WooJ,KlimontZ.151. 2004. A technology-based global inventory of black and organic carbon emissions from combustion.J. Geophys. Res.109:D14D14203[Google Scholar]
    152. SpracklenDV,JimenezJL,CarslawKS,WorsnopDR,EvansMJ.152.  et al.2011. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget.Atmos. Chem. Phys.11:2312109–36[Google Scholar]
    /content/journals/10.1146/annurev-chembioeng-060816-101538
    Loading
    Atmospheric Aerosols: Clouds, Chemistry, and Climate
    Annual Review of Chemical and Biomolecular Engineering8, 427 (2017);https://doi.org/10.1146/annurev-chembioeng-060816-101538
    /content/journals/10.1146/annurev-chembioeng-060816-101538
    /content/journals/10.1146/annurev-chembioeng-060816-101538
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/chembioeng
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-chembioeng-060816-101538
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. LeckC,BiggEK.1. 2005. Source and evolution of the marine aerosol—a new perspective.Geophys. Res. Lett.32:1928–31[Google Scholar]
    2. YouY,Renbaum-WolffL,Carreras-SospedraM,HannaSJ,HiranumaN.2.  et al.2012. Images reveal that atmospheric particles can undergo liquid-liquid phase separations.PNAS109:3313188–93[Google Scholar]
    3. VirtanenA,JoutsensaariJ,KoopT,KannostoJ,Yli-PiriläP.3.  et al.2010. An amorphous solid state of biogenic secondary organic aerosol particles.Nature467:7317824–27[Google Scholar]
    4. WangX,SultanaCM,TruebloodJ,HillTCJ,MalfattiF.4.  et al.2015. Microbial control of sea spray aerosol composition: a tale of two blooms.ACS Cent. Sci.1:3124–31[Google Scholar]
    5. AultAP,MoffetRC,BaltrusaitisJ,CollinsDB,RuppelMJ.5.  et al.2013. Size-dependent changes in sea spray aerosol composition and properties with different seawater conditions.Environ. Sci. Technol.47:115603–12[Google Scholar]
    6. HatchLE,CreameanJM,AultAP,SurrattJD,ChanMN.6.  et al.2011. Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry—Part 1: Single particle atmospheric observations in Atlanta.Environ. Sci. Technol.45:125105–11[Google Scholar]
    7. MoffetRC,de FoyB,MolinaLT,MolinaMJ,PratherKA.7. 2008. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry.Atmos. Chem. Phys.8:164499–516[Google Scholar]
    8. NguyenTKV,ZhangQ,JimenezJLL,PikeM,CarltonAMG.8. 2016. Liquid water: ubiquitous contributor to aerosol mass.Environ. Sci. Technol. Lett.3:7257–63[Google Scholar]
    9. PszennyAAP,MoldanováJ,KeeneWC,SanderR,MabenJR.9.  et al.2004. Halogen cycling and aerosol pH in the Hawaiian marine boundary layer.Atmos. Chem. Phys.4:147–68[Google Scholar]
    10. KeeneWC,PszennyAAP,MabenJR,StevensonE,WallA.10. 2004. Closure evaluation of size-resolved aerosol pH in the New England coastal atmosphere during summer.J. Geophys. Res.109:D23D23307[Google Scholar]
    11. WeberRJ,GuoH,RussellAG,NenesA.11. 2016. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years.Nat. Geosci.9:4282–85[Google Scholar]
    12. TangIN.12. 1997. Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance.J. Geophys. Res.102:D21883–93[Google Scholar]
    13. NizkorodovSA,LaskinJ,LaskinA.13. 2011. Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry.Phys. Chem. Chem. Phys.13:93612–29[Google Scholar]
    14. YatavelliRLN,Lopez-HilfikerF,WargoJD,KimmelJR,CubisonMJ.14.  et al.2012. A chemical ionization high-resolution time-of-flight mass spectrometer coupled to a micro orifice volatilization impactor (MOVI-HRToF-CIMS) for analysis of gas and particle-phase organic species.Aerosol. Sci. Technol.46:1313–27[Google Scholar]
    15. LeeL,WooldridgePJ,deGouwJ,BrownSS,BatesTS.15.  et al.2015. Particulate organic nitrates observed in an oil and natural gas production region during wintertime.Atmos. Chem. Phys.15:169313–25[Google Scholar]
    16. DeCarloPF,KimmelJR,TrimbornA,NorthwayMJ,JayneJT.16.  et al.2006. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer.Anal. Chem.78:248281–89[Google Scholar]
    17. CanagaratnaMR,JimenezJL,KrollJH,ChenQ,KesslerSH.17.  et al.2015. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications.Atmos. Chem. Phys.15:1253–72[Google Scholar]
    18. SilvernRF,JacobDJ,KimPS,MaraisEA,TurnerJR.18. 2016. Incomplete sulfate aerosol neutralization despite excess ammonia in the eastern US: a possible role of organic aerosol.Atmos. Chem. Phys. Discuss.16:1–21[Google Scholar]
    19. DonahueNM,EpsteinSA,PandisSN,RobinsonAL.19. 2011. A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics.Atmos. Chem. Phys.11:73303–18[Google Scholar]
    20. McNeillVF.20. 2015. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.Environ. Sci. Technol.49:31237–44[Google Scholar]
    21. MongeME,RosenørnT,FavezO,MüllerM,AdlerG.21.  et al.2012. Alternative pathway for atmospheric particles growth.PNAS109:186840–44[Google Scholar]
    22. AregahegnKZ,NozièreB,GeorgeC.22. 2013. Organic aerosol formation photo-enhanced by the formation of secondary photosensitizers in aerosols.Faraday Discuss165:123–34[Google Scholar]
    23. SumnerA,WooJL-M,McNeillVF.23. 2014. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.Environ. Sci. Technol.48:2011919–25[Google Scholar]
    24. MyhreG,ShindellD,BréonF-M,CollinsW,FuglestvedtJ.24.  et al.2013. Anthropogenic and natural radiative forcing.Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen, et al.659–740 Cambridge, UK/New York: Cambridge Univ. Press[Google Scholar]
    25. RubinoM,D'OnofrioA,SekiO,BendleJA.25. 2016. Ice-core records of biomass burning.Anthr. Rev.3:2140–62[Google Scholar]
    26. CarslawKS,LeeLA,ReddingtonCL,PringleKJ,RapA.26.  et al.2013. Large contribution of natural aerosols to uncertainty in indirect forcing.Nature503:67–71[Google Scholar]
    27. TröstlJ,ChuangWK,GordonH,HeinritziM,YanC.27.  et al.2016. The role of low-volatility organic compounds in initial particle growth in the atmosphere.Nature533:527–31[Google Scholar]
    28. BianchiF,TröstlJ,JunninenH,FregeC,HenneS.28.  et al.2016. New particle formation in the free troposphere: a question of chemistry and timing.Science352:1109–12[Google Scholar]
    29. KirkbyJ,DuplissyJ,SenguptaK,FregeC,GordonH.29.  et al.2016. Ion-induced nucleation of pure biogenic particles.Nature533:521–26[Google Scholar]
    30. BallSM,HansonDR,EiseleFL,McMurryPH.30. 1999. Laboratory studies of particle nucleation: initial results for H2SO4, H2O, and NH3 vapors.J. Geophys. Res. Atmos.104:D1923709–18[Google Scholar]
    31. AlmeidaJ,SchobesbergerS,KürtenA,OrtegaIK,Kupiainen-MäättäO.31.  et al.2013. Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere.Nature502:359–63[Google Scholar]
    32. HansenJ,SatoM,RuedyR.32. 1997. Radiative forcing and climate response.J. Geophys. Res.102:D66831–64[Google Scholar]
    33. 33. US EPA (Environ. Prot. Agency).2015.The Benefits and Costs of the Clean Air Act, 1970 to 1990 Washington, DC: US EPAhttps://www.epa.gov/sites/production/files/2015-06/documents/contsetc.pdf[Google Scholar]
    34. FioreAM,NaikV,LeibenspergerEM.34. 2015. Air quality and climate connections.J. Air Waste Manag. Assoc.65:6645–85[Google Scholar]
    35. BahadurR,PraveenPS,XuY,RamanathanV.35. 2012. Solar absorption by elemental and brown carbon determined from spectral observations.PNAS109:4317366–71[Google Scholar]
    36. BondTC,DohertySJ,FaheyDW,ForsterPM,BerntsenT.36.  et al.2013. Bounding the role of black carbon in the climate system: a scientific assessment.J. Geophys. Res. Atmos.118:115380–552[Google Scholar]
    37. RamanathanV,CarmichaelG.37. 2008. Global and regional climate changes due to black carbon.Nat. Geosci.1:4221–27[Google Scholar]
    38. ShindellD,KuylenstiernaJCI,VignatiE,van DingenenR,AmannM.38.  et al.2012. Simultaneously mitigating near-term climate change and improving human health and food security.Science335:183–89[Google Scholar]
    39. AndreaeMO,GelencserA.39. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols.Atmos. Chem. Phys.6:3131–48[Google Scholar]
    40. PósfaiM.40. 2004. Atmospheric tar balls: particles from biomass and biofuel burning.J. Geophys. Res.109:D61–9[Google Scholar]
    41. ChakrabartyRK,MoosmüllerH,ChenL-WA,LewisK,ArnottWP.41.  et al.2010. Brown carbon in tar balls from smoldering biomass combustion.Atmos. Chem. Phys.10:136363–70[Google Scholar]
    42. AlexanderDTL,CrozierPA,AndersonJR.42. 2008. Brown carbon spheres in East Asian outflow and their optical properties.Science321:833–36[Google Scholar]
    43. MeskhidzeN,PettersMD,TsigaridisK,BatesT,O'DowdC.43.  et al.2013. Production mechanisms, number concentration, size distribution, chemical composition, and optical properties of sea spray aerosols.Atmos. Sci. Lett.14:4207–13[Google Scholar]
    44. HofferA,GelencsérA,GuyonP,KissG,SchmidO.44.  et al.2006. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols.Atmos. Chem. Phys.6:3563–70[Google Scholar]
    45. GraberER,RudichY.45. 2006. Atmospheric HULIS: How humic-like are they? A comprehensive and critical review.Atmos. Chem. Phys.6:3729–53[Google Scholar]
    46. LiuJ,ScheuerE,DibbJ,DiskinGS,ZiembaLD.46.  et al.2015. Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing.Atmos. Chem. Phys.15:147841–58[Google Scholar]
    47. LaskinA,LaskinJ,NizkorodovSA.47. 2015. Chemistry of atmospheric brown carbon.Chem. Rev.115:104335–82[Google Scholar]
    48. HecobianA,ZhangX,ZhengM,FrankN,EdgertonES,WeberRJ.48. 2010. Water-Soluble Organic Aerosol Material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States.Atmos. Chem. Phys.10:135965–77[Google Scholar]
    49. ShapiroEL,SzprengielJ,SareenN,JenCN,GiordanoMR,McNeillVF.49. 2009. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics.Atmos. Chem. Phys.9:2289–300[Google Scholar]
    50. SareenN,SchwierAN,ShapiroEL,MitrooD,McNeillVF.50. 2010. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics.Atmos. Chem. Phys.10:3997–1016[Google Scholar]
    51. SchwierAN,SareenN,MitrooD,ShapiroEL,McNeillVF.51. 2010. Glyoxal-methylglyoxal cross-reactions in secondary organic aerosol formation.Environ. Sci. Technol.44:166174–82[Google Scholar]
    52. LinP,LiuJ,ShillingJE,KathmannSM,LaskinJ,LaskinA.52. 2015. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene.Phys. Chem. Chem. Phys.17:3623312–25[Google Scholar]
    53. De HaanDO,CorriganAL,SmithKW,StroikDR,TurleyJJ.53.  et al.2009. Secondary organic aerosol-forming reactions of glyoxal with amino acids.Environ. Sci. Technol.43:82818–24[Google Scholar]
    54. HawkinsLN,LemireAN,GallowayMM,CorriganAL,TurleyJJ.54.  et al.2016. Maillard chemistry in clouds and aqueous aerosol as a source of atmospheric humic-like substances.Environ. Sci. Technol.50:147443–52[Google Scholar]
    55. PittsJN,Van CauwenbergheKA,GrosjeanD,SchmidJP,FitzDR.55.  et al.1978. Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives.Science202:4367515–19[Google Scholar]
    56. BonesDL,HenricksenDK,MangSA,GonsiorM,BatemanAP.56.  et al.2010. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales.J. Geophys. Res.115:D052031–14[Google Scholar]
    57. PhillipsSM,SmithGD.57. 2014. Light absorption by charge transfer complexes in brown carbon aerosols.Environ. Sci. Technol. Lett.1:10382–86[Google Scholar]
    58. PhillipsSM,SmithGD.58. 2015. Further evidence for charge transfer complexes in brown carbon aerosols from excitation-emission matrix fluorescence spectroscopy.J. Phys. Chem. A119:194545–51[Google Scholar]
    59. LyamaniH,OlmoF,AladosarboledasL.59. 2008. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain.Atmos. Environ.42:112630–42[Google Scholar]
    60. SareenN,MoussaSG,McNeillVF.60. 2013. Photochemical aging of light-absorbing secondary organic aerosol material.J. Phys. Chem. A.117:142987–96[Google Scholar]
    61. LeeHJJ,AionaP,LaskinA,LaskinJ,NizkorodovSA.61. 2014. Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon.Environ. Sci. Technol.48:1710217–26[Google Scholar]
    62. ZhaoR,LeeAKY,HuangL,LiX,YangF,AbbattJPD.62. 2015. Photochemical processing of aqueous atmospheric brown carbon.Atmos. Chem. Phys.15:116087–100[Google Scholar]
    63. WooJL,KimDD,SchwierAN,LiR,McNeillVF.63. 2013. Aqueous aerosol SOA formation: impact on aerosol physical properties.Faraday Discuss165:357–67[Google Scholar]
    64. HolbenBN,EckTF,SlutskerI,TanréD,BuisJP,SetzerA.64.  et al.1998. AERONET—a federated instrument network and data archive for aerosol characterization.Remote Sens. Environ.66:1–16[Google Scholar]
    65. WangX,HealdCL,SedlacekAJ,de SáSS,MartinST.65.  et al.2016. Deriving brown carbon from multi-wavelength absorption measurements: Method and application to AERONET and surface observations.Atmos. Chem. Phys.16:12733–52[Google Scholar]
    66. ChungCE,RamanathanV,DecremerD.66. 2012. Observationally constrained estimates of carbonaceous aerosol radiative forcing.PNAS109:2911624–29[Google Scholar]
    67. TwomeyS.67. 1977. The influence of pollution on the shortwave albedo of clouds.J. Atmos. Sci.34:1149–52[Google Scholar]
    68. AlbrechtBA.68. 1989. Aerosols, cloud microphysics, and fractional cloudiness.Science245:49231227–30[Google Scholar]
    69. SeinfeldJH,BrethertonC,CarslawKS,CoeH,DeMottPJ.69.  et al.2016. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system.PNAS113:215781–90[Google Scholar]
    70. KarydisVA,CappsSL,RussellAG,NenesA.70. 2012. Adjoint sensitivity of global cloud droplet number to aerosol and dynamical parameters.Atmos. Chem. Phys.12:199041–55[Google Scholar]
    71. KohlerH.71. 1936. The nucleus in and the growth of hygroscopic droplets.Trans. Faraday Soc.32:1152–61[Google Scholar]
    72. DusekU,FrankGP,HildebrandtL,CurtiusJ,SchneiderJ.72.  et al.2006. Size matters more than chemistry for cloud-nucleating ability of aerosol particles.Science312:57781375–78[Google Scholar]
    73. PettersMD,KreidenweisSM.73. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity.Atmos. Chem. Phys.7:81961–71[Google Scholar]
    74. NenesA,CharlsonRJ,FacchiniMC,KulmalaM,LaaksonenA,SeinfeldJH.74. 2002. Can chemical effects on cloud droplet number rival the first indirect effect?.Geophys. Res. Lett.29:171848[Google Scholar]
    75. Asa-AwukuA,NenesA.75. 2007. Effect of solute dissolution kinetics on cloud droplet formation: extended Köhler theory.J. Geophys. Res.112:D221–10[Google Scholar]
    76. McNeillVF,SareenN,SchwierAN.76. 2014. Surface-active organics in atmospheric aerosols.Top. Curr. Chem.339:201–59[Google Scholar]
    77. GérardVMF,NozièreB,BaduelC,FineL,FrossardAA,CohenRC.77. 2016. Anionic, cationic, and non-ionic surfactants in atmospheric aerosols from the Baltic coast at Askö, Sweden: implications for cloud droplet activation.Environ. Sci. Technol.50:2974–82[Google Scholar]
    78. KulmalaM,LaaksonenA,KorhonenP,VesalaT,AhonenT,BarrettJC.78. 1993. The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation.J. Geophys. Res.98:D1222949[Google Scholar]
    79. ToppingD,ConnollyP,McFiggansG.79. 2013. Cloud droplet number enhanced by co-condensation of organic vapours.Nat. Geosci.6:61–4[Google Scholar]
    80. SareenN,SchwierAN,LathemTL,NenesA,McNeillVF.80. 2013. Surfactants from the gas phase may promote cloud droplet formation.PNAS110:82723–28[Google Scholar]
    81. SorjamaaR,SvenningssonB,RaatikainenT,HenningS,BildeM,LaaksonenA.81. 2004. The role of surfactants in Köhler theory reconsidered.Atmos. Chem. Phys.4:2107–17[Google Scholar]
    82. LiZ,WilliamsAL,RoodMJ.82. 1998. Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute.J. Atmos. Sci.55:101859–66[Google Scholar]
    83. BzdekBR,PowerRM,SimpsonSH,ReidJP,RoyallCP.83. 2016. Precise, contactless measurements of the surface tension of picolitre aerosol droplets.Chem. Sci.7:1274–85[Google Scholar]
    84. RuehlCR,ChuangPY,NenesA.84. 2010. Aerosol hygroscopicity at high (99 to 100%) relative humidities.Atmos. Chem. Phys.10:31329–44[Google Scholar]
    85. RuehlCR,ChuangPY,NenesA,CappaCD,KolesarKR,GoldsteinAH.85. 2012. Strong evidence of surface tension reduction in microscopic aqueous droplets.Geophys. Res. Lett.39:23L23801[Google Scholar]
    86. RuehlCR,DaviesJF,WilsonKR,KöhlerH,PettersMD.86.  et al.2016. An interfacial mechanism for cloud droplet formation on organic aerosols.Science351:62801447–50[Google Scholar]
    87. PruppacherHR,KlettJD.87. 2010.Microphysics of Clouds and Precipitation Atmospheric and Oceanographic Sciences Library18 Dordrecht, Neth.: Springer, 2nd ed..[Google Scholar]
    88. CziczoDJ,FroydKD,HooseC,JensenEJ,DiaoM.88.  et al.2013. Clarifying the dominant sources and mechanisms of cirrus cloud formation.Science340:61381320–24[Google Scholar]
    89. JohnsonKS,ZuberiB,MolinaLT,MolinaMJ,IedemaMJ.89.  et al.2005. Processing of soot in an urban environment: case study from the Mexico City metropolitan area.Atmos. Chem. Phys. Discuss.5:45585–614[Google Scholar]
    90. AbbattJPD,BenzS,CziczoDJ,KanjiZ,LohmannU,MöhlerO.90. 2006. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation.Science313:57941770–73[Google Scholar]
    91. WangB,LambeAT,MassoliP,OnaschTB,DavidovitsP.91.  et al.2012. The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: pathways for ice and mixed-phase cloud formation.J. Geophys. Res. Atmos.117:D16D16209[Google Scholar]
    92. DeMottPJ.92. 1990. An exploratory study of ice nucleation by soot aerosols.J. Appl. Meteorol.29:101072–79[Google Scholar]
    93. PrattKA,DeMottPJ,FrenchJR,WangZ,WestphalDL.93.  et al.2009. In situ detection of biological particles in cloud ice-crystals.Nat. Geosci.2:6398–401[Google Scholar]
    94. WilsonTW,LadinoLA,AlpertPA,BreckelsMN,BrooksIM.94.  et al.2015. A marine biogenic source of atmospheric ice-nucleating particles.Nature525:7568234–38[Google Scholar]
    95. DeMottPJ,HillTCJ,McCluskeyCS,PratherKA,CollinsDB.95.  et al.2015. Sea spray aerosol as a unique source of ice nucleating particles.PNAS113:215797–803[Google Scholar]
    96. KnopfDA,AlpertPA,WangB,O'BrienRE,KellyST.96.  et al.2014. Microspectroscopic imaging and characterization of individually identified ice nucleating particles from a case field study.J. Geophys. Res. Atmos.119:1710365–81[Google Scholar]
    97. CaldeiraK,BalaG,CaoL.97. 2013. The science of geoengineering.Annu. Rev. Earth Planet. Sci.41:231–56[Google Scholar]
    98. KeithDW.98. 2010. Photophoretic levitation of engineered aerosols for geoengineering.PNAS107:3816428–31[Google Scholar]
    99. PopeFD,BraesickeP,GraingerRG,KalbererM,WatsonIM.99.  et al.2012. Stratospheric aerosol particles and solar-radiation management.Nat. Clim. Chang.2:10713–19[Google Scholar]
    100. RobockA.100. 2000. Volcanic eruptions and climate.Rev. Geophys.38:2191–219[Google Scholar]
    101. ParkerD,WilsonH,JonesP,ChristyJ,FollandC.101. 1996. The impact of Mount Pinatubo on worldwide temperatures.Int. J. Climatol.16:May487–97[Google Scholar]
    102. HansenJ,SatoM,RuedyR,LacisA,AsamoahK.102.  et al.1996. A Pinatubo climate modeling investigation.The Mount Pinatubo Eruption G Fiocco, D Fua, G Visconti233–72 Berlin/Heidelberg: Springer[Google Scholar]
    103. RobockA,MarquardtA,KravitzB,StenchikovG.103. 2009. Benefits, risks, and costs of stratospheric geoengineering.Geophys. Res. Lett.36:19L19703[Google Scholar]
    104. CrutzenPJ.104. 2006. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?.Clim. Chang.77:3–4211–19[Google Scholar]
    105. 105. Natl. Acad. Sci., Eng. Med.2015.Climate Intervention Washington, DC: Natl. Acad. Press[Google Scholar]
    106. MolinaMJ,TsoTL,MolinaLT,WangFC.106. 1987. Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine.Science238:48311253–57[Google Scholar]
    107. PitariG,AquilaV,KravitzB,RobockA,WatanabeS.107.  et al.2014. Stratospheric ozone response to sulfate geoengineering: results from the geoengineering model intercomparison project (GEOMIP).J. Geophys. Res. Atmos.119:52629–53[Google Scholar]
    108. PierceJR,WeisensteinDK,HeckendornP,PeterT,KeithDW.108. 2010. Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft.Geophys. Res. Lett.37:18L18805[Google Scholar]
    109. JonesAC,HaywoodJM,JonesA.109. 2016. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection.Atmos. Chem. Phys.16:2843–62[Google Scholar]
    110. FerraroAJ,Charlton-PerezAJ,HighwoodEJ.110. 2015. Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols.J. Geophys. Res. Atmos.120:2414–29[Google Scholar]
    111. Hoegh-GuldbergO,MumbyPJ,HootenAJ,SteneckRS,GreenfieldP.111.  et al.2007. Coral reefs under rapid climate change and ocean acidification.Science318:58571737–42[Google Scholar]
    112. AlbrightR,CaldeiraL,HosfeltJ,KwiatkowskiL,MaclarenJK.112.  et al.2016. Reversal of ocean acidification enhances net coral reef calcification.Nature531:7594362–65[Google Scholar]
    113. 113. UNEP.2010.Decision adopted by the Conference of the Parties to the Convention on Biological Diversity at its tenth meeting Conf. Parties Conv. Biol. Divers., Oct. 18–29, Nagoya, Jpn., UNEP/CBD/COP/DEC/X/33.https://www.cbd.int/doc/decisions/cop-10/cop-10-dec-33-en.pdf[Google Scholar]
    114. JimenezJL,CanagaratnaMR,DonahueNM,PrevotASH,ZhangQ.114.  et al.2009. Evolution of organic aerosols in the atmosphere.Science326:59591525–29[Google Scholar]
    115. HäkkinenSAK,McNeillVF,RiipinenIA.115. 2014. Effect of inorganic salts on the volatility of organic acids.Environ. Sci. Technol.48:2313718–26[Google Scholar]
    116. DrozdG,WooJ,HäkkinenSAK,NenesA,McNeillVF.116. 2014. Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility.Atmos. Chem. Phys.14:5205–15[Google Scholar]
    117. ZhangR,KhalizovAF,PagelsJ,ZhangD,XueH,McMurryPH.117. 2008. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing.PNAS105:3010291–96[Google Scholar]
    118. LaskinA,WietsmaTW,KruegerBJ,GrassianVH.118. 2005. Heterogeneous chemistry of individual mineral dust particles with nitric acid: a combined CCSEM/EDX, ESEM, and ICP-MS study.J. Geophys. Res.110:D10D10208[Google Scholar]
    119. WooJL.119. 2014.Gas-aerosol model for mechanism analysis: kinetic prediction of gas- and aqueous-phase chemistry of atmospheric aerosols PhD Thesis, Columbia Univ New York:[Google Scholar]
    120. JayneJT,LeardDC,ZhangX,DavidovitsP,SmithKA.120.  et al.2000. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles.Aerosol Sci. Technol.33:1–249–70[Google Scholar]
    121. Lopez-HilfikerFD,MohrC,EhnM,RubachF,KleistE.121.  et al.2014. A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO).Atmos. Meas. Tech.7:983–1001[Google Scholar]
    122. WilliamsBJ,GoldsteinAH,MilletDB,HolzingerR,KreisbergNM.122.  et al.2007. Chemical speciation of organic aerosol during the international consortium for atmospheric research on transport and transformation 2004: results from in situ measurements.J. Geophys. Res.112:D101–14[Google Scholar]
    123. GardE,MayerJE,MorricalBD,DienesT,FergensonDP,PratherKA.123. 1997. Real-time analysis of individual atmospheric aerosol particles: design and performance of a portable ATOFMS.Anal. Chem.69:204083–91[Google Scholar]
    124. RussellLM,BahadurR,ZiemannPJ.124. 2011. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles.PNAS108:93516–21[Google Scholar]
    125. IsaacmanG,KreisbergNM,YeeLD,WortonDR,ChanAWH.125.  et al.2014. Online derivatization for hourly measurements of gas- and particle-phase semi-volatile oxygenated organic compounds by thermal desorption aerosol gas chromatography (SV-TAG).Atmos. Meas. Tech.7:124417–29[Google Scholar]
    126. KulmalaM,KontkanenJ,JunninenH,LehtipaloK,ManninenHE.126.  et al.2013. Direct observations of atmospheric aerosol nucleation.Science339:6122943–46[Google Scholar]
    127. RobertsGC,NenesA.127. 2005. A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements.Aerosol Sci. Technol.39:3206–21[Google Scholar]
    128. Abo RiziqA,ErlickC,DinarE,RudichY.128. 2007. Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy.Atmos. Chem. Phys.7:61523–36[Google Scholar]
    129. LeeAKY,WillisMD,HealyRM,OnaschTB,AbbattJPD.129. 2015. Mixing state of carbonaceous aerosol in an urban environment: single particle characterization using the soot particle aerosol mass spectrometer (SP-AMS).Atmos. Chem. Phys.15:41823–41[Google Scholar]
    130. SharmaN,ArnoldIJ,MoosmüllerH,ArnottWP,MazzoleniC.130. 2013. Photoacoustic and nephelometric spectroscopy of aerosol optical properties with a supercontinuum light source.Atmos. Meas. Tech.6:3501–13[Google Scholar]
    131. ÄijäläM,HeikkinenL,FröhlichR,CanonacoF,PrévôtASH.131.  et al.2017. Resolving anthropogenic aerosol pollution types—deconvolution and exploratory classification of pollution events.Atmos. Chem. Phys.17:3165–97[Google Scholar]
    132. MonteleoniC,SchmidtGA,McQuadeS.132. 2013. Climate informatics: accelerating discovering in climate science with machine learning.Comput. Sci. Eng.15:532–40[Google Scholar]
    133. TurányiT,TomlinAS.133. 2014.Analysis of Kinetic Reaction Mechanisms Berlin/Heidelberg: Springer-Verlag[Google Scholar]
    134. KarplusVJ,XiliangZ,Chiao-TingL,MingweiL,SelinN.134.  et al.2015.Double Impact: Why China Needs Coordinated Air Quality and Climate Strategies Paulson Pap. Energy Environ Chicago: Paulson Insthttp://www.paulsoninstitute.org/wp-content/uploads/2015/04/PPEE_Air-and-Climate_-Karplus_English.pdf[Google Scholar]
    135. WangG,ZhangR,GomezME,YangL,ZamoraML.135.  et al.2016. Persistent sulfate formation from London Fog to Chinese haze.PNAS113:4813630–35[Google Scholar]
    136. ChengY,ZhengG,WeiC,MuQ,ZhengB.136.  et al.2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China.Sci. Adv.2:12e1601530[Google Scholar]
    137. 137. Natl. Acad. Sci., Eng. Med.2016.The Future of Atmospheric Chemistry Research Washington, DC: Natl. Acad. Sci.[Google Scholar]
    138. BrauerM,FreedmanG,FrostadJ,van DonkelaarA,MartinRV.138.  et al.2016. Ambient air pollution exposure estimation for the global burden of disease 2013.Environ. Sci. Technol.50:179–88[Google Scholar]
    139. FannN,LamsonAD,AnenbergSC,WessonK,RisleyD,HubbellBJ.139 2012. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone.Risk Anal32:181–95[Google Scholar]
    140. BurnettRT,Arden PopeC,EzzatiM,OlivesC,LimSS.140.  et al.2014. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure.Environ. Health Perspect.122:4397–403[Google Scholar]
    141. OudinA,BråbäckL,ÅströmDO,StrömgrenM,ForsbergB.141. 2016. Association between neighbourhood air pollution concentrations and dispensed medication for psychiatric disorders in a large longitudinal cohort of Swedish children and adolescents.BMJ Open6:6e010004[Google Scholar]
    142. DrakakiE,DessiniotiC,AntoniouCV.142. 2014. Air pollution and the skin.Front. Environ. Sci.2:11[Google Scholar]
    143. SrámR.143. 1999. Impact of air pollution on reproductive health.Environ. Health Perspect.107:11A542–43[Google Scholar]
    144. AkhtarUS,McWhinneyRD,RastogiN,AbbattJPD,EvansGJ,ScottJA.144. 2010. Cytotoxic and proinflammatory effects of ambient and source-related particulate matter (PM) in relation to the production of reactive oxygen species (ROS) and cytokine adsorption by particles.Inhal. Toxicol.22:Suppl. 237–47[Google Scholar]
    145. LinY-H,ArashiroM,MartinE,ChenY,ZhangZ.145.  et al.2016. Isoprene-derived secondary organic aerosol induces the expression of oxidative stress response genes in human lung cells.Environ. Sci. Technol. Lett.3:6250–54[Google Scholar]
    146. McWhinneyRD,GaoSS,ZhouS,AbbattJPD.146. 2011. Evaluation of the effects of ozone oxidation on redox cycling activity of two-stroke engine exhaust particles.Environ. Sci. Technol.45:62131–36[Google Scholar]
    147. LiaoH,SeinfeldJH,AdamsPJ,MickleyLJ.147. 2004. Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model.J. Geophys. Res.109:D16D16207[Google Scholar]
    148. LiaoH,AdamsPJ,ChungSH,SeinfeldJH,MickleyLJ,JacobDJ.148. 2003. Interactions between tropospheric chemistry and aerosols in a unified general circulation model.J. Geophys. Res.108:D14001[Google Scholar]
    149. HuneeusN,SchulzM,BalkanskiY,GriesfellerJ,ProsperoJ.149.  et al.2011. Global dust model intercomparison in AEROCOM phase I.Atmos. Chem. Phys.11:157781–816[Google Scholar]
    150. O'DowdCD,de LeeuwG.150. 2007. Marine aerosol production: a review of the current knowledge.Philos. Trans. A. Math. Phys. Eng. Sci.365:18561753–74[Google Scholar]
    151. BondTC,StreetsDG,YarberKF,NelsonSM,WooJ,KlimontZ.151. 2004. A technology-based global inventory of black and organic carbon emissions from combustion.J. Geophys. Res.109:D14D14203[Google Scholar]
    152. SpracklenDV,JimenezJL,CarslawKS,WorsnopDR,EvansMJ.152.  et al.2011. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget.Atmos. Chem. Phys.11:2312109–36[Google Scholar]

    knowable magazine Teen Brain Bootcamp Special

    Read the latest from
    Knowable Magazine

    knowable magazine from Annual Reviews



    Climate Resource Center, Article Collection from Annual Reviews





    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-chembioeng-060816-101538
    10.1146/annurev-chembioeng-060816-101538
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp