Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Open Access

Fluid Dynamics of Respiratory Infectious Diseases

  • Lydia Bourouiba1
  • The Fluid Dynamics of Disease Transmission Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; email:[email protected]
  • Vol. 23:547-577(Volume publication date July 2021)
  • Copyright © 2021 by Annual Reviews.
    This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See credit lines of images or other third-party material in this article for license information

Abstract

The host-to-host transmission of respiratory infectious diseases is fundamentally enabled by the interaction of pathogens with a variety of fluids (gas or liquid) that shape pathogen encapsulation and emission, transport and persistence in the environment, and new host invasion and infection. Deciphering the mechanisms and fluid properties that govern and promote these steps of pathogen transmission will enable better risk assessment and infection control strategies, and may reveal previously underappreciated ways in which the pathogens might actually adapt to or manipulate the physical and chemical characteristics of these carrier fluids to benefit their own transmission. In this article, I review our current understanding of the mechanisms shaping the fluid dynamics of respiratory infectious diseases.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-bioeng-111820-025044
    2021-07-13
    2025-11-27
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/bioeng/23/1/annurev-bioeng-111820-025044.html?itemId=/content/journals/10.1146/annurev-bioeng-111820-025044&mimeType=html&fmt=ahah

    Literature Cited

    1. 1. 
      DongE,DuH,GardnerL.2020. An interactive web-based dashboard to track COVID-19 in real time.Lancet Infect. Dis.20:533–34
      [Google Scholar]
    2. 2. 
      BlantonL,DuganV,ElalA,AlabiN,BarnesJ et al.2019. Update: influenza activity—United States, September 30, 2018–February 2, 2019.Morb. Mortal. Wkly. Rep.68:125–34
      [Google Scholar]
    3. 3. 
      BrowneC,SmithR,BourouibaL.2015. From regional pulse vaccination to global disease eradication: insights from a mathematical model of poliomyelitis.J. Math. Biol.71:215–53
      [Google Scholar]
    4. 4. 
      CDC (Cent. Dis. Control Prev.)2017.Severe acute respiratory syndrome (SARS) Inf. Sheet, CDC Washington, DC:https://www.cdc.gov/sars/index.html
      [Google Scholar]
    5. 5. 
      CDC2019.Middle East respiratory syndrome (MERS)—transmission Inf. Sheet, CDC Washington, DC:http://www.cdc.gov/coronavirus/mers/about/transmission.html
      [Google Scholar]
    6. 6. 
      ShresthaS,SwerdlowD,BorseR,PrabhuV,FinelliL et al.2011. Estimating the burden of 2009 pandemic influenza A (H1N1) in the United States (April 2009–April 2010).Clin. Infect. Dis.52:75–82
      [Google Scholar]
    7. 7. 
      WHO (World Health Organ.)2018.Global Health Observatory (GHO)data—tuberculosis (TB) Inf. Sheet, WHO Geneva, Switz:https://www.who.int/gho/tb/en/
      [Google Scholar]
    8. 8. 
      Lancet Comm. Tuberc2019. Building a tuberculosis-free world.Lancet393:1331–84
      [Google Scholar]
    9. 9. 
      NathanC.2009. Taming tuberculosis: a challenge for science and society.Cell Host Microbe5:220–24
      [Google Scholar]
    10. 10. 
      CDC2017.Seasonal flu death estimate increases worldwide Press Release, CDC Washington, DC:https://www.cdc.gov/media/releases/2017/p1213-flu-death-estimate.html
      [Google Scholar]
    11. 11. 
      HelmerhorstE,OppenheimF.2007. Saliva: a dynamic proteome.J. Dent. Res.86:680–93
      [Google Scholar]
    12. 12. 
      SchipperR,SillettiE,VingerhoedsM.2007. Saliva as research material: biochemical, physicochemical and practical aspects.Arch. Oral Biol.52:1114–35
      [Google Scholar]
    13. 13. 
      BeeleyJ.1993. Fascinating families of proteins: electrophoresis of human saliva.Biochem. Soc. Trans.21:133–38
      [Google Scholar]
    14. 14. 
      HawardS,OdellJ,BerryM,HallT.2011. Extensional rheology of human saliva.Rheol. Acta50:869–79
      [Google Scholar]
    15. 15. 
      KleinstreuerC,ZhangZ.2010. Airflow and particle transport in the human respiratory system.Annu. Rev. Fluid Mech.42:301–34
      [Google Scholar]
    16. 16. 
      PedleyT.1977. Pulmonary fluid dynamics.Annu. Rev. Fluid Mech.9:229–74
      [Google Scholar]
    17. 17. 
      BourouibaL.2021. The fluid dynamics of disease transmission.Annu. Rev. Fluid Mech.53:473–508
      [Google Scholar]
    18. 18. 
      PasteurL.1861. Mémoire sur les corpuscules organisés qui existent dans l'atmosphère; examen de la doctrine de générations spontanées.Ann. Sci. Nat.16:5–98
      [Google Scholar]
    19. 19. 
      KochR.1876. Untersuchungen über Bakterien. V. Die Aetiologie der Milzbrandkrankheit, begründet auf der Entwicklungsgeschichte desBacillus anthracis.Beitr. Biol. Pflanz.2:277–310
      [Google Scholar]
    20. 20. 
      SARS Comm2006.SARS Commission Final Report, Vol. 3:The Spring of Fear Ottawa, Can: SARS Commhttp://www.archives.gov.on.ca/en/e_records/sars/report/index.html
      [Google Scholar]
    21. 21. 
      BourouibaL.2020. Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19.JAMA323:1837–38
      [Google Scholar]
    22. 22. 
      MorawskaL,CaoJ.2020. Airborne transmission of SARS-CoV-2: The world should face the reality.Environ. Int.139:105730
      [Google Scholar]
    23. 23. 
      FlüggeC.1897. Ueber die nächsten Aufgaben zur Erforschung der Verbreitungsweise der Phthise.Dtsch. Med. Wochenschr.23:665–68
      [Google Scholar]
    24. 24. 
      HirstJ1995. Bioaerosols: introduction, retrospect and prospect.Bioaerosols Handbook C Wathes, CS Cox5–14 Boca Raton, FL: CRC
      [Google Scholar]
    25. 25. 
      FlüggeC.1899. Die Verbreitung der Phthise durch staubförmiges Sputum und durch beim Husten verspritzte Tröpfchen.Z. Hyg. Infekt.30:107–24
      [Google Scholar]
    26. 26. 
      FlüggeC.1905. Ueber Luftverunreinigung, Wärmestauung und Lüftung in geschlossenen Räumen.Z. Hyg. Infekt.49:363–87
      [Google Scholar]
    27. 27. 
      FlüggeC.1908.Die Verbreitungsweise und Bekämpfung der Tuberkulose aufgrund experimenteller Untersuchungen im hygienischen Institut der Kgl. Universität Breslau 1897–1908 Leipzig, Ger: Veit
      [Google Scholar]
    28. 28. 
      FlüggeC.1897. Ueber Luftinfection.Z. Hyg. Infekt.25:179–224
      [Google Scholar]
    29. 29. 
      LaschtschenkoP.1899. Ueber Luftinfektion durch beim Husten, Niessen und Sprechen verspritzte Tröpfchen.Z. Hyg. Infekt.30:125–38
      [Google Scholar]
    30. 30. 
      HeymannB.1899. Ueber die Ausstreuung infectiöser Tröpfchen beim Husten der Phthisker.Z. Hyg. Infekt.30:139–62
      [Google Scholar]
    31. 31. 
      ZieschéH.1907. Über die quantitative Verhältnisse der Tröpfchenausbreitung durch hustende Phthisker.Z. Hyg. Infekt.50:50–82
      [Google Scholar]
    32. 32. 
      LangmuirA.1980. Changing concepts of acute contagious diseases: a reconsideration of classic epidemiologic theories.Ann. N. Y. Acad. Sci.353:35–44
      [Google Scholar]
    33. 33. 
      WellsW.1955.Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infection Cambridge, MA: Harvard Univ. Press
      [Google Scholar]
    34. 34. 
      VerreaultD,MoineauS,DuchaineC.2008. Methods for sampling of airborne viruses.Microbiol. Mol. Biol. Rev.72:413–44
      [Google Scholar]
    35. 35. 
      WellsW.1934. On air-born infection. Study II. Droplet and droplet nuclei.Am. J. Epidemiol.20:611–18
      [Google Scholar]
    36. 36. 
      HareR.1964. The transmission of respiratory infections.Proc. R. Soc. Lond.57:221–30
      [Google Scholar]
    37. 37. 
      MacherJ1999.Bioaerosols: Assessment and Control Boca Raton, FL: CRC. , 3rd ed..
      [Google Scholar]
    38. 38. 
      RomW,GarayS.2017.Tuberculosis Philadelphia: Lippincott, Williams & Wilkins. , 2nd ed..
      [Google Scholar]
    39. 39. 
      BourouibaL,DehandschoewerckerE,BushJ.2014. Violent expiratory events: on coughing and sneezing.J. Fluid Mech.745:537–63
      [Google Scholar]
    40. 40. 
      BourouibaL.2016. A sneeze.N. Engl. J. Med.375:e15
      [Google Scholar]
    41. 41. 
      JonesN,QureshiZ,TempleR,LarwoodJ,GreenhalghT et al.2020. Two metres or one: What is the evidence for physical distancing in COVID-19?.BMJ370:m3223
      [Google Scholar]
    42. 42. 
      AbkarianM,MendezS,XueN,YangF,StoneH2020. Speech can produce jet-like transport relevant to asymptomatic spreading of virus.PNAS117:412523745
      [Google Scholar]
    43. 43. 
      ChongK,NgC,HoriN,YangR,VerziccoR et al.2020. Extended lifetime of respiratory droplets in a turbulent vapour puff and its implications on airborne disease transmission.Phys. Rev. Lett126:034502
      [Google Scholar]
    44. 44. 
      MortonBR,TaylorGI,TurnerJS.1956. Turbulent gravitational convection from maintained and instantaneous sources.Proc. R. Soc. A234:1–23
      [Google Scholar]
    45. 45. 
      ScorerR.1957. Experiments on convection of isolated masses of buoyant fluid.J. Fluid Mech.2:583–94
      [Google Scholar]
    46. 46. 
      von WeismayrA.1898. Zur Frage der Verbreitung der Tuberkulose.Wien. Klin. Wochenschr.46:1039–45
      [Google Scholar]
    47. 47. 
      ClarkR,de Calcina-GoffM.2009. Some aspects of the airborne transmission of infection.J. R. Soc. Interface6:Suppl. 6S767–82
      [Google Scholar]
    48. 48. 
      RichardsonL.1926. Atmospheric diffusion shown on a distance-neighbor graph.Proc. R. Soc. Lond.110:709–37
      [Google Scholar]
    49. 49. 
      BalachandarS,ZaleskiS,SoldatiA,AhmadiG,BourouibaL.2020. Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines.Int. J. Multiphase Flow132:103439
      [Google Scholar]
    50. 50. 
      OkuboA.1971. Oceanic diffusion diagrams.Deep-Sea Res18:789–802
      [Google Scholar]
    51. 51. 
      BahlP,BhattacharjeeS,de SilvaA,DoolanC,MacIntyreC.2020. Face coverings and mask to minimise droplet dispersion and aerosolisation: a video case study.Thorax75:1024–25
      [Google Scholar]
    52. 52. 
      LindenP.1999. The fluid mechanics of natural ventilation.Annu. Rev. Fluid Mech.31:201–38
      [Google Scholar]
    53. 53. 
      BhagatR,Davies WykesM,DalzielS,LindenP.2020. Effects of ventilation on the indoor spread of COVID-19.J. Fluid Mech.903:F1
      [Google Scholar]
    54. 54. 
      ASHRAE Standing Stand. Proj. Com2019.ANSI/ASHRAE Standard 62.1-2019: ventilation for acceptable indoor air quality Tech. Rep., Am. Soc. Heat. Refrig. Air-Cond. Eng. Atlanta, GA:
      [Google Scholar]
    55. 55. 
      TangJ,LiebnerT,CravenB,SettlesG.2009. A Schlieren optical study of the human cough with and without wearing masks for aerosol infection control.J. R. Soc. Interface6:S727–36
      [Google Scholar]
    56. 56. 
      MoreyP.1994. Suggested guidance on prevention of microbial contamination for the next revision of ASHRAE Standard 62.Proceedings of IAQ'94: Engineering Indoor Environments139–48 Atlanta, GA: Am. Soc. Heat., Refrig. Air-Cond. Eng.
      [Google Scholar]
    57. 57. 
      ChuD,AklE,DudaS,SoloK,YaacoubS et al.2020. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis.Lancet395:P1973–87
      [Google Scholar]
    58. 58. 
      LiuW,TangF,FangL,De VlasS,MaH et al.2009. Risk factors for SARS infection among hospital healthcare workers in Beijing: a case control study.Trop. Med. Int. Health14:52–59
      [Google Scholar]
    59. 59. 
      OffedduV,YungC,LowM,TamC.2017. Effectiveness of masks and respirators against respiratory infections in healthcare workers: a systematic review and meta-analysis.Clin. Inf. Dis.65:1934–42
      [Google Scholar]
    60. 60. 
      WangY,TianH,ZhangL,ZhangM,GuoD et al.2020. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China.BMJ Glob. Health5:e002794
      [Google Scholar]
    61. 61. 
      MaoN2017. Nonwoven fabric filters.Fibrous Filter Media P Brown, C Cox133–71 Cambridge, UK: Woodhead
      [Google Scholar]
    62. 62. 
      GaoS,KimJ,YermakovM,ElmashaeY,HeX et al.2016. Performance of N95 FFRs against combustion and NaCl aerosols in dry and moderately humid air: manikin-based study.Ann. Occup. Hyg.60:748–60
      [Google Scholar]
    63. 63. 
      MahdaviA,HaghighatF,BahloulA,BrochotC,OstiguyC.2015. Particle loading time and humidity effects on the efficiency of an N95 filtering facepiece respirator model under constant and inhalation cyclic flows.Ann. Occup. Hyg.59:629–40
      [Google Scholar]
    64. 64. 
      RamirezJ,O'ShaughnessyP.2016. The effect of simulated air conditions on N95 filtering facepiece respirators performance.J. Occup. Environ. Hyg.13:491–500
      [Google Scholar]
    65. 65. 
      ReponenC,McKayR,HarutaH,SekarP.2010. Large particle penetration through N95 respirator filters and facepiece leaks with cyclic flow.Ann. Occup. Hyg.54:68–77
      [Google Scholar]
    66. 66. 
      RengasamyS,EimerB,ShafferR.2010. Simple respiratory protection—evaluation of the filtration performance of cloth masks and common fabric materials against 20–1000 nm size particles.Ann. Occup. Hyg.54:789–98
      [Google Scholar]
    67. 67. 
      KondaA,PrakashA,MossG,SchmoldtG,GuhaS.2020. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks.ACS Nano14:6339–47
      [Google Scholar]
    68. 68. 
      Deleted in proof
    69. 69. 
      ChaoC,WanM,MorawskaL,JohnsonG,RistovskiZ et al.2009. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening.Aerosol Sci40:122–33
      [Google Scholar]
    70. 70. 
      HanZ,WengW,HuangQ.2013. Characterizations of particle size distribution of the droplets exhaled by sneeze.J. R. Soc.10:20130560
      [Google Scholar]
    71. 71. 
      Deleted in proof
    72. 72. 
      Deleted in proof
    73. 73. 
      ZayasG,ChiangM,WongE,MacDonaldF,LangeC et al.2012. Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management.BMC Pulm. Med.12:11
      [Google Scholar]
    74. 74. 
      LeeJ,YooD,RyuS,HamS,LeeK et al.2019. Quantity, size distribution, and characteristics of cough-generated aerosol produced by patients with an upper respiratory tract infection.Aerosol Air Qual. Res.19:840–53
      [Google Scholar]
    75. 75. 
      YangS,LeeGWM,ChenCM,WuCC,YuKP.2007. The size and concentration of droplets generated by coughing in human subjects.J. Aerosol Med.20:484–94
      [Google Scholar]
    76. 76. 
      AsadiS,WexlerA,CappaC,BarredaS,BouvierN et al.2019. Aerosol emission and superemission during human speech increases with voice loudness.Sci. Rep.9:2348
      [Google Scholar]
    77. 77. 
      MorawskaL,JohnsonGR,RistovskiZD,HargreavesM,MengersenK et al.2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities.J. Aerosol Sci.40:256–69
      [Google Scholar]
    78. 78. 
      DuguidJ.1945. The numbers and the sites of origin of the droplets expelled during expiratory activities.Edinb. Med. J.52:385–401
      [Google Scholar]
    79. 79. 
      JohnsonG,MorawskaL,RistovskiZ,HargreavesM,MengersenK et al.2011. Modality of human expired aerosol size distributions.J. Aerosol Sci.42:839–51
      [Google Scholar]
    80. 80. 
      Deleted in proof
    81. 81. 
      ChengY,WangC,YouS,HsiehN,ChenW et al.2016. Assessing coughing-induced influenza droplet transmission and implications for infection risk control.Epidemiol. Infect.144:333–45
      [Google Scholar]
    82. 82. 
      Deleted in proof
    83. 83. 
      FabianP,McDevittJ,DeHaanW,FungR,CowlingB et al.2008. Influenza virus in human exhaled breath: an observational study.PLOS ONE3:e2691
      [Google Scholar]
    84. 84. 
      HolmgrenH,GerthE,LjungströmE,LarssonP,AlmstrandA et al.2013. Effects of breath holding at low and high lung volumes on amount of exhaled particles.Respir. Physiol. Neurobiol.185:228–34
      [Google Scholar]
    85. 85. 
      LindsleyW,PearceT,HudnallJ,DavisK,DavisS et al.2012. Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness.J. Occup. Environ. Hyg.9:443–49
      [Google Scholar]
    86. 86. 
      PapineniRS,RosenthalFS.1997. The size distribution of droplets in the exhaled breath of healthy human subjects.J. Aerosol Med.10:105–16
      [Google Scholar]
    87. 87. 
      Deleted in proof
    88. 88. 
      Deleted in proof
    89. 89. 
      GeroneP,CouchR,KeeferG,DouglasR,DerrenbacherE et al.1966. Assessment of experimental and natural viral aerosols.Bacteriol. Rev.30:576–84
      [Google Scholar]
    90. 90. 
      HersenG,MoularatS,RobineE,GehinE,CorbetS et al.2008. Impact of health on particle size of exhaled respiratory aerosols: case-control study.Clean36:572–77
      [Google Scholar]
    91. 91. 
      LoudonR,RobertsR.1967. Droplet expulsion from the respiratory tract.Am. Rev. Respir. Dis.95:435–42
      [Google Scholar]
    92. 92. 
      JohnsonG,MorawskaL,RistovskiZ,HargreavesM,MengersenK et al.2011. Modality of human expired aerosol size distributions.J. Aerosol Sci.42:839–51
      [Google Scholar]
    93. 93. 
      XieX,LiY,SunH,LiuL.2009. Exhaled droplets due to talking and coughing.J. R. Soc. Interface6:Suppl. 6S703–14
      [Google Scholar]
    94. 94. 
      BaronP,WillekeK.2001.Aerosol Measurement: Principles, Techniques, and Applications New York: Wiley. , 2nd ed..
      [Google Scholar]
    95. 95. 
      BlackD,McQuayM,BoninM.1996. Laser-based techniques for particle-size measurement: a review of sizing methods and their industrial applications.Prog. Energy Combust. Sci.22:267–306
      [Google Scholar]
    96. 96. 
      TSI2012.Aerodynamic Particle Sizer model 3321: theory of operation Publ. P/N 5001469 Rev. A TSI Shoreview, MN:https://www.tsi.com/getmedia/26cd9e57-9050-4a57-a442-3ec3a4338808/3321%20Operation%20brochure%20A4-5001469_WEB?ext=.pdf
      [Google Scholar]
    97. 97. 
      AlsvedM,BourouibaL,DuchaineC,LöndahlJ,MarrL et al.2020. Natural sources and experimental generation of bioaerosols: challenges and perspectives.Aerosol Sci. Technol.54:547–71
      [Google Scholar]
    98. 98. 
      ZaninM,BaviskarP,WebsterR,WebbyR.2016. The interaction between respiratory pathogens and mucus.Cell Host Microbe19:159–68
      [Google Scholar]
    99. 99. 
      RuhlC,PaskoB,KhanH,KindtL,StammC et al.2020.Mycobacterium tuberculosis sulfolipid-1 activates nociceptive neurons and induces cough.Cell181:293305.e11
      [Google Scholar]
    100. 100. 
      RubinB.2010. The role of mucus in cough research.Lung188:69–72
      [Google Scholar]
    101. 101. 
      VillermauxE.2007. Fragmentation.Annu. Rev. Fluid Mech.39:419–46
      [Google Scholar]
    102. 102. 
      VillermauxE.2020. Fragmentation versus cohesion.J. Fluid Mech.898:P1
      [Google Scholar]
    103. 103. 
      EggersJ,VillermauxE.2008. Physics of liquid jets.Rep. Prog. Phys.71:036601
      [Google Scholar]
    104. 104. 
      LefebvreAH,McDonellVG.2017.Atomization and Sprays Boca Raton, FL: CRC. , 2nd ed..
      [Google Scholar]
    105. 105. 
      BourouibaL.2013. Understanding the transmission of H5N1.CAB Rev8:1–8
      [Google Scholar]
    106. 106. 
      GrotbergJB.2001. Respiratory fluid mechanics and transport processes.Annu. Rev. Biomed. Eng.3:421–57
      [Google Scholar]
    107. 107. 
      WangY,BourouibaL.2018. Non-isolated drop impact on surfaces.J. Fluid Mech.835:24–44
      [Google Scholar]
    108. 108. 
      WangY,BourouibaL.2018. Unsteady sheet fragmentation: droplet sizes and speeds.J. Fluid Mech.848:946–67
      [Google Scholar]
    109. 109. 
      ScharfmanBE,TechetAH,BushJWM,BourouibaL.2016. Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets.Exp. Fluids57:24
      [Google Scholar]
    110. 110. 
      DécheletteA,BabinskyE,SojkaPE.2011. Drop size distributions. See Ref. 123479–95
    111. 111. 
      ClanetC,VillermauxE.2002. Life of a smooth liquid sheet.J. Fluid Mech.462:307–40
      [Google Scholar]
    112. 112. 
      BremondN,VillermauxE.2006. Atomization by jet impact.J. Fluid Mech.549:273–306
      [Google Scholar]
    113. 113. 
      WangY,BourouibaL.2017. Drop impact on small surfaces: thickness and velocity profiles of the expanding sheet in the air.J. Fluid Mech.814:510–34
      [Google Scholar]
    114. 114. 
      WallsP,BirdJ,BourouibaL.2014. Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them.Integr. Comp. Biol.54:1014–25
      [Google Scholar]
    115. 115. 
      PoulainS,VillermauxE,BourouibaL.2018. Aging and burst of surface bubbles.J. Fluid Mech.851:636–71
      [Google Scholar]
    116. 116. 
      ScharfmanB,TechetA.2012. Bag instabilities.Phys. Fluids24:091112
      [Google Scholar]
    117. 117. 
      BourouibaL,BushJWM2013. Drops and bubbles in the environment.Handbook of Environmental Fluid Dynamics, Vol. 1:Overview and Fundamentals HJ Fernando427–39 Boca Raton, FL: CRC
      [Google Scholar]
    118. 118. 
      PoulainS,BourouibaL.2018. Biosurfactants change the thinning of contaminated bubbles at bacteria-laden water interfaces.Phys. Rev. Lett.121:204502
      [Google Scholar]
    119. 119. 
      NéelB,VillermauxE.2018. The spontaneous puncture of thick liquid films.J. Fluid Mech.838:192–221
      [Google Scholar]
    120. 120. 
      CulickF.1960. Comments on a ruptured soap film.J. Appl. Phys.31:1128–29
      [Google Scholar]
    121. 121. 
      ClasenC,EggersJ,FontelosM,LiJ,McKinleyG2006. The beads-on-string structure of viscoelastic threads.J. Fluid Mech.556:283–308
      [Google Scholar]
    122. 122. 
      WagnerC,BourouibaL,McKinleyG.2015. An analytic solution for capillary thinning and breakup of FENE-P fluids.J. Non-Newton. Fluid Mech.218:53–61
      [Google Scholar]
    123. 123. 
      AshgrizN2011.Handbook of Atomization: Theory and Application New York: Springer
      [Google Scholar]
    124. 124. 
      WangY,BourouibaL.2021. Growth and breakup of ligaments in unsteady fragmentation.J. Fluid Mech.910:A39
      [Google Scholar]
    125. 125. 
      WangY,DandekarR,BustosN,PoulainS,BourouibaL.2018. Universal rim thickness in unsteady sheet fragmentation.Phys. Rev. Lett.120:204503
      [Google Scholar]
    126. 126. 
      OuyangW,HanJ2019. Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration.PNAS116:16240–49
      [Google Scholar]
    127. 127. 
      MbarecheH,VeilletteM,TeertstraW,KegelW,BilodeauG et al.2019. Recovery of fungal cells from air samples: a tale of loss and gain.Appl. Environ. Microbiol.85:e02941
      [Google Scholar]
    128. 128. 
      van DoremalenN,BushmakerT,MorrisD,HolbrookM,GambleA et al.2020. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1.N. Engl. J. Med.382:1564–67
      [Google Scholar]
    129. 129. 
      BeanB,MooreB,SternerB,PetersonL,GerdingD et al.1982. Survival of influenza viruses on environmental surfaces.J. Infect. Dis.146:47–51
      [Google Scholar]
    130. 130. 
      HallC.2007. The spread of influenza and other respiratory viruses: complexities and conjectures.Clin. Infect. Dis.45:353–59
      [Google Scholar]
    131. 131. 
      BlochA,OrensteinW,EwingW,SpainW,MallisonG et al.1985. Measles outbreak in a pediatric practice: airborne transmission in an office setting.Pediatrics75:676–83
      [Google Scholar]
    132. 132. 
      RemingtonP,HallW,DavisI,HeraldA,GunnR.1985. Airborne transmission of measles in a physician's office.JAMA253:1574–77
      [Google Scholar]
    133. 133. 
      LoudonR,BumgarnerL,LacyJ,CoffmanG.1969. Aerial transmission of mycobacteria.Am. Rev. Respir. Dis.100:165–71
      [Google Scholar]
    134. 134. 
      KormuthKA,LinK,PrussinA,VejeranoEP,TiwariAJ et al.2018. Influenza virus infectivity is retained in aerosols and droplets independent of relative humidity.J. Infect. Dis.218:739–47
      [Google Scholar]
    135. 135. 
      SmitherS,EastaughL,FindlayJ,LeverM.2020. Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity.Emerg. Microbes Infect.9:1415–17
      [Google Scholar]
    136. 136. 
      FearsAC,KlimstraWB,DuprexP,HartmanA,WeaverSC et al.2020. Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions. medRxiv 20063784.https://doi.org/10.1101/2020.04.13.20063784
      [Crossref]
    137. 137. 
      ChinA,ChuJ,PereraM,HuiK,YenHL et al.2020. Stability of SARS-CoV-2 in different environmental conditions.Lancet Microbe1:e10
      [Google Scholar]
    138. 138. 
      MatsonM,YindaC,SeifertS,BushmakerT,FischerR et al.2020. Effect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputum.Emerg. Infect. Dis.26:2276–78
      [Google Scholar]
    139. 139. 
      RiddellS,GoldieS,HillA,EaglesD,DrewT2020. The effect of temperature on persistence of SARS-CoV-2 on common surfaces.Virol. J.17:145
      [Google Scholar]
    140. 140. 
      ChanKH,SridharS,ZhangR,ChuH,FungAYF et al.2020. Factors affecting stability and infectivity of SARS-CoV-2.J. Hosp. Infect.106:226–31
      [Google Scholar]
    141. 141. 
      SonkinLS.1951. The role of particle size in experimental airborne infection.Am. J. Hyg.53:337–54
      [Google Scholar]
    142. 142. 
      MajumderMS,BrownsteinJS,FinkelsteinSN,LarsonRC,BourouibaL.2017. Nosocomial amplification of MERS-coronavirus in South Korea, 2015.Trans. R. Soc. Trop. Med. Hyg.111:261–69
      [Google Scholar]
    143. 143. 
      LevyS,AlladinaJ,HibbertK,HarrisR,BajwaE et al.2016. High-flow oxygen therapy and other inhaled therapies in intensive care units.Lancet387:1867–78
      [Google Scholar]
    /content/journals/10.1146/annurev-bioeng-111820-025044
    Loading
    Fluid Dynamics of Respiratory Infectious Diseases
    Annual Review of Biomedical Engineering23, 547 (2021);https://doi.org/10.1146/annurev-bioeng-111820-025044
    /content/journals/10.1146/annurev-bioeng-111820-025044
    /content/journals/10.1146/annurev-bioeng-111820-025044
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/bioeng
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-bioeng-111820-025044
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. 1. 
      DongE,DuH,GardnerL.2020. An interactive web-based dashboard to track COVID-19 in real time.Lancet Infect. Dis.20:533–34
      [Google Scholar]
    2. 2. 
      BlantonL,DuganV,ElalA,AlabiN,BarnesJ et al.2019. Update: influenza activity—United States, September 30, 2018–February 2, 2019.Morb. Mortal. Wkly. Rep.68:125–34
      [Google Scholar]
    3. 3. 
      BrowneC,SmithR,BourouibaL.2015. From regional pulse vaccination to global disease eradication: insights from a mathematical model of poliomyelitis.J. Math. Biol.71:215–53
      [Google Scholar]
    4. 4. 
      CDC (Cent. Dis. Control Prev.)2017.Severe acute respiratory syndrome (SARS) Inf. Sheet, CDC Washington, DC:https://www.cdc.gov/sars/index.html
      [Google Scholar]
    5. 5. 
      CDC2019.Middle East respiratory syndrome (MERS)—transmission Inf. Sheet, CDC Washington, DC:http://www.cdc.gov/coronavirus/mers/about/transmission.html
      [Google Scholar]
    6. 6. 
      ShresthaS,SwerdlowD,BorseR,PrabhuV,FinelliL et al.2011. Estimating the burden of 2009 pandemic influenza A (H1N1) in the United States (April 2009–April 2010).Clin. Infect. Dis.52:75–82
      [Google Scholar]
    7. 7. 
      WHO (World Health Organ.)2018.Global Health Observatory (GHO)data—tuberculosis (TB) Inf. Sheet, WHO Geneva, Switz:https://www.who.int/gho/tb/en/
      [Google Scholar]
    8. 8. 
      Lancet Comm. Tuberc2019. Building a tuberculosis-free world.Lancet393:1331–84
      [Google Scholar]
    9. 9. 
      NathanC.2009. Taming tuberculosis: a challenge for science and society.Cell Host Microbe5:220–24
      [Google Scholar]
    10. 10. 
      CDC2017.Seasonal flu death estimate increases worldwide Press Release, CDC Washington, DC:https://www.cdc.gov/media/releases/2017/p1213-flu-death-estimate.html
      [Google Scholar]
    11. 11. 
      HelmerhorstE,OppenheimF.2007. Saliva: a dynamic proteome.J. Dent. Res.86:680–93
      [Google Scholar]
    12. 12. 
      SchipperR,SillettiE,VingerhoedsM.2007. Saliva as research material: biochemical, physicochemical and practical aspects.Arch. Oral Biol.52:1114–35
      [Google Scholar]
    13. 13. 
      BeeleyJ.1993. Fascinating families of proteins: electrophoresis of human saliva.Biochem. Soc. Trans.21:133–38
      [Google Scholar]
    14. 14. 
      HawardS,OdellJ,BerryM,HallT.2011. Extensional rheology of human saliva.Rheol. Acta50:869–79
      [Google Scholar]
    15. 15. 
      KleinstreuerC,ZhangZ.2010. Airflow and particle transport in the human respiratory system.Annu. Rev. Fluid Mech.42:301–34
      [Google Scholar]
    16. 16. 
      PedleyT.1977. Pulmonary fluid dynamics.Annu. Rev. Fluid Mech.9:229–74
      [Google Scholar]
    17. 17. 
      BourouibaL.2021. The fluid dynamics of disease transmission.Annu. Rev. Fluid Mech.53:473–508
      [Google Scholar]
    18. 18. 
      PasteurL.1861. Mémoire sur les corpuscules organisés qui existent dans l'atmosphère; examen de la doctrine de générations spontanées.Ann. Sci. Nat.16:5–98
      [Google Scholar]
    19. 19. 
      KochR.1876. Untersuchungen über Bakterien. V. Die Aetiologie der Milzbrandkrankheit, begründet auf der Entwicklungsgeschichte desBacillus anthracis.Beitr. Biol. Pflanz.2:277–310
      [Google Scholar]
    20. 20. 
      SARS Comm2006.SARS Commission Final Report, Vol. 3:The Spring of Fear Ottawa, Can: SARS Commhttp://www.archives.gov.on.ca/en/e_records/sars/report/index.html
      [Google Scholar]
    21. 21. 
      BourouibaL.2020. Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19.JAMA323:1837–38
      [Google Scholar]
    22. 22. 
      MorawskaL,CaoJ.2020. Airborne transmission of SARS-CoV-2: The world should face the reality.Environ. Int.139:105730
      [Google Scholar]
    23. 23. 
      FlüggeC.1897. Ueber die nächsten Aufgaben zur Erforschung der Verbreitungsweise der Phthise.Dtsch. Med. Wochenschr.23:665–68
      [Google Scholar]
    24. 24. 
      HirstJ1995. Bioaerosols: introduction, retrospect and prospect.Bioaerosols Handbook C Wathes, CS Cox5–14 Boca Raton, FL: CRC
      [Google Scholar]
    25. 25. 
      FlüggeC.1899. Die Verbreitung der Phthise durch staubförmiges Sputum und durch beim Husten verspritzte Tröpfchen.Z. Hyg. Infekt.30:107–24
      [Google Scholar]
    26. 26. 
      FlüggeC.1905. Ueber Luftverunreinigung, Wärmestauung und Lüftung in geschlossenen Räumen.Z. Hyg. Infekt.49:363–87
      [Google Scholar]
    27. 27. 
      FlüggeC.1908.Die Verbreitungsweise und Bekämpfung der Tuberkulose aufgrund experimenteller Untersuchungen im hygienischen Institut der Kgl. Universität Breslau 1897–1908 Leipzig, Ger: Veit
      [Google Scholar]
    28. 28. 
      FlüggeC.1897. Ueber Luftinfection.Z. Hyg. Infekt.25:179–224
      [Google Scholar]
    29. 29. 
      LaschtschenkoP.1899. Ueber Luftinfektion durch beim Husten, Niessen und Sprechen verspritzte Tröpfchen.Z. Hyg. Infekt.30:125–38
      [Google Scholar]
    30. 30. 
      HeymannB.1899. Ueber die Ausstreuung infectiöser Tröpfchen beim Husten der Phthisker.Z. Hyg. Infekt.30:139–62
      [Google Scholar]
    31. 31. 
      ZieschéH.1907. Über die quantitative Verhältnisse der Tröpfchenausbreitung durch hustende Phthisker.Z. Hyg. Infekt.50:50–82
      [Google Scholar]
    32. 32. 
      LangmuirA.1980. Changing concepts of acute contagious diseases: a reconsideration of classic epidemiologic theories.Ann. N. Y. Acad. Sci.353:35–44
      [Google Scholar]
    33. 33. 
      WellsW.1955.Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infection Cambridge, MA: Harvard Univ. Press
      [Google Scholar]
    34. 34. 
      VerreaultD,MoineauS,DuchaineC.2008. Methods for sampling of airborne viruses.Microbiol. Mol. Biol. Rev.72:413–44
      [Google Scholar]
    35. 35. 
      WellsW.1934. On air-born infection. Study II. Droplet and droplet nuclei.Am. J. Epidemiol.20:611–18
      [Google Scholar]
    36. 36. 
      HareR.1964. The transmission of respiratory infections.Proc. R. Soc. Lond.57:221–30
      [Google Scholar]
    37. 37. 
      MacherJ1999.Bioaerosols: Assessment and Control Boca Raton, FL: CRC. , 3rd ed..
      [Google Scholar]
    38. 38. 
      RomW,GarayS.2017.Tuberculosis Philadelphia: Lippincott, Williams & Wilkins. , 2nd ed..
      [Google Scholar]
    39. 39. 
      BourouibaL,DehandschoewerckerE,BushJ.2014. Violent expiratory events: on coughing and sneezing.J. Fluid Mech.745:537–63
      [Google Scholar]
    40. 40. 
      BourouibaL.2016. A sneeze.N. Engl. J. Med.375:e15
      [Google Scholar]
    41. 41. 
      JonesN,QureshiZ,TempleR,LarwoodJ,GreenhalghT et al.2020. Two metres or one: What is the evidence for physical distancing in COVID-19?.BMJ370:m3223
      [Google Scholar]
    42. 42. 
      AbkarianM,MendezS,XueN,YangF,StoneH2020. Speech can produce jet-like transport relevant to asymptomatic spreading of virus.PNAS117:412523745
      [Google Scholar]
    43. 43. 
      ChongK,NgC,HoriN,YangR,VerziccoR et al.2020. Extended lifetime of respiratory droplets in a turbulent vapour puff and its implications on airborne disease transmission.Phys. Rev. Lett126:034502
      [Google Scholar]
    44. 44. 
      MortonBR,TaylorGI,TurnerJS.1956. Turbulent gravitational convection from maintained and instantaneous sources.Proc. R. Soc. A234:1–23
      [Google Scholar]
    45. 45. 
      ScorerR.1957. Experiments on convection of isolated masses of buoyant fluid.J. Fluid Mech.2:583–94
      [Google Scholar]
    46. 46. 
      von WeismayrA.1898. Zur Frage der Verbreitung der Tuberkulose.Wien. Klin. Wochenschr.46:1039–45
      [Google Scholar]
    47. 47. 
      ClarkR,de Calcina-GoffM.2009. Some aspects of the airborne transmission of infection.J. R. Soc. Interface6:Suppl. 6S767–82
      [Google Scholar]
    48. 48. 
      RichardsonL.1926. Atmospheric diffusion shown on a distance-neighbor graph.Proc. R. Soc. Lond.110:709–37
      [Google Scholar]
    49. 49. 
      BalachandarS,ZaleskiS,SoldatiA,AhmadiG,BourouibaL.2020. Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines.Int. J. Multiphase Flow132:103439
      [Google Scholar]
    50. 50. 
      OkuboA.1971. Oceanic diffusion diagrams.Deep-Sea Res18:789–802
      [Google Scholar]
    51. 51. 
      BahlP,BhattacharjeeS,de SilvaA,DoolanC,MacIntyreC.2020. Face coverings and mask to minimise droplet dispersion and aerosolisation: a video case study.Thorax75:1024–25
      [Google Scholar]
    52. 52. 
      LindenP.1999. The fluid mechanics of natural ventilation.Annu. Rev. Fluid Mech.31:201–38
      [Google Scholar]
    53. 53. 
      BhagatR,Davies WykesM,DalzielS,LindenP.2020. Effects of ventilation on the indoor spread of COVID-19.J. Fluid Mech.903:F1
      [Google Scholar]
    54. 54. 
      ASHRAE Standing Stand. Proj. Com2019.ANSI/ASHRAE Standard 62.1-2019: ventilation for acceptable indoor air quality Tech. Rep., Am. Soc. Heat. Refrig. Air-Cond. Eng. Atlanta, GA:
      [Google Scholar]
    55. 55. 
      TangJ,LiebnerT,CravenB,SettlesG.2009. A Schlieren optical study of the human cough with and without wearing masks for aerosol infection control.J. R. Soc. Interface6:S727–36
      [Google Scholar]
    56. 56. 
      MoreyP.1994. Suggested guidance on prevention of microbial contamination for the next revision of ASHRAE Standard 62.Proceedings of IAQ'94: Engineering Indoor Environments139–48 Atlanta, GA: Am. Soc. Heat., Refrig. Air-Cond. Eng.
      [Google Scholar]
    57. 57. 
      ChuD,AklE,DudaS,SoloK,YaacoubS et al.2020. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis.Lancet395:P1973–87
      [Google Scholar]
    58. 58. 
      LiuW,TangF,FangL,De VlasS,MaH et al.2009. Risk factors for SARS infection among hospital healthcare workers in Beijing: a case control study.Trop. Med. Int. Health14:52–59
      [Google Scholar]
    59. 59. 
      OffedduV,YungC,LowM,TamC.2017. Effectiveness of masks and respirators against respiratory infections in healthcare workers: a systematic review and meta-analysis.Clin. Inf. Dis.65:1934–42
      [Google Scholar]
    60. 60. 
      WangY,TianH,ZhangL,ZhangM,GuoD et al.2020. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China.BMJ Glob. Health5:e002794
      [Google Scholar]
    61. 61. 
      MaoN2017. Nonwoven fabric filters.Fibrous Filter Media P Brown, C Cox133–71 Cambridge, UK: Woodhead
      [Google Scholar]
    62. 62. 
      GaoS,KimJ,YermakovM,ElmashaeY,HeX et al.2016. Performance of N95 FFRs against combustion and NaCl aerosols in dry and moderately humid air: manikin-based study.Ann. Occup. Hyg.60:748–60
      [Google Scholar]
    63. 63. 
      MahdaviA,HaghighatF,BahloulA,BrochotC,OstiguyC.2015. Particle loading time and humidity effects on the efficiency of an N95 filtering facepiece respirator model under constant and inhalation cyclic flows.Ann. Occup. Hyg.59:629–40
      [Google Scholar]
    64. 64. 
      RamirezJ,O'ShaughnessyP.2016. The effect of simulated air conditions on N95 filtering facepiece respirators performance.J. Occup. Environ. Hyg.13:491–500
      [Google Scholar]
    65. 65. 
      ReponenC,McKayR,HarutaH,SekarP.2010. Large particle penetration through N95 respirator filters and facepiece leaks with cyclic flow.Ann. Occup. Hyg.54:68–77
      [Google Scholar]
    66. 66. 
      RengasamyS,EimerB,ShafferR.2010. Simple respiratory protection—evaluation of the filtration performance of cloth masks and common fabric materials against 20–1000 nm size particles.Ann. Occup. Hyg.54:789–98
      [Google Scholar]
    67. 67. 
      KondaA,PrakashA,MossG,SchmoldtG,GuhaS.2020. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks.ACS Nano14:6339–47
      [Google Scholar]
    68. 68. 
      Deleted in proof
    69. 69. 
      ChaoC,WanM,MorawskaL,JohnsonG,RistovskiZ et al.2009. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening.Aerosol Sci40:122–33
      [Google Scholar]
    70. 70. 
      HanZ,WengW,HuangQ.2013. Characterizations of particle size distribution of the droplets exhaled by sneeze.J. R. Soc.10:20130560
      [Google Scholar]
    71. 71. 
      Deleted in proof
    72. 72. 
      Deleted in proof
    73. 73. 
      ZayasG,ChiangM,WongE,MacDonaldF,LangeC et al.2012. Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management.BMC Pulm. Med.12:11
      [Google Scholar]
    74. 74. 
      LeeJ,YooD,RyuS,HamS,LeeK et al.2019. Quantity, size distribution, and characteristics of cough-generated aerosol produced by patients with an upper respiratory tract infection.Aerosol Air Qual. Res.19:840–53
      [Google Scholar]
    75. 75. 
      YangS,LeeGWM,ChenCM,WuCC,YuKP.2007. The size and concentration of droplets generated by coughing in human subjects.J. Aerosol Med.20:484–94
      [Google Scholar]
    76. 76. 
      AsadiS,WexlerA,CappaC,BarredaS,BouvierN et al.2019. Aerosol emission and superemission during human speech increases with voice loudness.Sci. Rep.9:2348
      [Google Scholar]
    77. 77. 
      MorawskaL,JohnsonGR,RistovskiZD,HargreavesM,MengersenK et al.2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities.J. Aerosol Sci.40:256–69
      [Google Scholar]
    78. 78. 
      DuguidJ.1945. The numbers and the sites of origin of the droplets expelled during expiratory activities.Edinb. Med. J.52:385–401
      [Google Scholar]
    79. 79. 
      JohnsonG,MorawskaL,RistovskiZ,HargreavesM,MengersenK et al.2011. Modality of human expired aerosol size distributions.J. Aerosol Sci.42:839–51
      [Google Scholar]
    80. 80. 
      Deleted in proof
    81. 81. 
      ChengY,WangC,YouS,HsiehN,ChenW et al.2016. Assessing coughing-induced influenza droplet transmission and implications for infection risk control.Epidemiol. Infect.144:333–45
      [Google Scholar]
    82. 82. 
      Deleted in proof
    83. 83. 
      FabianP,McDevittJ,DeHaanW,FungR,CowlingB et al.2008. Influenza virus in human exhaled breath: an observational study.PLOS ONE3:e2691
      [Google Scholar]
    84. 84. 
      HolmgrenH,GerthE,LjungströmE,LarssonP,AlmstrandA et al.2013. Effects of breath holding at low and high lung volumes on amount of exhaled particles.Respir. Physiol. Neurobiol.185:228–34
      [Google Scholar]
    85. 85. 
      LindsleyW,PearceT,HudnallJ,DavisK,DavisS et al.2012. Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness.J. Occup. Environ. Hyg.9:443–49
      [Google Scholar]
    86. 86. 
      PapineniRS,RosenthalFS.1997. The size distribution of droplets in the exhaled breath of healthy human subjects.J. Aerosol Med.10:105–16
      [Google Scholar]
    87. 87. 
      Deleted in proof
    88. 88. 
      Deleted in proof
    89. 89. 
      GeroneP,CouchR,KeeferG,DouglasR,DerrenbacherE et al.1966. Assessment of experimental and natural viral aerosols.Bacteriol. Rev.30:576–84
      [Google Scholar]
    90. 90. 
      HersenG,MoularatS,RobineE,GehinE,CorbetS et al.2008. Impact of health on particle size of exhaled respiratory aerosols: case-control study.Clean36:572–77
      [Google Scholar]
    91. 91. 
      LoudonR,RobertsR.1967. Droplet expulsion from the respiratory tract.Am. Rev. Respir. Dis.95:435–42
      [Google Scholar]
    92. 92. 
      JohnsonG,MorawskaL,RistovskiZ,HargreavesM,MengersenK et al.2011. Modality of human expired aerosol size distributions.J. Aerosol Sci.42:839–51
      [Google Scholar]
    93. 93. 
      XieX,LiY,SunH,LiuL.2009. Exhaled droplets due to talking and coughing.J. R. Soc. Interface6:Suppl. 6S703–14
      [Google Scholar]
    94. 94. 
      BaronP,WillekeK.2001.Aerosol Measurement: Principles, Techniques, and Applications New York: Wiley. , 2nd ed..
      [Google Scholar]
    95. 95. 
      BlackD,McQuayM,BoninM.1996. Laser-based techniques for particle-size measurement: a review of sizing methods and their industrial applications.Prog. Energy Combust. Sci.22:267–306
      [Google Scholar]
    96. 96. 
      TSI2012.Aerodynamic Particle Sizer model 3321: theory of operation Publ. P/N 5001469 Rev. A TSI Shoreview, MN:https://www.tsi.com/getmedia/26cd9e57-9050-4a57-a442-3ec3a4338808/3321%20Operation%20brochure%20A4-5001469_WEB?ext=.pdf
      [Google Scholar]
    97. 97. 
      AlsvedM,BourouibaL,DuchaineC,LöndahlJ,MarrL et al.2020. Natural sources and experimental generation of bioaerosols: challenges and perspectives.Aerosol Sci. Technol.54:547–71
      [Google Scholar]
    98. 98. 
      ZaninM,BaviskarP,WebsterR,WebbyR.2016. The interaction between respiratory pathogens and mucus.Cell Host Microbe19:159–68
      [Google Scholar]
    99. 99. 
      RuhlC,PaskoB,KhanH,KindtL,StammC et al.2020.Mycobacterium tuberculosis sulfolipid-1 activates nociceptive neurons and induces cough.Cell181:293305.e11
      [Google Scholar]
    100. 100. 
      RubinB.2010. The role of mucus in cough research.Lung188:69–72
      [Google Scholar]
    101. 101. 
      VillermauxE.2007. Fragmentation.Annu. Rev. Fluid Mech.39:419–46
      [Google Scholar]
    102. 102. 
      VillermauxE.2020. Fragmentation versus cohesion.J. Fluid Mech.898:P1
      [Google Scholar]
    103. 103. 
      EggersJ,VillermauxE.2008. Physics of liquid jets.Rep. Prog. Phys.71:036601
      [Google Scholar]
    104. 104. 
      LefebvreAH,McDonellVG.2017.Atomization and Sprays Boca Raton, FL: CRC. , 2nd ed..
      [Google Scholar]
    105. 105. 
      BourouibaL.2013. Understanding the transmission of H5N1.CAB Rev8:1–8
      [Google Scholar]
    106. 106. 
      GrotbergJB.2001. Respiratory fluid mechanics and transport processes.Annu. Rev. Biomed. Eng.3:421–57
      [Google Scholar]
    107. 107. 
      WangY,BourouibaL.2018. Non-isolated drop impact on surfaces.J. Fluid Mech.835:24–44
      [Google Scholar]
    108. 108. 
      WangY,BourouibaL.2018. Unsteady sheet fragmentation: droplet sizes and speeds.J. Fluid Mech.848:946–67
      [Google Scholar]
    109. 109. 
      ScharfmanBE,TechetAH,BushJWM,BourouibaL.2016. Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets.Exp. Fluids57:24
      [Google Scholar]
    110. 110. 
      DécheletteA,BabinskyE,SojkaPE.2011. Drop size distributions. See Ref. 123479–95
    111. 111. 
      ClanetC,VillermauxE.2002. Life of a smooth liquid sheet.J. Fluid Mech.462:307–40
      [Google Scholar]
    112. 112. 
      BremondN,VillermauxE.2006. Atomization by jet impact.J. Fluid Mech.549:273–306
      [Google Scholar]
    113. 113. 
      WangY,BourouibaL.2017. Drop impact on small surfaces: thickness and velocity profiles of the expanding sheet in the air.J. Fluid Mech.814:510–34
      [Google Scholar]
    114. 114. 
      WallsP,BirdJ,BourouibaL.2014. Moving with bubbles: a review of the interactions between bubbles and the microorganisms that surround them.Integr. Comp. Biol.54:1014–25
      [Google Scholar]
    115. 115. 
      PoulainS,VillermauxE,BourouibaL.2018. Aging and burst of surface bubbles.J. Fluid Mech.851:636–71
      [Google Scholar]
    116. 116. 
      ScharfmanB,TechetA.2012. Bag instabilities.Phys. Fluids24:091112
      [Google Scholar]
    117. 117. 
      BourouibaL,BushJWM2013. Drops and bubbles in the environment.Handbook of Environmental Fluid Dynamics, Vol. 1:Overview and Fundamentals HJ Fernando427–39 Boca Raton, FL: CRC
      [Google Scholar]
    118. 118. 
      PoulainS,BourouibaL.2018. Biosurfactants change the thinning of contaminated bubbles at bacteria-laden water interfaces.Phys. Rev. Lett.121:204502
      [Google Scholar]
    119. 119. 
      NéelB,VillermauxE.2018. The spontaneous puncture of thick liquid films.J. Fluid Mech.838:192–221
      [Google Scholar]
    120. 120. 
      CulickF.1960. Comments on a ruptured soap film.J. Appl. Phys.31:1128–29
      [Google Scholar]
    121. 121. 
      ClasenC,EggersJ,FontelosM,LiJ,McKinleyG2006. The beads-on-string structure of viscoelastic threads.J. Fluid Mech.556:283–308
      [Google Scholar]
    122. 122. 
      WagnerC,BourouibaL,McKinleyG.2015. An analytic solution for capillary thinning and breakup of FENE-P fluids.J. Non-Newton. Fluid Mech.218:53–61
      [Google Scholar]
    123. 123. 
      AshgrizN2011.Handbook of Atomization: Theory and Application New York: Springer
      [Google Scholar]
    124. 124. 
      WangY,BourouibaL.2021. Growth and breakup of ligaments in unsteady fragmentation.J. Fluid Mech.910:A39
      [Google Scholar]
    125. 125. 
      WangY,DandekarR,BustosN,PoulainS,BourouibaL.2018. Universal rim thickness in unsteady sheet fragmentation.Phys. Rev. Lett.120:204503
      [Google Scholar]
    126. 126. 
      OuyangW,HanJ2019. Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration.PNAS116:16240–49
      [Google Scholar]
    127. 127. 
      MbarecheH,VeilletteM,TeertstraW,KegelW,BilodeauG et al.2019. Recovery of fungal cells from air samples: a tale of loss and gain.Appl. Environ. Microbiol.85:e02941
      [Google Scholar]
    128. 128. 
      van DoremalenN,BushmakerT,MorrisD,HolbrookM,GambleA et al.2020. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1.N. Engl. J. Med.382:1564–67
      [Google Scholar]
    129. 129. 
      BeanB,MooreB,SternerB,PetersonL,GerdingD et al.1982. Survival of influenza viruses on environmental surfaces.J. Infect. Dis.146:47–51
      [Google Scholar]
    130. 130. 
      HallC.2007. The spread of influenza and other respiratory viruses: complexities and conjectures.Clin. Infect. Dis.45:353–59
      [Google Scholar]
    131. 131. 
      BlochA,OrensteinW,EwingW,SpainW,MallisonG et al.1985. Measles outbreak in a pediatric practice: airborne transmission in an office setting.Pediatrics75:676–83
      [Google Scholar]
    132. 132. 
      RemingtonP,HallW,DavisI,HeraldA,GunnR.1985. Airborne transmission of measles in a physician's office.JAMA253:1574–77
      [Google Scholar]
    133. 133. 
      LoudonR,BumgarnerL,LacyJ,CoffmanG.1969. Aerial transmission of mycobacteria.Am. Rev. Respir. Dis.100:165–71
      [Google Scholar]
    134. 134. 
      KormuthKA,LinK,PrussinA,VejeranoEP,TiwariAJ et al.2018. Influenza virus infectivity is retained in aerosols and droplets independent of relative humidity.J. Infect. Dis.218:739–47
      [Google Scholar]
    135. 135. 
      SmitherS,EastaughL,FindlayJ,LeverM.2020. Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity.Emerg. Microbes Infect.9:1415–17
      [Google Scholar]
    136. 136. 
      FearsAC,KlimstraWB,DuprexP,HartmanA,WeaverSC et al.2020. Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions. medRxiv 20063784.https://doi.org/10.1101/2020.04.13.20063784
      [Crossref]
    137. 137. 
      ChinA,ChuJ,PereraM,HuiK,YenHL et al.2020. Stability of SARS-CoV-2 in different environmental conditions.Lancet Microbe1:e10
      [Google Scholar]
    138. 138. 
      MatsonM,YindaC,SeifertS,BushmakerT,FischerR et al.2020. Effect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputum.Emerg. Infect. Dis.26:2276–78
      [Google Scholar]
    139. 139. 
      RiddellS,GoldieS,HillA,EaglesD,DrewT2020. The effect of temperature on persistence of SARS-CoV-2 on common surfaces.Virol. J.17:145
      [Google Scholar]
    140. 140. 
      ChanKH,SridharS,ZhangR,ChuH,FungAYF et al.2020. Factors affecting stability and infectivity of SARS-CoV-2.J. Hosp. Infect.106:226–31
      [Google Scholar]
    141. 141. 
      SonkinLS.1951. The role of particle size in experimental airborne infection.Am. J. Hyg.53:337–54
      [Google Scholar]
    142. 142. 
      MajumderMS,BrownsteinJS,FinkelsteinSN,LarsonRC,BourouibaL.2017. Nosocomial amplification of MERS-coronavirus in South Korea, 2015.Trans. R. Soc. Trop. Med. Hyg.111:261–69
      [Google Scholar]
    143. 143. 
      LevyS,AlladinaJ,HibbertK,HarrisR,BajwaE et al.2016. High-flow oxygen therapy and other inhaled therapies in intensive care units.Lancet387:1867–78
      [Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special


    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-bioeng-111820-025044
    10.1146/annurev-bioeng-111820-025044
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp