Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Open Access

Visualization of Biomedical Data

  • Seán I. O'Donoghue1,2,3,Benedetta Frida Baldi2,Susan J. Clark2,Aaron E. Darling4,James M. Hogan5,Sandeep Kaur6,Lena Maier-Hein7,Davis J. McCarthy8,9,William J. Moore10,Esther Stenau7,Jason R. Swedlow10,Jenny Vuong1 andJames B. Procter10
  • 1Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Eveleigh NSW 2015, Australia; email:[email protected]2Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney NSW 2010, Australia3School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Kensington NSW 2033, Australia4The ithree Institute, University of Technology Sydney, Ultimo NSW 2007, Australia5School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane QLD, 4000, Australia6School of Computer Science and Engineering, University of New South Wales (UNSW), Kensington NSW 2033, Australia7Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany8European Bioinformatics Institute (EBI), European Molecular Biology Laboratory (EMBL), Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom9St. Vincent's Institute of Medical Research, Fitzroy VIC 3065, Australia10School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
  • Vol. 1:275-304(Volume publication date July 2018)
  • First published as a Review in Advance onMay 16, 2018
  • Copyright © 2018 Seán I. O'Donoghue et al.
    This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See credit lines of images or other third party material in this article for license information.
  • Seán I. O'Donoghue, Benedetta Frida Baldi, Susan J. Clark, Aaron E. Darling, James M. Hogan, Sandeep Kaur, Lena Maier-Hein, Davis J. McCarthy, William J. Moore, Esther Stenau, Jason R. Swedlow, Jenny Vuong, James B. Procter. 2018. Visualization of Biomedical Data.Annual Review Biomedical Data Science.1:275-304.https://doi.org/10.1146/annurev-biodatasci-080917-013424

Abstract

The rapid increase in volume and complexity of biomedical data requires changes in research, communication, and clinical practices. This includes learning how to effectively integrate automated analysis with high–data density visualizations that clearly express complex phenomena. In this review, we summarize key principles and resources from data visualization research that help address this difficult challenge. We then survey how visualization is being used in a selection of emerging biomedical research areas, including three-dimensional genomics, single-cell RNA sequencing (RNA-seq), the protein structure universe, phosphoproteomics, augmented reality–assisted surgery, and metagenomics. While specific research areas need highly tailored visualizations, there are common challenges that can be addressed with general methods and strategies. Also common, however, are poor visualization practices. We outline ongoing initiatives aimed at improving visualization practices in biomedical research via better tools, peer-to-peer learning, and interdisciplinary collaboration with computer scientists, science communicators, and graphic designers. These changes are revolutionizing how we see and think about our data.

    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-biodatasci-080917-013424
    2018-07-20
    2026-02-15

    Metrics

    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/biodatasci/1/1/annurev-biodatasci-080917-013424.html?itemId=/content/journals/10.1146/annurev-biodatasci-080917-013424&mimeType=html&fmt=ahah

    Literature Cited

    1. 1. O'DonoghueSI,GavinA-C,GehlenborgN,GoodsellDS,HérichéJ-K et al.2010. Visualizing biological data—now and in the future.Nat. Methods7:S2–4Nature Methods special issue on visualizing biological data, covering molecular biology, biomedical science, and evolution.
      [Google Scholar]
    2. 2. GraberML,FranklinN,GordonR2005. Diagnostic error in internal medicine.Arch. Intern. Med.165:1493–99
      [Google Scholar]
    3. 3. PintoA,BruneseL2010. Spectrum of diagnostic errors in radiology.World J. Radiol.2:377–83
      [Google Scholar]
    4. 4. MakaryMA,DanielM2016. Medical error—the third leading cause of death in the US.BMJ353:i2139
      [Google Scholar]
    5. 5. TufteER2009.The Visual Display of Quantitative Information Cheshire, CT: GraphicsInspirational, groundbreaking collection of historical and modern approaches to displaying quantitative data.
      [Google Scholar]
    6. 6. EvankoD2013. Data visualization: a view of every Points of View column.Methagora:A Blog from Nature Methods July 13.http://blogs.nature.com/methagora/2013/07/data-visualization-points-of-view.htmlNature Methods regularly publishes 1-page articles focused on specific visualization issues faced by life scientists.
      [Google Scholar]
    7. 7. RougierNP,DroettboomM,BournePE2014. Ten simple rules for better figures.PLOS Comput. Biol.10:e1003833Concise, practical guide to principles and tools for creating scientific figures.
      [Google Scholar]
    8. 8. MunznerT2014.Visualization Analysis and Design Boca Raton, FL: CRCComprehensive overview of data visualization principles.
      [Google Scholar]
    9. 9. CardSK,MackinlayJD,ShneidermanB1999.Readings in Information Visualization: Using Vision to Think San Francisco: Morgan KaufmannDefinitive, annotated guide to classic papers on information visualization.
      [Google Scholar]
    10. 10. BorlandD,TaylorMRII2007. Rainbow color map (still) considered harmful.IEEE Comput. Graph. Appl.27:14–17
      [Google Scholar]
    11. 11. CraftM,DobrenzB,DornbushE,HunterM,MorrisJ et al.2015. An assessment of visualization tools for patient monitoring and medical decision making.Proc. Syst. Inf. Eng. Des. Symp., 24 Apr., Charlottesville, Va212–17 New York: IEEE
      [Google Scholar]
    12. 12. LewandowskyS,SpenceI1989. The perception of statistical graphs.Sociol. Methods Res.18:200–42
      [Google Scholar]
    13. 13. KochK,McLeanJ,SegevR,FreedMA,BerryMJ 2nd et al.2006. How much the eye tells the brain.Curr. Biol.16:1428–34
      [Google Scholar]
    14. 14. HealeyCG,EnnsJT2012. Attention and visual memory in visualization and computer graphics.IEEE Trans. Vis. Comput. Graph.18:1170–88
      [Google Scholar]
    15. 15. BallR,NorthC2007. Realizing embodied interaction for visual analytics through large displays.Comput. Graph.31:380–400
      [Google Scholar]
    16. 16. ClevelandWS,DiaconisP,McGillR1982. Variables on scatterplots look more highly correlated when the scales are increased.Science216:1138–41
      [Google Scholar]
    17. 17. HeerJ,KongN,AgrawalaM2009. Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations.Proc. Int. Conf. Human Factors Comput. Syst., Boston, Mass., 4–9 Apr1303–12 New York: Assoc. Comput. Mach.
      [Google Scholar]
    18. 18. InselbergA1997. Multidimensional detective.Proc. IEEE Symp. Inf. Vis., Phoenix, Ariz., 21 Oct100–7 New York: IEEE
      [Google Scholar]
    19. 19. HegartyM2011. The cognitive science of visual‐spatial displays: implications for design.Top. Cogn. Sci.3:446–74
      [Google Scholar]
    20. 20. NielsenCB,CantorM,DubchakI,GordonD,WangT2010. Visualizing genomes: techniques and challenges.Nat. Methods7:S5–15
      [Google Scholar]
    21. 21. ProcterJB,BartonGJ,ThompsonJ,WesthofE,CreeveyC,LetunicI2010. Visualization of multiple alignments, phylogenies and gene family evolution.Nat. Methods7:S16–25
      [Google Scholar]
    22. 22. O'DonoghueSI,GoodsellDS,FrangakisAS,JossinetF,LaskowskiR et al.2010. Visualization of macromolecular structures.Nat. Methods7:S42–55
      [Google Scholar]
    23. 23. GehlenborgN,O'DonoghueSI,BaligaNS,GoesmannA,HibbsMA et al.2010. Visualization of omics data for systems biology.Nat. Methods7:S56–68
      [Google Scholar]
    24. 24. WalterT,ShattuckD,BaldockR,BastinM,CarpenterAE et al.2010. Visualization of image data from cells to organisms.Nat. Methods7:S26–41
      [Google Scholar]
    25. 25. WareC2004.Information Visualization: Perception for Design San Francisco: Morgan KaufmannOutline of key principles and methods for interactive display of visual information.
      [Google Scholar]
    26. 26. SoegaardM,Rikke FriisD2013.The Encyclopedia of Human-Computer Interaction Aarhus, Den: Interact. Des. Found 2nd ed.https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed
      [Google Scholar]
    27. 27. JohnsonGT,HertigS2014. A guide to the visual analysis and communication of biomolecular structural data.Nat. Rev. Mol. Cell Biol.15:690–98Visual analysis and communication guide for biomolecular data; also relevant to other biomedical data.
      [Google Scholar]
    28. 28. InselbergA2009.Parallel Coordinates: Visual Multidimensional Geometry and Its Applications New York: SpringerDefinitive guide to the theory and practice of using parallel coordinates to explore high-dimensional data.
      [Google Scholar]
    29. 29. LevySE,MyersRM2016. Advancements in next-generation sequencing.Annu. Rev. Genom. Hum. Genet.17:95–115
      [Google Scholar]
    30. 30. PavlopoulosGA,MalliarakisD,PapanikolaouN,TheodosiouT,EnrightAJ,IliopoulosI2015. Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future.GigaScience4:1–27
      [Google Scholar]
    31. 31. ShneidermanB1996. The eyes have it: a task by data type taxonomy for information visualizations.Proc. IEEE Symp. Vis. Lang., Boulder, Colo., 3–6 Sept.336–43 Los Alamitos, NM: IEEE Comput. Soc.
      [Google Scholar]
    32. 32. ErnstJ,KellisM2012. ChromHMM: automating chromatin-state discovery and characterization.Nat. Methods9:215–16
      [Google Scholar]
    33. 33. PabingerS,DanderA,FischerM,SnajderR,SperkM et al.2014. A survey of tools for variant analysis of next-generation genome sequencing data.Briefings Bioinform15:256–78
      [Google Scholar]
    34. 34. SchroederMP,Gonzalez-PerezA,Lopez-BigasN2013. Visualizing multidimensional cancer genomics data.Genome Med5:9
      [Google Scholar]
    35. 35. Lieberman-AidenE,van BerkumNL,WilliamsL,ImakaevM,RagoczyT et al.2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome.Science326:289–93
      [Google Scholar]
    36. 36. SerraF,Di StefanoM,SpillYG,CuarteroY,GoodstadtM et al.2015. Restraint-based three-dimensional modeling of genomes and genomic domains.FEBS Lett589:2987–95
      [Google Scholar]
    37. 37. AyF,NobleWS2015. Analysis methods for studying the 3D architecture of the genome.Genome Biol16:183
      [Google Scholar]
    38. 38. DurandNC,RobinsonJT,ShamimMS,MacholI,MesirovJP et al.2016. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom.Cell Syst3:99–101
      [Google Scholar]
    39. 39. ZhouX,LiD,LowdonRF,CostelloJF,WangT2014. methylC track: visual integration of single-base resolution DNA methylation data on the WashU EpiGenome Browser.Bioinformatics30:2206–7
      [Google Scholar]
    40. 40. KrzywinskiM,ScheinJ,BirolI,ConnorsJ,GascoyneR et al.2009. Circos: an information aesthetic for comparative genomics.Genome Res19:1639–45
      [Google Scholar]
    41. 41. TaberlayPC,Achinger-KaweckaJ,LunATL,BuskeFA,SabirKS et al.2016. Three-dimensional disorganisation of the cancer genome occurs coincident with long range genetic and epigenetic alterations.Genome Res26:719–31
      [Google Scholar]
    42. 42. ShalonD,SmithSJ,BrownPO1996. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization.Genome Res6:639–45
      [Google Scholar]
    43. 43. WillsQF,LivakKJ,TippingAJ,EnverT,GoldsonAJ et al.2013. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments.Nat. Biotechnol.31:748–52
      [Google Scholar]
    44. 44. NagalakshmiU,WangZ,WaernK,ShouC,RahaD et al.2008. The transcriptional landscape of the yeast genome defined by RNA sequencing.Science320:1344–49
      [Google Scholar]
    45. 45. GierlinskiM,ColeC,SchofieldP,SchurchNJ,SherstnevA et al.2015. Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment.Bioinformatics31:3625–30
      [Google Scholar]
    46. 46. WilkinsonL,FriendlyM2009. The history of the cluster heat map.Am. Stat.63:179–84
      [Google Scholar]
    47. 47. WongB2010. Points of view: color coding.Nat. Methods7:573
      [Google Scholar]
    48. 48. PereverzevaM,MurraySO2014. Luminance gradient configuration determines perceived lightness in a simple geometric illusion.Front. Hum. Neurosci.8:977
      [Google Scholar]
    49. 49. TrapnellC,CacchiarelliD,GrimsbyJ,PokharelP,LiS et al.2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.Nat. Biotechnol.32:381–86
      [Google Scholar]
    50. 50. CaoJ,PackerJS,RamaniV,CusanovichDA,HuynhC et al.2017. Comprehensive single-cell transcriptional profiling of a multicellular organism by combinatorial indexing.Science357:661–67
      [Google Scholar]
    51. 51. BermanH,HenrickK,NakamuraH2003. Announcing the worldwide Protein Data Bank.Nat. Struct. Biol.10:980
      [Google Scholar]
    52. 52. PettersenEF,GoddardTD,HuangCC,CouchGS,GreenblattDM et al.2004. UCSF Chimera—a visualization system for exploratory research and analysis.J. Comput. Chem.25:1605–12
      [Google Scholar]
    53. 53. KozlikovaB,KroneM,LindowN,FalkM,BaadenM et al.2015. Visualization of biomolecular structures: state of the art.Proc. Eurograph. Conf. Vis., Cagliari, Ital., 25–29 May R Borgo, F Ganovelli, I Viola61–82 Geneva: Eurograph. Assoc.
      [Google Scholar]
    54. 54. KendrewJ,DickersonR,StrandbergB,HartR,DaviesD et al.1960. Structure of myoglobin: a three-dimensional Fourier synthesis at 2 Å. resolution.Nature185:422–27
      [Google Scholar]
    55. 55. FarrugiaL2012. WinGX and ORTEP for Windows: an update.J. Appl. Crystallogr.45:849–54
      [Google Scholar]
    56. 56. ChungJC,HarrisMR,BrooksFP,FuchsH,KelleyMT et al.1989. Exploring virtual worlds with head-mounted displays.Proc. Non-Hologr. Three-Dimens. Vis. Disp. Technol., Los Angeles, Calif, 15–20 Jan SS Fisher, WE Robbins15–20 Bellingham, Wash: SPIE
      [Google Scholar]
    57. 57. HumphreyW,DalkeA,SchultenK1996. VMD: visual molecular dynamics.J. Mol. Graph.14:33–38
      [Google Scholar]
    58. 58. GilletA,SannerM,StofflerD,OlsonA2005. Tangible interfaces for structural molecular biology.Structure13:483–91
      [Google Scholar]
    59. 59. SabirKS,StolteC,TaborB,O'DonoghueSI2013. The Molecular Control Toolkit: controlling 3D molecular graphics via gesture and voice.Proc. IEEE Symp. Biol. Data Vis., Atlanta, Ga., 13–14 Oct J Roerdink, J Kennedy49–56 New York: IEEE
      [Google Scholar]
    60. 60. GilletA,SannerM,StofflerD,GoodsellD,OlsonA2004. Augmented reality with tangible auto-fabricated models for molecular biology applications.Proc. IEEE Visualization, Austin, Tex., 10–15 Oct H Rushmeier, G Turk, JJ van Wijk245–41 New York: IEEE
      [Google Scholar]
    61. 61. HeinrichJ,VuongJ,HammangCJ,WuA,RittenbruchM et al.2016. Evaluating viewpoint entropy for ribbon representation of protein structure.Comput. Graph. Forum35:181–90
      [Google Scholar]
    62. 62. LvZ,TekA,Da SilvaF,Empereur-MotC,ChaventM,BaadenM2013. Game on, science—how video game technology may help biologists tackle visualization challenges.PLOS ONE8:e57990
      [Google Scholar]
    63. 63. O'DonoghueSI,SabirKS,KalemanovM,StolteC,WellmannB et al.2015. Aquaria: simplifying discovery and insight from protein structures.Nat. Methods12:98–99
      [Google Scholar]
    64. 64. BujaA,McDonaldJA,MichalakJ,StuetzleW1991. Interactive data visualization using focusing and linking.Proc. IEEE Conf. Vis., San Diego, Calif., 22–25 Oct GM Nielson, L Rosenblum156–63 New York: IEEE
      [Google Scholar]
    65. 65. LevittM2009. Nature of the protein universe.PNAS106:11079–84
      [Google Scholar]
    66. 66. PerdigãoN,HeinrichJ,StolteC,SabirKS,BuckleyMJ et al.2015. Unexpected features of the dark proteome.PNAS112:15898–903
      [Google Scholar]
    67. 67. RysavySJ,BeckDA,DaggettV2014. Dynameomics: data‐driven methods and models for utilizing large‐scale protein structure repositories for improving fragment‐based loop prediction.Protein Sci23:1584–95
      [Google Scholar]
    68. 68. BaiX-C,McMullanG,ScheresSH2015. How cryo-EM is revolutionizing structural biology.Trends Biochem. Sci.40:49–57
      [Google Scholar]
    69. 69. JohnsonGT,AutinL,Al-AlusiM,GoodsellDS,SannerMF,OlsonAJ2015. cellPACK: a virtual mesoscope to model and visualize structural systems biology.Nat. Methods12:85–91
      [Google Scholar]
    70. 70. GhoshS,MatsuokaY,AsaiY,HsinK-Y,KitanoH2011. Software for systems biology: from tools to integrated platforms.Nat. Rev. Genet.12:821–32
      [Google Scholar]
    71. 71. KitanoH2002. Systems biology: a brief overview.Science295:1662–64
      [Google Scholar]
    72. 72. SchomburgD,MichalG2012.Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology Hoboken, NJ: Wiley
      [Google Scholar]
    73. 73. BaderGD,CaryMP,SanderC2006. Pathguide: a pathway resource list.Nucleic Acids Res34:D504–6
      [Google Scholar]
    74. 74. ShannonP,MarkielA,OzierO,BaligaNS,WangJT et al.2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks.Genome Res13:2498–504
      [Google Scholar]
    75. 75. BastianM,HeymannS,JacomyM2009. Gephi: an open source software for exploring and manipulating networks.Proc. Int. Conf. Weblogs Soc. Media, San Jose, Calif., 17–20 May361–62 Menlo Park, CA: Assoc. Adv. Artif. Intell.
      [Google Scholar]
    76. 76. KobourovSG2013. Force-directed drawing algorithms.Handbook of Graph Drawing and Visualization R Tamassia383–408 Boca Raton, FL: CRC
      [Google Scholar]
    77. 77. BarskyA,GardyJL,HancockRE,MunznerT2007. Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation.Bioinformatics23:1040–42
      [Google Scholar]
    78. 78. HoltenD,Van WijkJJ2009. Force‐directed edge bundling for graph visualization.Comput. Graph. Forum28:983–90
      [Google Scholar]
    79. 79. BarskyA,MunznerT,GardyJ,KincaidR2008. Cerebral: visualizing multiple experimental conditions on a graph with biological context.IEEE Trans. Vis. Comput. Graph.14:1253–60
      [Google Scholar]
    80. 80. ZhouH-X,RivasG,MintonAP2008. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences.Annu. Rev. Biophys.37:375–97
      [Google Scholar]
    81. 81. Von LandesbergerT,KuijperA,SchreckT,KohlhammerJ,van WijkJJ et al.2011. Visual analysis of large graphs: state‐of‐the‐art and future research challenges. Presented atComput. Graph..Forum30:1719–49
      [Google Scholar]
    82. 82. KwonO-H,CrnovrsaninT,MaK-L2017. What would a graph look like in this layout? A machine learning approach to large graph visualization.IEEE Trans. Vis. Comput. Graph24:478–88
      [Google Scholar]
    83. 83. AebersoldR,MannM2016. Mass-spectrometric exploration of proteome structure and function.Nature537:347–55
      [Google Scholar]
    84. 84. HumphreySJ,AzimifarSB,MannM2015. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics.Nat. Biotechnol.33:990–95
      [Google Scholar]
    85. 85. MaDK,StolteC,KrycerJR,JamesDE,O'DonoghueSI2015. SnapShot: insulin/IGF1 signaling.Cell161:948.e1
      [Google Scholar]
    86. 86. BurgessA,VuongJ,RogersS,MalumbresM,O'DonoghueSI2017. SnapShot: phosphoregulation of mitosis.Cell169:1358.e1
      [Google Scholar]
    87. 87. SydorAM,CzymmekKJ,PuchnerEM,MennellaV2015. Super-resolution microscopy: from single molecules to supramolecular assemblies.Trends Cell Biol25:730–48
      [Google Scholar]
    88. 88. ReynaudEG,PeychlJ,HuiskenJ,TomancakP2015. Guide to light-sheet microscopy for adventurous biologists.Nat. Methods12:30–34
      [Google Scholar]
    89. 89. WalterT,ShattuckDW,BaldockR,BastinME,CarpenterAE et al.2010. Visualization of image data from cells to organisms.Nat. Methods7:S26–41
      [Google Scholar]
    90. 90. RossnerM,YamadaKM2004. What's in a picture? The temptation of image manipulation.J. Cell Biol.166:11–15
      [Google Scholar]
    91. 91. BurelJ-M,BessonS,BlackburnC,CarrollM,FergusonRK et al.2015. Publishing and sharing multi-dimensional image data with OMERO.Mamm. Genome26:441–47
      [Google Scholar]
    92. 92. BernhardtS,NicolauSA,SolerL,DoignonC2017. The status of augmented reality in laparoscopic surgery as of 2016.Med. Image Anal.37:66–90
      [Google Scholar]
    93. 93. Maier-HeinL,VedulaSS,SpeidelS,NavabN,KikinisR et al.2017. Surgical data science for next-generation interventions.Nat. Biomed. Eng.1:691–96
      [Google Scholar]
    94. 94. DingW,NeherR2014.panX Pangenome Vis. Tool.http://pangenome.tuebingen.mpg.de/
      [Google Scholar]
    95. 95. ParksDH,PorterM,ChurcherS,WangS,BlouinC et al.2009. GenGIS: a geospatial information system for genomic data.Genome Res19:1896–904
      [Google Scholar]
    96. 96. ArgimonS,AbudahabK,GoaterRJ,FedosejevA,BhaiJ et al.2016. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography.Microb. Genom2:e000093
      [Google Scholar]
    97. 97. PatenB,NovakAM,EizengaJM,GarrisonE2017. Genome graphs and the evolution of genome inference.Genome Res27:665–76
      [Google Scholar]
    98. 98. WongB2011. Points of view: color blindness.Nat. Methods8:441
      [Google Scholar]
    99. 99. CromeyDW2010. Avoiding twisted pixels: ethical guidelines for the appropriate use and manipulation of scientific digital images.Sci. Eng. Ethics16:639–67
      [Google Scholar]
    100. 100. McGillG2008. Molecular movies… Coming to a lecture near you.Cell133:1127–32
      [Google Scholar]
    101. 101. IwasaJH2015. Bringing macromolecular machinery to life using 3D animation.Curr. Opin. Struct. Biol.31:84–88
      [Google Scholar]
    102. 102. Van NoordenR,MaherB,NuzzoR2014. The top 100 papers.Nature514:550–53
      [Google Scholar]
    103. 103. ShneidermanB,PlaisantC,CohenM,JacobsS,ElmqvistN et al.2018.Designing the User Interface: Strategies for Effective Human-Computer Interaction Boston: Pearson. , 6th ed..
      [Google Scholar]
    104. 104. SanyalJ,ZhangS,BhattacharyaG,AmburnP,MoorheadR2009. A user study to compare four uncertainty visualization methods for 1D and 2D datasets.IEEE Trans. Vis. Comput. Graph.15:1209–18
      [Google Scholar]
    105. 105. CallawayE2016. The visualizations transforming biology.Nature535:187–88
      [Google Scholar]
    106. 106. Van WijkJJ2005. The value of visualization.Proc. IEEE Visualization, Minneap., Minn., 23–28 Oct.79–86 New York: IEEE
      [Google Scholar]
    107. 107. HeerJ,BostockM2010. Crowdsourcing graphical perception: using mechanical turk to assess visualization design.Proc. CHI Conf. Human Factors Comput. Syst., Atlanta, Ga., 10–15 Apr.203–12 New York: Assoc. Comput. Mach.Groundbreaking method using Amazon's Mechanical Turk crowdsourcing platform to evaluate the effectiveness of visual encoding.
      [Google Scholar]
    108. 108. BlascheckT,KurzhalsK,RaschkeM,BurchM,WeiskopfD,ErtlT2014. State-of-the-art of visualization for eye tracking data.Proc. EuroVis Eurograph. Conf. Vis., Swansea, Wales, 9–13 June Geneva: Eurograph. Assoc.
      [Google Scholar]
    109. 109. AndersonEW,PotterKC,MatzenLE,ShepherdJF,PrestonGA,SilvaCT2011. A user study of visualization effectiveness using EEG and cognitive load.Comput. Graph. Forum30:791–800
      [Google Scholar]
    110. 110. GehlenborgN,WongB2012. Mapping quantitative data to color: data structure informs choice of color maps.Nat. Methods9:769–70
      [Google Scholar]
    111. 111. WongB2011. Points of view: avoiding color.Nat. Methods8:525
      [Google Scholar]
    112. 112. TufteER1990.Envisioning Information Chesire, CT: Graphics
      [Google Scholar]
    113. 113. GehlenborgN,WongB2012. Points of view: into the third dimension.Nat. Methods9:851
      [Google Scholar]
    114. 114. KabschW,MannherzHG,SuckD,PaiEF,HolmesKC1990. Atomic structure of the actin:DNase I complex.Nature347:37–44
      [Google Scholar]
    115. 115. HunterJD2007. Matplotlib: a 2D graphics environment.Comput. Sci. Eng.9:90–95
      [Google Scholar]
    116. 116. WickhamH2016.ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag
    117. 117. AnscombeFJ1973. Graphs in statistical analysis.Am. Statistician27:17–21
      [Google Scholar]
    118. 118. MatejkaJ,FitzmauriceG2017. Same stats, different graphs: generating datasets with varied appearance and identical statistics through simulated annealing.Proc. CHI Conf. Human Factors Comput. Syst., Denver, Colo., 6–11 May1290–94 New York: Assoc. Comput. Mach.
      [Google Scholar]
    119. 119. FryB2008.Visualizing Data: Exploring and Explaining Data with the Processing Environment Sebastopol, CA: O'Reilly Media
      [Google Scholar]
    120. 120. MorelandK2016. Why we use bad color maps and what you can do about it.IS &T Int. Symp. Electron. Imaging, San Francisco, Calif., 14–18 Feb BE Rogowitz, TN Pappas, D de Ridder1–66 Springfield, VA: Soc. Imaging Sci. Technol.
      [Google Scholar]
    121. 121. MackinlayJD1986. Automating the design of graphical presentations of relational information.ACM Trans. Graph.5:110–15
      [Google Scholar]
    122. 122. GehlenborgN,WongB2012. Points of view: heat maps.Nat. Methods9:213
      [Google Scholar]
    123. 123. YatesA,AkanniW,AmodeMR,BarrellD,BillisK et al.2015. Ensembl 2016.Nucleic Acids Res44:D710–16
      [Google Scholar]
    124. 124. DownTA,PiipariM,HubbardTJ2011. Dalliance: interactive genome viewing on the web.Bioinformatics27:889–90
      [Google Scholar]
    125. 125. RaoSS,HuntleyMH,DurandNC,StamenovaEK,BochkovID et al.2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.Cell159:1665–80
      [Google Scholar]
    126. 126. van der MaatenL,HintonG2008. Visualizing data using t-SNE.J. Mach. Learn. Res.9:2579–605
      [Google Scholar]
    127. 127. WattenbergM,ViégasF,JohnsonI2016. How to use t-SNE effectively.Distill Updated on 13 Oct. 2016.http://doi.org/10.23915/distill.00002
      [Crossref][Google Scholar]
    128. 128. HaghverdiL,BuettnerF,TheisFJ2015. Diffusion maps for high-dimensional single-cell analysis of differentiation data.Bioinformatics31:2989–98
      [Google Scholar]
    129. 129. CoifmanRR,LafonS,LeeAB,MaggioniM,NadlerB et al.2005. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps.PNAS102:7426–31
      [Google Scholar]
    130. 130. McCarthyDJ,CampbellKR,LunAT,WillsQF2017. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R.Bioinformatics33:1179–86
      [Google Scholar]
    131. 131. CampJG,SekineK,GerberT,Loeffler-WirthH,BinderH et al.2017. Multilineage communication regulates human liver bud development from pluripotency.Nature546:533–38
      [Google Scholar]
    132. 132. RichardsonJS,RichardsonD,TweedyN,GernertK,QuinnT et al.1992. Looking at proteins: representations, folding, packing, and design. Biophysical Society National Lecture, 1992.Biophys. J.63:1185–1209
      [Google Scholar]
    133. 133. HeinrichJ,KaurS,O'DonoghueSI2015. Evaluating the effectiveness of color to convey uncertainty in macromolecular structures.Proc. IEEE Symp. Big Data Visual Anal., Hobart, Aust., 22–25 Sept U Engelke, J Heinrich, T Bednarz, K Klein, QV Nguyen1–18 New York: IEEE
      [Google Scholar]
    134. 134. DosztanyiZ,CsizmokV,TompaP,SimonI2005. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content.Bioinformatics21:3433–34
      [Google Scholar]
    135. 135. RoseAS,BradleyAR,ValasatavaY,DuarteJM,PrlićA,RosePW2016. Web-based molecular graphics for large complexes.Proc. Int. Conf. Web3D Technol., 21st, Anaheim, Calif., 22–24 July185–86 New York: Assoc. Comput. Mech.
      [Google Scholar]
    136. 136. ZhaoG,PerillaJR,YufenyuyEL,MengX,ChenB et al.2013. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics.Nature497:643–46
      [Google Scholar]
    137. 137. El OmariK,De Mesmaeker JKaria D,GinnH,BhattacharyaS,ManciniEJ2012. Structure of the DNA‐bound T‐box domain of human TBX1, a transcription factor associated with the DiGeorge syndrome.Proteins80:655–60
      [Google Scholar]
    138. 138. IsbergV,MordalskiS,MunkC,RatajK,HarpsøeK et al.2015. GPCRdb: an information system for G protein-coupled receptors.Nucleic Acids Res44:D356–64
      [Google Scholar]
    139. 139. DunkerAK,LawsonJD,BrownCJ,WilliamsRM,RomeroP et al.2001. Intrinsically disordered protein.J. Mol. Graph. Model.19:26–59
      [Google Scholar]
    140. 140. HumphreySJ,YangG,YangP,FazakerleyDJ,StöckliJ et al.2013. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2.Cell Metab17:1009–20
      [Google Scholar]
    141. 141. SzklarczykD,FranceschiniA,WyderS,ForslundK,HellerD et al.2015. STRING v10: protein–protein interaction networks, integrated over the tree of life.Nucleic Acids Res43:D447–52
      [Google Scholar]
    142. 142. LuCP,HagerGD,MjolsnessE2000. Fast and globally convergent pose estimation from video images.IEEE Trans. Pattern Anal. Mach. Intell.22:610–22
      [Google Scholar]
    143. 143. PorterIM,McClellandSE,KhoudoliGA,HunterCJ,AndersenJS et al.2007. Bod1, a novel kinetochore protein required for chromosome biorientation.J. Cell Biol.179:187–97
      [Google Scholar]
    144. 144. NoldenM,ZelzerS,SeitelA,WaldD,MullerM et al.2013. The Medical Imaging Interaction Toolkit: challenges and advances: 10 years of open-source development.Int. J. Comput. Assist. Radiol. Surg.8:607–20
      [Google Scholar]
    145. 145. SimpfendörferT,BaumhauerM,MullerM,GuttCN,MeinzerHP et al.2011. Augmented reality visualization during laparoscopic radical prostatectomy.J. Endourol.25:1841–45
      [Google Scholar]
    146. 146. HanMV,ZmasekCM2009. phyloXML: XML for evolutionary biology and comparative genomics.BMC Bioinform10:356
      [Google Scholar]
    147. 147. DarlingACE,MauB,BlattnerFR,PernaNT2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements.Genome Res14:1394–403
      [Google Scholar]
    148. 148. CaporasoJG,KuczynskiJ,StombaughJ,BittingerK,BushmanFD et al.2010. QIIME allows analysis of high-throughput community sequencing data.Nat. Methods7:335–36
      [Google Scholar]
    149. 149. RodgersP,StapletonG,ChapmanP2015. Visualizing sets with linear diagrams.ACM Trans. Comput.-Hum. Interact.22:27
      [Google Scholar]
    150. 150. CaporasoJG,LauberCL,CostelloEK,Berg-LyonsD,GonzalezA et al.2011. Moving pictures of the human microbiome.Genome Biol12:R50
      [Google Scholar]
    /content/journals/10.1146/annurev-biodatasci-080917-013424
    Loading
    Visualization of Biomedical Data
    Annual Review of Biomedical Data Science1, 275 (2018);https://doi.org/10.1146/annurev-biodatasci-080917-013424
    /content/journals/10.1146/annurev-biodatasci-080917-013424
    /content/journals/10.1146/annurev-biodatasci-080917-013424
    Loading

    Data & Media loading...

    Most Read This Month

    Article
    content/journals/biodatasci
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    knowable Logo

    Science needs us — and you

    Support nonprofit Knowable Magazine and bring facts to light

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-biodatasci-080917-013424
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. 1. O'DonoghueSI,GavinA-C,GehlenborgN,GoodsellDS,HérichéJ-K et al.2010. Visualizing biological data—now and in the future.Nat. Methods7:S2–4Nature Methods special issue on visualizing biological data, covering molecular biology, biomedical science, and evolution.
      [Google Scholar]
    2. 2. GraberML,FranklinN,GordonR2005. Diagnostic error in internal medicine.Arch. Intern. Med.165:1493–99
      [Google Scholar]
    3. 3. PintoA,BruneseL2010. Spectrum of diagnostic errors in radiology.World J. Radiol.2:377–83
      [Google Scholar]
    4. 4. MakaryMA,DanielM2016. Medical error—the third leading cause of death in the US.BMJ353:i2139
      [Google Scholar]
    5. 5. TufteER2009.The Visual Display of Quantitative Information Cheshire, CT: GraphicsInspirational, groundbreaking collection of historical and modern approaches to displaying quantitative data.
      [Google Scholar]
    6. 6. EvankoD2013. Data visualization: a view of every Points of View column.Methagora:A Blog from Nature Methods July 13.http://blogs.nature.com/methagora/2013/07/data-visualization-points-of-view.htmlNature Methods regularly publishes 1-page articles focused on specific visualization issues faced by life scientists.
      [Google Scholar]
    7. 7. RougierNP,DroettboomM,BournePE2014. Ten simple rules for better figures.PLOS Comput. Biol.10:e1003833Concise, practical guide to principles and tools for creating scientific figures.
      [Google Scholar]
    8. 8. MunznerT2014.Visualization Analysis and Design Boca Raton, FL: CRCComprehensive overview of data visualization principles.
      [Google Scholar]
    9. 9. CardSK,MackinlayJD,ShneidermanB1999.Readings in Information Visualization: Using Vision to Think San Francisco: Morgan KaufmannDefinitive, annotated guide to classic papers on information visualization.
      [Google Scholar]
    10. 10. BorlandD,TaylorMRII2007. Rainbow color map (still) considered harmful.IEEE Comput. Graph. Appl.27:14–17
      [Google Scholar]
    11. 11. CraftM,DobrenzB,DornbushE,HunterM,MorrisJ et al.2015. An assessment of visualization tools for patient monitoring and medical decision making.Proc. Syst. Inf. Eng. Des. Symp., 24 Apr., Charlottesville, Va212–17 New York: IEEE
      [Google Scholar]
    12. 12. LewandowskyS,SpenceI1989. The perception of statistical graphs.Sociol. Methods Res.18:200–42
      [Google Scholar]
    13. 13. KochK,McLeanJ,SegevR,FreedMA,BerryMJ 2nd et al.2006. How much the eye tells the brain.Curr. Biol.16:1428–34
      [Google Scholar]
    14. 14. HealeyCG,EnnsJT2012. Attention and visual memory in visualization and computer graphics.IEEE Trans. Vis. Comput. Graph.18:1170–88
      [Google Scholar]
    15. 15. BallR,NorthC2007. Realizing embodied interaction for visual analytics through large displays.Comput. Graph.31:380–400
      [Google Scholar]
    16. 16. ClevelandWS,DiaconisP,McGillR1982. Variables on scatterplots look more highly correlated when the scales are increased.Science216:1138–41
      [Google Scholar]
    17. 17. HeerJ,KongN,AgrawalaM2009. Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations.Proc. Int. Conf. Human Factors Comput. Syst., Boston, Mass., 4–9 Apr1303–12 New York: Assoc. Comput. Mach.
      [Google Scholar]
    18. 18. InselbergA1997. Multidimensional detective.Proc. IEEE Symp. Inf. Vis., Phoenix, Ariz., 21 Oct100–7 New York: IEEE
      [Google Scholar]
    19. 19. HegartyM2011. The cognitive science of visual‐spatial displays: implications for design.Top. Cogn. Sci.3:446–74
      [Google Scholar]
    20. 20. NielsenCB,CantorM,DubchakI,GordonD,WangT2010. Visualizing genomes: techniques and challenges.Nat. Methods7:S5–15
      [Google Scholar]
    21. 21. ProcterJB,BartonGJ,ThompsonJ,WesthofE,CreeveyC,LetunicI2010. Visualization of multiple alignments, phylogenies and gene family evolution.Nat. Methods7:S16–25
      [Google Scholar]
    22. 22. O'DonoghueSI,GoodsellDS,FrangakisAS,JossinetF,LaskowskiR et al.2010. Visualization of macromolecular structures.Nat. Methods7:S42–55
      [Google Scholar]
    23. 23. GehlenborgN,O'DonoghueSI,BaligaNS,GoesmannA,HibbsMA et al.2010. Visualization of omics data for systems biology.Nat. Methods7:S56–68
      [Google Scholar]
    24. 24. WalterT,ShattuckD,BaldockR,BastinM,CarpenterAE et al.2010. Visualization of image data from cells to organisms.Nat. Methods7:S26–41
      [Google Scholar]
    25. 25. WareC2004.Information Visualization: Perception for Design San Francisco: Morgan KaufmannOutline of key principles and methods for interactive display of visual information.
      [Google Scholar]
    26. 26. SoegaardM,Rikke FriisD2013.The Encyclopedia of Human-Computer Interaction Aarhus, Den: Interact. Des. Found 2nd ed.https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed
      [Google Scholar]
    27. 27. JohnsonGT,HertigS2014. A guide to the visual analysis and communication of biomolecular structural data.Nat. Rev. Mol. Cell Biol.15:690–98Visual analysis and communication guide for biomolecular data; also relevant to other biomedical data.
      [Google Scholar]
    28. 28. InselbergA2009.Parallel Coordinates: Visual Multidimensional Geometry and Its Applications New York: SpringerDefinitive guide to the theory and practice of using parallel coordinates to explore high-dimensional data.
      [Google Scholar]
    29. 29. LevySE,MyersRM2016. Advancements in next-generation sequencing.Annu. Rev. Genom. Hum. Genet.17:95–115
      [Google Scholar]
    30. 30. PavlopoulosGA,MalliarakisD,PapanikolaouN,TheodosiouT,EnrightAJ,IliopoulosI2015. Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future.GigaScience4:1–27
      [Google Scholar]
    31. 31. ShneidermanB1996. The eyes have it: a task by data type taxonomy for information visualizations.Proc. IEEE Symp. Vis. Lang., Boulder, Colo., 3–6 Sept.336–43 Los Alamitos, NM: IEEE Comput. Soc.
      [Google Scholar]
    32. 32. ErnstJ,KellisM2012. ChromHMM: automating chromatin-state discovery and characterization.Nat. Methods9:215–16
      [Google Scholar]
    33. 33. PabingerS,DanderA,FischerM,SnajderR,SperkM et al.2014. A survey of tools for variant analysis of next-generation genome sequencing data.Briefings Bioinform15:256–78
      [Google Scholar]
    34. 34. SchroederMP,Gonzalez-PerezA,Lopez-BigasN2013. Visualizing multidimensional cancer genomics data.Genome Med5:9
      [Google Scholar]
    35. 35. Lieberman-AidenE,van BerkumNL,WilliamsL,ImakaevM,RagoczyT et al.2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome.Science326:289–93
      [Google Scholar]
    36. 36. SerraF,Di StefanoM,SpillYG,CuarteroY,GoodstadtM et al.2015. Restraint-based three-dimensional modeling of genomes and genomic domains.FEBS Lett589:2987–95
      [Google Scholar]
    37. 37. AyF,NobleWS2015. Analysis methods for studying the 3D architecture of the genome.Genome Biol16:183
      [Google Scholar]
    38. 38. DurandNC,RobinsonJT,ShamimMS,MacholI,MesirovJP et al.2016. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom.Cell Syst3:99–101
      [Google Scholar]
    39. 39. ZhouX,LiD,LowdonRF,CostelloJF,WangT2014. methylC track: visual integration of single-base resolution DNA methylation data on the WashU EpiGenome Browser.Bioinformatics30:2206–7
      [Google Scholar]
    40. 40. KrzywinskiM,ScheinJ,BirolI,ConnorsJ,GascoyneR et al.2009. Circos: an information aesthetic for comparative genomics.Genome Res19:1639–45
      [Google Scholar]
    41. 41. TaberlayPC,Achinger-KaweckaJ,LunATL,BuskeFA,SabirKS et al.2016. Three-dimensional disorganisation of the cancer genome occurs coincident with long range genetic and epigenetic alterations.Genome Res26:719–31
      [Google Scholar]
    42. 42. ShalonD,SmithSJ,BrownPO1996. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization.Genome Res6:639–45
      [Google Scholar]
    43. 43. WillsQF,LivakKJ,TippingAJ,EnverT,GoldsonAJ et al.2013. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments.Nat. Biotechnol.31:748–52
      [Google Scholar]
    44. 44. NagalakshmiU,WangZ,WaernK,ShouC,RahaD et al.2008. The transcriptional landscape of the yeast genome defined by RNA sequencing.Science320:1344–49
      [Google Scholar]
    45. 45. GierlinskiM,ColeC,SchofieldP,SchurchNJ,SherstnevA et al.2015. Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment.Bioinformatics31:3625–30
      [Google Scholar]
    46. 46. WilkinsonL,FriendlyM2009. The history of the cluster heat map.Am. Stat.63:179–84
      [Google Scholar]
    47. 47. WongB2010. Points of view: color coding.Nat. Methods7:573
      [Google Scholar]
    48. 48. PereverzevaM,MurraySO2014. Luminance gradient configuration determines perceived lightness in a simple geometric illusion.Front. Hum. Neurosci.8:977
      [Google Scholar]
    49. 49. TrapnellC,CacchiarelliD,GrimsbyJ,PokharelP,LiS et al.2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.Nat. Biotechnol.32:381–86
      [Google Scholar]
    50. 50. CaoJ,PackerJS,RamaniV,CusanovichDA,HuynhC et al.2017. Comprehensive single-cell transcriptional profiling of a multicellular organism by combinatorial indexing.Science357:661–67
      [Google Scholar]
    51. 51. BermanH,HenrickK,NakamuraH2003. Announcing the worldwide Protein Data Bank.Nat. Struct. Biol.10:980
      [Google Scholar]
    52. 52. PettersenEF,GoddardTD,HuangCC,CouchGS,GreenblattDM et al.2004. UCSF Chimera—a visualization system for exploratory research and analysis.J. Comput. Chem.25:1605–12
      [Google Scholar]
    53. 53. KozlikovaB,KroneM,LindowN,FalkM,BaadenM et al.2015. Visualization of biomolecular structures: state of the art.Proc. Eurograph. Conf. Vis., Cagliari, Ital., 25–29 May R Borgo, F Ganovelli, I Viola61–82 Geneva: Eurograph. Assoc.
      [Google Scholar]
    54. 54. KendrewJ,DickersonR,StrandbergB,HartR,DaviesD et al.1960. Structure of myoglobin: a three-dimensional Fourier synthesis at 2 Å. resolution.Nature185:422–27
      [Google Scholar]
    55. 55. FarrugiaL2012. WinGX and ORTEP for Windows: an update.J. Appl. Crystallogr.45:849–54
      [Google Scholar]
    56. 56. ChungJC,HarrisMR,BrooksFP,FuchsH,KelleyMT et al.1989. Exploring virtual worlds with head-mounted displays.Proc. Non-Hologr. Three-Dimens. Vis. Disp. Technol., Los Angeles, Calif, 15–20 Jan SS Fisher, WE Robbins15–20 Bellingham, Wash: SPIE
      [Google Scholar]
    57. 57. HumphreyW,DalkeA,SchultenK1996. VMD: visual molecular dynamics.J. Mol. Graph.14:33–38
      [Google Scholar]
    58. 58. GilletA,SannerM,StofflerD,OlsonA2005. Tangible interfaces for structural molecular biology.Structure13:483–91
      [Google Scholar]
    59. 59. SabirKS,StolteC,TaborB,O'DonoghueSI2013. The Molecular Control Toolkit: controlling 3D molecular graphics via gesture and voice.Proc. IEEE Symp. Biol. Data Vis., Atlanta, Ga., 13–14 Oct J Roerdink, J Kennedy49–56 New York: IEEE
      [Google Scholar]
    60. 60. GilletA,SannerM,StofflerD,GoodsellD,OlsonA2004. Augmented reality with tangible auto-fabricated models for molecular biology applications.Proc. IEEE Visualization, Austin, Tex., 10–15 Oct H Rushmeier, G Turk, JJ van Wijk245–41 New York: IEEE
      [Google Scholar]
    61. 61. HeinrichJ,VuongJ,HammangCJ,WuA,RittenbruchM et al.2016. Evaluating viewpoint entropy for ribbon representation of protein structure.Comput. Graph. Forum35:181–90
      [Google Scholar]
    62. 62. LvZ,TekA,Da SilvaF,Empereur-MotC,ChaventM,BaadenM2013. Game on, science—how video game technology may help biologists tackle visualization challenges.PLOS ONE8:e57990
      [Google Scholar]
    63. 63. O'DonoghueSI,SabirKS,KalemanovM,StolteC,WellmannB et al.2015. Aquaria: simplifying discovery and insight from protein structures.Nat. Methods12:98–99
      [Google Scholar]
    64. 64. BujaA,McDonaldJA,MichalakJ,StuetzleW1991. Interactive data visualization using focusing and linking.Proc. IEEE Conf. Vis., San Diego, Calif., 22–25 Oct GM Nielson, L Rosenblum156–63 New York: IEEE
      [Google Scholar]
    65. 65. LevittM2009. Nature of the protein universe.PNAS106:11079–84
      [Google Scholar]
    66. 66. PerdigãoN,HeinrichJ,StolteC,SabirKS,BuckleyMJ et al.2015. Unexpected features of the dark proteome.PNAS112:15898–903
      [Google Scholar]
    67. 67. RysavySJ,BeckDA,DaggettV2014. Dynameomics: data‐driven methods and models for utilizing large‐scale protein structure repositories for improving fragment‐based loop prediction.Protein Sci23:1584–95
      [Google Scholar]
    68. 68. BaiX-C,McMullanG,ScheresSH2015. How cryo-EM is revolutionizing structural biology.Trends Biochem. Sci.40:49–57
      [Google Scholar]
    69. 69. JohnsonGT,AutinL,Al-AlusiM,GoodsellDS,SannerMF,OlsonAJ2015. cellPACK: a virtual mesoscope to model and visualize structural systems biology.Nat. Methods12:85–91
      [Google Scholar]
    70. 70. GhoshS,MatsuokaY,AsaiY,HsinK-Y,KitanoH2011. Software for systems biology: from tools to integrated platforms.Nat. Rev. Genet.12:821–32
      [Google Scholar]
    71. 71. KitanoH2002. Systems biology: a brief overview.Science295:1662–64
      [Google Scholar]
    72. 72. SchomburgD,MichalG2012.Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology Hoboken, NJ: Wiley
      [Google Scholar]
    73. 73. BaderGD,CaryMP,SanderC2006. Pathguide: a pathway resource list.Nucleic Acids Res34:D504–6
      [Google Scholar]
    74. 74. ShannonP,MarkielA,OzierO,BaligaNS,WangJT et al.2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks.Genome Res13:2498–504
      [Google Scholar]
    75. 75. BastianM,HeymannS,JacomyM2009. Gephi: an open source software for exploring and manipulating networks.Proc. Int. Conf. Weblogs Soc. Media, San Jose, Calif., 17–20 May361–62 Menlo Park, CA: Assoc. Adv. Artif. Intell.
      [Google Scholar]
    76. 76. KobourovSG2013. Force-directed drawing algorithms.Handbook of Graph Drawing and Visualization R Tamassia383–408 Boca Raton, FL: CRC
      [Google Scholar]
    77. 77. BarskyA,GardyJL,HancockRE,MunznerT2007. Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation.Bioinformatics23:1040–42
      [Google Scholar]
    78. 78. HoltenD,Van WijkJJ2009. Force‐directed edge bundling for graph visualization.Comput. Graph. Forum28:983–90
      [Google Scholar]
    79. 79. BarskyA,MunznerT,GardyJ,KincaidR2008. Cerebral: visualizing multiple experimental conditions on a graph with biological context.IEEE Trans. Vis. Comput. Graph.14:1253–60
      [Google Scholar]
    80. 80. ZhouH-X,RivasG,MintonAP2008. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences.Annu. Rev. Biophys.37:375–97
      [Google Scholar]
    81. 81. Von LandesbergerT,KuijperA,SchreckT,KohlhammerJ,van WijkJJ et al.2011. Visual analysis of large graphs: state‐of‐the‐art and future research challenges. Presented atComput. Graph..Forum30:1719–49
      [Google Scholar]
    82. 82. KwonO-H,CrnovrsaninT,MaK-L2017. What would a graph look like in this layout? A machine learning approach to large graph visualization.IEEE Trans. Vis. Comput. Graph24:478–88
      [Google Scholar]
    83. 83. AebersoldR,MannM2016. Mass-spectrometric exploration of proteome structure and function.Nature537:347–55
      [Google Scholar]
    84. 84. HumphreySJ,AzimifarSB,MannM2015. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics.Nat. Biotechnol.33:990–95
      [Google Scholar]
    85. 85. MaDK,StolteC,KrycerJR,JamesDE,O'DonoghueSI2015. SnapShot: insulin/IGF1 signaling.Cell161:948.e1
      [Google Scholar]
    86. 86. BurgessA,VuongJ,RogersS,MalumbresM,O'DonoghueSI2017. SnapShot: phosphoregulation of mitosis.Cell169:1358.e1
      [Google Scholar]
    87. 87. SydorAM,CzymmekKJ,PuchnerEM,MennellaV2015. Super-resolution microscopy: from single molecules to supramolecular assemblies.Trends Cell Biol25:730–48
      [Google Scholar]
    88. 88. ReynaudEG,PeychlJ,HuiskenJ,TomancakP2015. Guide to light-sheet microscopy for adventurous biologists.Nat. Methods12:30–34
      [Google Scholar]
    89. 89. WalterT,ShattuckDW,BaldockR,BastinME,CarpenterAE et al.2010. Visualization of image data from cells to organisms.Nat. Methods7:S26–41
      [Google Scholar]
    90. 90. RossnerM,YamadaKM2004. What's in a picture? The temptation of image manipulation.J. Cell Biol.166:11–15
      [Google Scholar]
    91. 91. BurelJ-M,BessonS,BlackburnC,CarrollM,FergusonRK et al.2015. Publishing and sharing multi-dimensional image data with OMERO.Mamm. Genome26:441–47
      [Google Scholar]
    92. 92. BernhardtS,NicolauSA,SolerL,DoignonC2017. The status of augmented reality in laparoscopic surgery as of 2016.Med. Image Anal.37:66–90
      [Google Scholar]
    93. 93. Maier-HeinL,VedulaSS,SpeidelS,NavabN,KikinisR et al.2017. Surgical data science for next-generation interventions.Nat. Biomed. Eng.1:691–96
      [Google Scholar]
    94. 94. DingW,NeherR2014.panX Pangenome Vis. Tool.http://pangenome.tuebingen.mpg.de/
      [Google Scholar]
    95. 95. ParksDH,PorterM,ChurcherS,WangS,BlouinC et al.2009. GenGIS: a geospatial information system for genomic data.Genome Res19:1896–904
      [Google Scholar]
    96. 96. ArgimonS,AbudahabK,GoaterRJ,FedosejevA,BhaiJ et al.2016. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography.Microb. Genom2:e000093
      [Google Scholar]
    97. 97. PatenB,NovakAM,EizengaJM,GarrisonE2017. Genome graphs and the evolution of genome inference.Genome Res27:665–76
      [Google Scholar]
    98. 98. WongB2011. Points of view: color blindness.Nat. Methods8:441
      [Google Scholar]
    99. 99. CromeyDW2010. Avoiding twisted pixels: ethical guidelines for the appropriate use and manipulation of scientific digital images.Sci. Eng. Ethics16:639–67
      [Google Scholar]
    100. 100. McGillG2008. Molecular movies… Coming to a lecture near you.Cell133:1127–32
      [Google Scholar]
    101. 101. IwasaJH2015. Bringing macromolecular machinery to life using 3D animation.Curr. Opin. Struct. Biol.31:84–88
      [Google Scholar]
    102. 102. Van NoordenR,MaherB,NuzzoR2014. The top 100 papers.Nature514:550–53
      [Google Scholar]
    103. 103. ShneidermanB,PlaisantC,CohenM,JacobsS,ElmqvistN et al.2018.Designing the User Interface: Strategies for Effective Human-Computer Interaction Boston: Pearson. , 6th ed..
      [Google Scholar]
    104. 104. SanyalJ,ZhangS,BhattacharyaG,AmburnP,MoorheadR2009. A user study to compare four uncertainty visualization methods for 1D and 2D datasets.IEEE Trans. Vis. Comput. Graph.15:1209–18
      [Google Scholar]
    105. 105. CallawayE2016. The visualizations transforming biology.Nature535:187–88
      [Google Scholar]
    106. 106. Van WijkJJ2005. The value of visualization.Proc. IEEE Visualization, Minneap., Minn., 23–28 Oct.79–86 New York: IEEE
      [Google Scholar]
    107. 107. HeerJ,BostockM2010. Crowdsourcing graphical perception: using mechanical turk to assess visualization design.Proc. CHI Conf. Human Factors Comput. Syst., Atlanta, Ga., 10–15 Apr.203–12 New York: Assoc. Comput. Mach.Groundbreaking method using Amazon's Mechanical Turk crowdsourcing platform to evaluate the effectiveness of visual encoding.
      [Google Scholar]
    108. 108. BlascheckT,KurzhalsK,RaschkeM,BurchM,WeiskopfD,ErtlT2014. State-of-the-art of visualization for eye tracking data.Proc. EuroVis Eurograph. Conf. Vis., Swansea, Wales, 9–13 June Geneva: Eurograph. Assoc.
      [Google Scholar]
    109. 109. AndersonEW,PotterKC,MatzenLE,ShepherdJF,PrestonGA,SilvaCT2011. A user study of visualization effectiveness using EEG and cognitive load.Comput. Graph. Forum30:791–800
      [Google Scholar]
    110. 110. GehlenborgN,WongB2012. Mapping quantitative data to color: data structure informs choice of color maps.Nat. Methods9:769–70
      [Google Scholar]
    111. 111. WongB2011. Points of view: avoiding color.Nat. Methods8:525
      [Google Scholar]
    112. 112. TufteER1990.Envisioning Information Chesire, CT: Graphics
      [Google Scholar]
    113. 113. GehlenborgN,WongB2012. Points of view: into the third dimension.Nat. Methods9:851
      [Google Scholar]
    114. 114. KabschW,MannherzHG,SuckD,PaiEF,HolmesKC1990. Atomic structure of the actin:DNase I complex.Nature347:37–44
      [Google Scholar]
    115. 115. HunterJD2007. Matplotlib: a 2D graphics environment.Comput. Sci. Eng.9:90–95
      [Google Scholar]
    116. 116. WickhamH2016.ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag
    117. 117. AnscombeFJ1973. Graphs in statistical analysis.Am. Statistician27:17–21
      [Google Scholar]
    118. 118. MatejkaJ,FitzmauriceG2017. Same stats, different graphs: generating datasets with varied appearance and identical statistics through simulated annealing.Proc. CHI Conf. Human Factors Comput. Syst., Denver, Colo., 6–11 May1290–94 New York: Assoc. Comput. Mach.
      [Google Scholar]
    119. 119. FryB2008.Visualizing Data: Exploring and Explaining Data with the Processing Environment Sebastopol, CA: O'Reilly Media
      [Google Scholar]
    120. 120. MorelandK2016. Why we use bad color maps and what you can do about it.IS &T Int. Symp. Electron. Imaging, San Francisco, Calif., 14–18 Feb BE Rogowitz, TN Pappas, D de Ridder1–66 Springfield, VA: Soc. Imaging Sci. Technol.
      [Google Scholar]
    121. 121. MackinlayJD1986. Automating the design of graphical presentations of relational information.ACM Trans. Graph.5:110–15
      [Google Scholar]
    122. 122. GehlenborgN,WongB2012. Points of view: heat maps.Nat. Methods9:213
      [Google Scholar]
    123. 123. YatesA,AkanniW,AmodeMR,BarrellD,BillisK et al.2015. Ensembl 2016.Nucleic Acids Res44:D710–16
      [Google Scholar]
    124. 124. DownTA,PiipariM,HubbardTJ2011. Dalliance: interactive genome viewing on the web.Bioinformatics27:889–90
      [Google Scholar]
    125. 125. RaoSS,HuntleyMH,DurandNC,StamenovaEK,BochkovID et al.2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.Cell159:1665–80
      [Google Scholar]
    126. 126. van der MaatenL,HintonG2008. Visualizing data using t-SNE.J. Mach. Learn. Res.9:2579–605
      [Google Scholar]
    127. 127. WattenbergM,ViégasF,JohnsonI2016. How to use t-SNE effectively.Distill Updated on 13 Oct. 2016.http://doi.org/10.23915/distill.00002
      [Crossref][Google Scholar]
    128. 128. HaghverdiL,BuettnerF,TheisFJ2015. Diffusion maps for high-dimensional single-cell analysis of differentiation data.Bioinformatics31:2989–98
      [Google Scholar]
    129. 129. CoifmanRR,LafonS,LeeAB,MaggioniM,NadlerB et al.2005. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps.PNAS102:7426–31
      [Google Scholar]
    130. 130. McCarthyDJ,CampbellKR,LunAT,WillsQF2017. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R.Bioinformatics33:1179–86
      [Google Scholar]
    131. 131. CampJG,SekineK,GerberT,Loeffler-WirthH,BinderH et al.2017. Multilineage communication regulates human liver bud development from pluripotency.Nature546:533–38
      [Google Scholar]
    132. 132. RichardsonJS,RichardsonD,TweedyN,GernertK,QuinnT et al.1992. Looking at proteins: representations, folding, packing, and design. Biophysical Society National Lecture, 1992.Biophys. J.63:1185–1209
      [Google Scholar]
    133. 133. HeinrichJ,KaurS,O'DonoghueSI2015. Evaluating the effectiveness of color to convey uncertainty in macromolecular structures.Proc. IEEE Symp. Big Data Visual Anal., Hobart, Aust., 22–25 Sept U Engelke, J Heinrich, T Bednarz, K Klein, QV Nguyen1–18 New York: IEEE
      [Google Scholar]
    134. 134. DosztanyiZ,CsizmokV,TompaP,SimonI2005. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content.Bioinformatics21:3433–34
      [Google Scholar]
    135. 135. RoseAS,BradleyAR,ValasatavaY,DuarteJM,PrlićA,RosePW2016. Web-based molecular graphics for large complexes.Proc. Int. Conf. Web3D Technol., 21st, Anaheim, Calif., 22–24 July185–86 New York: Assoc. Comput. Mech.
      [Google Scholar]
    136. 136. ZhaoG,PerillaJR,YufenyuyEL,MengX,ChenB et al.2013. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics.Nature497:643–46
      [Google Scholar]
    137. 137. El OmariK,De Mesmaeker JKaria D,GinnH,BhattacharyaS,ManciniEJ2012. Structure of the DNA‐bound T‐box domain of human TBX1, a transcription factor associated with the DiGeorge syndrome.Proteins80:655–60
      [Google Scholar]
    138. 138. IsbergV,MordalskiS,MunkC,RatajK,HarpsøeK et al.2015. GPCRdb: an information system for G protein-coupled receptors.Nucleic Acids Res44:D356–64
      [Google Scholar]
    139. 139. DunkerAK,LawsonJD,BrownCJ,WilliamsRM,RomeroP et al.2001. Intrinsically disordered protein.J. Mol. Graph. Model.19:26–59
      [Google Scholar]
    140. 140. HumphreySJ,YangG,YangP,FazakerleyDJ,StöckliJ et al.2013. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2.Cell Metab17:1009–20
      [Google Scholar]
    141. 141. SzklarczykD,FranceschiniA,WyderS,ForslundK,HellerD et al.2015. STRING v10: protein–protein interaction networks, integrated over the tree of life.Nucleic Acids Res43:D447–52
      [Google Scholar]
    142. 142. LuCP,HagerGD,MjolsnessE2000. Fast and globally convergent pose estimation from video images.IEEE Trans. Pattern Anal. Mach. Intell.22:610–22
      [Google Scholar]
    143. 143. PorterIM,McClellandSE,KhoudoliGA,HunterCJ,AndersenJS et al.2007. Bod1, a novel kinetochore protein required for chromosome biorientation.J. Cell Biol.179:187–97
      [Google Scholar]
    144. 144. NoldenM,ZelzerS,SeitelA,WaldD,MullerM et al.2013. The Medical Imaging Interaction Toolkit: challenges and advances: 10 years of open-source development.Int. J. Comput. Assist. Radiol. Surg.8:607–20
      [Google Scholar]
    145. 145. SimpfendörferT,BaumhauerM,MullerM,GuttCN,MeinzerHP et al.2011. Augmented reality visualization during laparoscopic radical prostatectomy.J. Endourol.25:1841–45
      [Google Scholar]
    146. 146. HanMV,ZmasekCM2009. phyloXML: XML for evolutionary biology and comparative genomics.BMC Bioinform10:356
      [Google Scholar]
    147. 147. DarlingACE,MauB,BlattnerFR,PernaNT2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements.Genome Res14:1394–403
      [Google Scholar]
    148. 148. CaporasoJG,KuczynskiJ,StombaughJ,BittingerK,BushmanFD et al.2010. QIIME allows analysis of high-throughput community sequencing data.Nat. Methods7:335–36
      [Google Scholar]
    149. 149. RodgersP,StapletonG,ChapmanP2015. Visualizing sets with linear diagrams.ACM Trans. Comput.-Hum. Interact.22:27
      [Google Scholar]
    150. 150. CaporasoJG,LauberCL,CostelloEK,Berg-LyonsD,GonzalezA et al.2011. Moving pictures of the human microbiome.Genome Biol12:R50
      [Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special

    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-biodatasci-080917-013424
    10.1146/annurev-biodatasci-080917-013424
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2026 Movatter.jp