Movatterモバイル変換


[0]ホーム

URL:


1932
Annual Reviews logo
Skip to content

Review Article

Free

Improving Photosynthetic Efficiency for Greater Yield

Abstract

Increasing the yield potential of the major food grain crops has contributed very significantly to a rising food supply over the past 50 years, which has until recently more than kept pace with rising global demand. Whereas improved photosynthetic efficiency has played only a minor role in the remarkable increases in productivity achieved in the last half century, further increases in yield potential will rely in large part on improved photosynthesis. Here we examine inefficiencies in photosynthetic energy transduction in crops from light interception to carbohydrate synthesis, and how classical breeding, systems biology, and synthetic biology are providing new opportunities to develop more productive germplasm. Near-term opportunities include improving the display of leaves in crop canopies to avoid light saturation of individual leaves and further investigation of a photorespiratory bypass that has already improved the productivity of model species. Longer-term opportunities include engineering into plants carboxylases that are better adapted to current and forthcoming CO2 concentrations, and the use of modeling to guide molecular optimization of resource investment among the components of the photosynthetic apparatus, to maximize carbon gain without increasing crop inputs. Collectively, these changes have the potential to more than double the yield potential of our major crops.

    Erratum

    An erratum has been published for this article:
    Improving Photosynthetic Efficiency for Greater Yield
    Loading

    Article metrics loading...

    /content/journals/10.1146/annurev-arplant-042809-112206
    2010-06-02
    2025-11-28
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/arplant/61/1/annurev-arplant-042809-112206.html?itemId=/content/journals/10.1146/annurev-arplant-042809-112206&mimeType=html&fmt=ahah

    Literature Cited

    1. AhnTK,AvensonTJ,BallottariM,ChengYC,NiyogiKK.1.  et al.2008. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.Science320:794–97[Google Scholar]
    2. AinsworthEA,LongSP.2. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy.New Phytol.165:351–71[Google Scholar]
    3. AmthorJS.3. 1989.Respiration and Crop Productivity New York: Springer-Verlag[Google Scholar]
    4. AmthorJS.4. 2007. Improving photosynthesis and yield potential.Improvements of Crop Plants for Industrial End Uses P Ranalli27–58 Dordrecht, Netherlands: Springer[Google Scholar]
    5. AnderssonI,TaylorTC.5. 2003. Structural framework for catalysis and regulation in ribulose-15-bisphosphate carboxylase/oxygenase.Arch. Biochem. Biophys.414:130–40[Google Scholar]
    6. AtkinOK,MacherelD.6. 2009. The crucial role of plant mitochondria in orchestrating drought tolerance.Ann. Bot.103:581–97[Google Scholar]
    7. BainbridgeG,MadgwickP,ParmarS,MitchellR,PaulM.7.  et al.1995. Engineering Rubisco to change its catalytic properties.J. Exp. Bot.46:1269–76[Google Scholar]
    8. BakerNR,EastTM,LongSP.8. 1983. Chilling damage to photosynthesis in youngZea mays.J. Exp. Bot.34:189–97[Google Scholar]
    9. BallJT,WoodrowIE,BerryJA.9. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions.Progress in Photosynthesis Research J Biggens4221–24 Dordrecht, Netherlands: Martinus Nijhoff[Google Scholar]
    10. BarnolaJM,RaynaudD,LoriusC,BarkovN.10. 1999. Historical CO2 record from the Vostok ice core.Trends: A Compendium of Data on Global Change Carbon Dioxide Information Analysis Center, U.S. Dept. of Energy, Oak Ridge National Laboratory, Oak Ridge, TN[Google Scholar]
    11. BarrettCL,KimTY,KimHU,PalssonBO,LeeSY.11. 2006. Systems biology as a foundation for genome-scale synthetic biology.Curr. Opin. Biotechnol.17:488–92[Google Scholar]
    12. BeadleCL,LongSP.12. 1985. Photosynthesis—is it limiting to biomass production.Biomass.8:119–68[Google Scholar]
    13. BeadleCL,LongSP,ImbambaSK,HallDO,OlemboRJ.13. 1985. Photosynthesis in relation to plant production in terrestrial environments. UN Environ. Programme (UNEP) Oxford, UK: Tycooly Int.156[Google Scholar]
    14. BealeCV,MorrisonJIL,LongSP.14. 1999. Water use efficiency of C4 perennial grasses in a temperate climate.Agric. For. Meteorol.96:103–15[Google Scholar]
    15. BealeCV,LongSP.15. 1995. Can perennial C-4 grasses attain high efficiencies of radiant energy–conversion in cool climates.Plant Cell Environ.18:641–50[Google Scholar]
    16. BernacchiCJ,LeakeyADB,HeadyLE,MorganPB,DohlemanFG.16.  et al.2006. Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions.Plant Cell Environ.29:2077–90[Google Scholar]
    17. BernacchiCJ,PortisAR,NakanoH,von CaemmererS,LongSP.17. 2002. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo.Plant Physiol.130:1992–98[Google Scholar]
    18. BjörkmanO,DemmigB.18. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins.Planta.170:489–504[Google Scholar]
    19. ChenX,ZhangW,XieY,LuW,ZhangR.19. 2007. Comparative proteomics of thylakoid membrane from a chlorophyllb–less rice mutant and its wild type.Plant Sci.173:397[Google Scholar]
    20. ChengSH,DemooreB,WuJR,EdwardsGE,KuMSB.20. 1989. Photosynthetic plasticity in flaveria-brownii—growth irradiance and the expression of C-4 photosynthesis.Plant Physiol.89:1129–35[Google Scholar]
    21. CosentinoSL,PataneC,SanzoneE,CopaniV,FotiS.21. 2007. Effects of soil water content and nitrogen supply on the productivity ofMiscanthus xgiganteus Greef et Deu. in a mediterranean environment.Ind. Crops Prod.25:75–88[Google Scholar]
    22. CramerWA,ZhangHM,YanJS,KurisuG,SmithJL.22. 2006. Transmembrane traffic in the cytochrome b6f complex.Annu. Rev. Biochem.75:769–90[Google Scholar]
    23. DaiXB,XuXM,LuW,KuangTY.23. 2003. Photoinhibition characteristics of a low chlorophyll b mutant of high yield rice.Photosynthetica.41:57–60[Google Scholar]
    24. DermodyO,LongSP,McConnaughayK,DeLuciaEH.24. 2008. How do elevated CO2 and O3 affect the interception and utilization of radiation by a soybean canopy?.Glob. Change Biol.14:556–64[Google Scholar]
    25. DohlemanFG,LongSP.25. 2009. More productive than maize in the Midwest—How doesMiscanthus do it?.Plant Physiol.150:2104–15[Google Scholar]
    26. DuncanWG.26. 1971. Leaf angle, leaf area and crop photosynthesis.Crop Sci.11:482–85[Google Scholar]
    27. EarlHJ,TollenaarM.27. 1998. Difference among commercial maize (Zea mays L.) hybrids in respiration rates of mature leaves.Field Crops Res.59:9–19[Google Scholar]
    28. EberhardS,FinazziG,WollmanFA.28. 2008. The dynamics of photosynthesis.Annu. Rev. Genet.42:463–515[Google Scholar]
    29. EhleringerJ,PearcyRW.29. 1983. Variation in quantum yield for CO2 uptake among C3 and C4 plants.Plant Physiol.73:555–59[Google Scholar]
    30. ErcoliL,MariottiM,MasoniA,BonariE.30. 1999. Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of miscanthus.Field Crops Res.63:3–11[Google Scholar]
    31. EvansLT.31. 1993.Crop Evolution, Adaptation and Yield Cambridge: Cambridge Univ. Press[Google Scholar]
    32. FalkS,LeverenzJW,SamuelssonG,OquistG.32. 1992. Changes in photosystem II fluorescence inChlamydomonas reinhardtii exposed to increasing levels of irradiance in relationship to the photosynthetic response to light.Photosynth. Res.31:31–40[Google Scholar]
    33. FalkowskiPG,DubindkyZ.33. 1981. Light shade adaption ofStylophora pistillata, a hermatypic coral from the Gulf of Eilat.Nature289:172–74[Google Scholar]
    34. 34. FAOSTAT2007. FAO statistical databases. Food and Agriculture Organization of the United Nations Rome, Italy:http://www.fao.org
    35. FarquharGD,von CaemmererS,BerryJA.35. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.Planta149:78–90[Google Scholar]
    36. FergusonSJ.36. 2000. ATP synthase: What dictates the size of a ring?Curr.Biol.10:R804–8[Google Scholar]
    37. FieldC.37. 2008.Agriculture in a changing environment Presented at Phytopathology, Carnegie Inst. Sci., Stanford Univ.98S2[Google Scholar]
    38. FlexasJ,Ribas-CarboM,Diaz-EspejoA,GalmesJ,MedranoH.38. 2008. Mesophyll conductance to CO2: Current knowledge and future prospects.Plant Cell Environ.31:602–21[Google Scholar]
    39. FoyerCH,BloomAJ,QuevalG,NoctorG.39. 2009. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling.Annu. Rev. Plant Biol.61:455–84[Google Scholar]
    40. FurbankRT,HatchMD.40. 1987. Mechanism of C4 photosynthesis—the size and composition of the inorganic carbon pool in bundle sheath cells.Plant Physiol.85:958–64[Google Scholar]
    41. GalmesJ,FlexasJ,KeysAJ,CifreJ,MitchellRAC.41.  et al.2005. Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves.Plant Cell Environ.28:571–79[Google Scholar]
    42. GlickRE,MelisA.42. 1988. Minimum photosynthetic unit size in system-I and system-II of barley chloroplasts.Biochim. Biophys. Acta934:151–55[Google Scholar]
    43. HallAJ,ConnorDJ,SadrasVO.43. 1995. Radiation use efficiency of sunflower crops—effects of specific leaf nitrogen and ontogeny.Field Crop. Res.41:65–77[Google Scholar]
    44. HarleyPC,SharkeyTD.44. 1991. An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast.Photosynth. Res.27:169–78[Google Scholar]
    45. HarrisonEP,OlcerH,LloydJC,LongSP,RainesCA.45. 2001. Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity.J. Exp. Bot.52:1779–84[Google Scholar]
    46. HarrisonEP,WillinghamNM,LloydJC,RainesCA.46. 1998. Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation.Planta204:27–36[Google Scholar]
    47. HayRKM.47. 1995. Harvest index—a review of its use in plant-breeding and crop physiology.Ann. Appl. Biol.126:197–216[Google Scholar]
    48. HenkesS,SonnewaldU,BadurR,FlachmannR,StittM.48. 2001. A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism.Plant Cell13:535–51[Google Scholar]
    49. HibberdJM,CovshoffS.49.  The regulation of gene expression required for C4 photosynthesis.Annu. Rev. of Plant Biol.61: In press[Google Scholar]
    50. HibberdJM,QuickWP.50. 2002. Characteristics of C-4 photosynthesis in stems and petioles of C-3 flowering plants.Nature415:451–54[Google Scholar]
    51. HibberdJM,SheehyJE,LangdaleJA.51. 2008. Using C-4 photosynthesis to increase the yield of rice—rationale and feasibility.Curr. Opin. Plant Biol.11:228–31[Google Scholar]
    52. HikosakaK,TerashimaI.52. 1995. A model of the acclimation of photosynthesis in the leaves of C-3 plants to sun and shade with respect to nitrogen use.Plant Cell Environ.18:605–18[Google Scholar]
    53. HortonP,JohnsonMP,Perez-BuenoML,KissAZ,RubanAV.53. 2008. Photosynthetic acclimation: Does the dynamic structure and macro-organization of photosystem II in higher plant grana membranes regulate light harvesting states?.FEBS J.275:1069–79[Google Scholar]
    54. HoutzRL,PortisAR.54. 2003. The life of ribulose 1,5-bisphosphate carboxylase/oxygenase-posttranslational facts and mysteries.Arch. Biochem. Biophys.414:150–58[Google Scholar]
    55. JohnsonMP,DavisonPA,RubanAV,HortonP.55. 2008. The xanthophyll cycle pool size controls the kinetics of nonphotochemical quenching inArabidopsis thaliana.FEBS Lett.582:262–66[Google Scholar]
    56. KanevskiI,MaligaP,RhoadesDF,GutteridgeS.56. 1999. Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid.Plant Physiol.119:133–41[Google Scholar]
    57. KarkehabadiS,PeddiSR,AnwaruzzamanM,TaylorTC,CederlundA.57.  et al.2005. Chimeric small subunits influence catalysis without causing global conformational changes in the crystal structure of ribulose-1,5-bisphosphate carboxylase/oxygenase.Biochemistry44:9851–61[Google Scholar]
    58. KebeishR,NiessenM,ThiruveedhiK,BariR,HirschH.58.  et al.2007. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production inArabidopsis thaliana.Nat. Biotechnol.25:593–99[Google Scholar]
    59. KramerDM,CruzJA,KanazawaA.59. 2003. Balancing the central roles of the thylakoid proton gradient.Trends Plant Sci.8:27–32[Google Scholar]
    60. LangdaleJA,ZelitchI,MillerE,NelsonT.60. 1988. Cell position and light influence C-4 versus C-3 patterns of photosynthetic gene-expression in maize.EMBO J.7:3643–51[Google Scholar]
    61. LawlorDW,TezaraW.61. 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes.Ann. Bot.103:561–79[Google Scholar]
    62. LeakeyADB,BernacchiCJ,OrtDR,LongSP.62. 2006. Growth of soybean under free-air [CO2] enrichment (FACE) does not cause stomatal acclimation.Plant Cell Environ.29:1794–1800[Google Scholar]
    63. LeakeyADB,XuF,GillespieKM,McGrathJM,AinsworthEA,OrtDR.63. 2009. Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide.Proc. Natl. Acad. Sci. USA106:3597–602[Google Scholar]
    64. LefebvreS,LawsonT,ZakhleniukOV,LloydJC,RainesCA.64. 2005. Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development.Plant Physiol.138:451–60[Google Scholar]
    65. LeverenzJW,FalkS,PilstromCM,SamuelssonG.65. 1990. The effects of photoinhibition on the photosynthetic light-response curve of green plant-cells (chlamydomonas-reinhardtii).Planta182:161–68[Google Scholar]
    66. LiZ,WakaoS,FischerBB,NiyogiKK.66. 2009. Sensing and responding to excess light.Annu. Rev. Plant Biol.60:239–60[Google Scholar]
    67. LongSP.67. 1999. Environmental responses.The Biology of C4 Photosynthesis RF Sage, RK Monson209–43 San Diego: Academic[Google Scholar]
    68. LongSP,AinsworthEA,RogersA,OrtDR.68. 2004. Rising atmospheric carbon dioxide: Plants FACE their future.Annu. Rev. Plant Biol.55:591–628[Google Scholar]
    69. LongSP,HumphriesSW,FalkowskiPG.69. 1994. Photoinhibition of photosynthesis in nature.Annu. Rev. Plant Physiol Plant Molec. Biol.45:633–62[Google Scholar]
    70. LongSP,IncollLD,WoolhouseHW.70. 1975. C4 photosynthesis in plants from cool temperate regions, with particular reference to Spartina-townsendii.Nature257:622–24[Google Scholar]
    71. LongSP,PostlWF,BolharnordenkampfHR.71. 1993. Quantum yields for uptake of carbon-dioxide in C-3 vascular plants of contrasting habitats and taxonomic groupings.Planta189:226–34[Google Scholar]
    72. LongSP,ZhuXG,NaiduSL,OrtDR.72. 2006. Can improvement in photosynthesis increase crop yields?.Plant Cell Environ.29:315–30[Google Scholar]
    73. LoomisRS,WilliamsWA,DuncanWG.73. 1967. Community architecture and the productivity of terrestrial plant communities.Harvesting the Sun: Photosynthesis in Plant Life A San Pietro, FA Greer, TJ Army291–308 New York: Academic[Google Scholar]
    74. MarshallB,BiscoePV.74. 1980. A model for C-3 leaves describing the dependence of net photosynthesis on irradiance 0.1. derivation.J. Exp. Bot.31:29–39[Google Scholar]
    75. MatsumuraI,PatelM,GreeneD.75. 2005. Directed evolution of Rubisco through genetic selections of metabolically engineeredEscherichia coli.FASEB J.19:A292[Google Scholar]
    76. MatsuokaM,FurbankRT,FukayamaH,MiyaoM.76. 2001. Molecular engineering of C4 photosynthesis.Annu. Rev. Plant Physiol. Plant Molec. Biol.52:297–314[Google Scholar]
    77. MeehlGA,StockerTF,CollinsWD,FriedlingsteinP,GayeAT.77.  et al.2007. Global climate projections.Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S Solomon, D Qin, M Manning, Z Chen, M Marquis, et al.119–234 Cambridge: Cambridge Univ. Press[Google Scholar]
    78. MelisA.78. 1996. Excitation energy transfer: functional and dynamic aspects of Lhc (cab) proteins.Oxygenic Photosynthesis: The Light Reactions DR Ort, CF Yocum523–38 Dordrecht, Netherlands: Kluwer Academic[Google Scholar]
    79. MelisA.79. 1999. Photosystem-II damage and repair cycle in chloroplasts: What modulates the rate of photodamage in vivo?.Trends Plant Sci.4:130–35[Google Scholar]
    80. MelisA.80. 2009. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency.Plant Sci.17:272–80[Google Scholar]
    81. MelisA,NeidhardtJ,BenemannJR.81. 1998.Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells.J. Appl. Phycol.10:515–25[Google Scholar]
    82. MiyaoM.82. 2003. Molecular evolution and genetic engineering of C4 photosynthetic enzymes.J. Exp. Bot.54:179–89[Google Scholar]
    83. MonteithJL.83. 1977. Climate and the efficiency of crop production in Britain.Philos. Trans. R. Soc. Lond. Ser. B281:277–94[Google Scholar]
    84. MorganPB,BolleroGA,NelsonRL,DohlemanFG,LongSP.84. 2005. Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation.Global Change Biol.11:1856–65[Google Scholar]
    85. MorinakaY,SakamotoT,InukaiY,AgetsumaM,KitanoH.85.  et al.2006. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice.Plant Physiol.141:924–31[Google Scholar]
    86. MuurinenS,Peltonen-SainioP.86. 2006. Radiation-use efficiency of modern and old spring cereal cultivars and its response to nitrogen in northern growing conditions.Field Crop. Res.96:363–73[Google Scholar]
    87. NausJ,MelisA.87. 1991. Changes of photosystem stoichiometry during cell-growth inDunaliella salina cultures.Plant Cell Physiol.32:569–75[Google Scholar]
    88. NeidhardtJ,BenemannJR,ZhangLP,MelisA.88. 1998. Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity inDunaliella salina (green algae).Photosynth. Res.56:175–84[Google Scholar]
    89. NelsonN,YocumCF.89. 2006. Structure and function of photosystems I and II.Annu. Rev. Plant Biol.57:521–65[Google Scholar]
    90. NiinemetsU.90. 2007. Photosynthesis and resource distribution through plant canopies.Plant Cell Environ.30:1052–71[Google Scholar]
    91. NiinemetsU,Diaz-EspejoA,FlexasJ,GalmesJ,WarrenCR.91. 2009. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field.J. Exp. Bot.60:2271–82[Google Scholar]
    92. NiyogiKK.92. 1999. Photoprotection revisited: genetic and molecular approaches.Annu. Rev. Plant Physiol. Plant Mol. Biol.50:333–59[Google Scholar]
    93. NiyogiKK,LiX-P,RosenbergV,JungH-S.93. 2005. Is PsbS the site of non-photochemical quenching in photosynthesis?.J.Exp. Bot.56:375–82[Google Scholar]
    94. OgrenE,SjostromM.94. 1990. Estimation of the effect of photoinhibition on the carbon gain in leaves of a willow canopy.Planta181:560–67[Google Scholar]
    95. OrtDR.95. 2001. When there is too much light.Plant Physiol.125:29–32[Google Scholar]
    96. Ortiz-LopezA,NieGY,OrtDR,BakerNE.96. 1990. The involvement of the photoinhibition of photosystem II and impaired membrane energization in the reduced quantum yield of carbon assimilation in chilled maize..Planta181:78–84[Google Scholar]
    97. ParryMAJ,AndralojcPJ,MitchellRAC,MadgwickPJ,KeysAJ.97. 2003. Manipulation of Rubisco: The amount, activity, function and regulation.J. Exp. Bot.54:1321–33[Google Scholar]
    98. PengSB,TangQ,ZouY.98. 2009. Current status and challenges of rice production in china.Plant Prod. Sci.12:3–8[Google Scholar]
    99. Penning de VriesFWT,BrunstingAHM,van LaarHH.99. 1974. Products, requirement and efficiency of biosynthesis: A quantitative approach.J. Theor. Biol.45:339–77[Google Scholar]
    100. PettigrewWT,HeskethJD,PetersDB,WoolleyJT.100. 1989. Characterization of canopy photosynthesis of chlorophyll-deficient soybean isolinew.Crop Sci.29:1025–29[Google Scholar]
    101. PiedadeMTF,JunkWJ,LongSP.101. 1991. The productivity of the C4 grass echinochloa-polystachya on the Amazon floodplain.Ecology72:1456–63[Google Scholar]
    102. PimentelC,DaveyPA,JuvikJA,LongSP.102. 2005. Gene loci in maize influencing susceptibility to chilling dependent photoinhibition of photosynthesis.Photosynth. Res.85:319–26[Google Scholar]
    103. PowlesSB.103. 1984. Photoinhibition of photosynthesis induced by visible-light.Annu. Rev. Plant Physiol. Plant Mol. Biol.35:15–44[Google Scholar]
    104. PykeKA,LeechRM.104. 1987. The control of chloroplast number in wheat mesophyll cells.Planta170:416–20[Google Scholar]
    105. RainesCA.105. 2003. The Calvin cycle revisited.Photosynth. Res.75:1–10[Google Scholar]
    106. RainesCA.106. 2006. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle.Plant Cell Environ.29:331–39[Google Scholar]
    107. ReynoldsMP,van GinkelM,RibautJM.107. 2000. Avenues for genetic modification of radiation use efficiency in wheat.J. Exp. Bot.51:459–73[Google Scholar]
    108. RichardsRA.108. 2000. Selectable traits to increase crop photosynthesis and yield of grain crops.J. Exp. Bot.51:447–58[Google Scholar]
    109. RichterML.109. 2004. Gamma-epsilon interactions regulate the chloroplast ATP synthase.Photosynth. Res.79:319–29[Google Scholar]
    110. SageRF.110. 2002. Variation in the k(cat) of Rubisco in C-3 and C-4 plants and some implications for photosynthetic performance at high and low temperature.J. Exp. Bot.53:609–20[Google Scholar]
    111. SageRF.111. 2004. The evolution of C-4 photosynthesis.New Phytologist161:341–70[Google Scholar]
    112. SakamotoT,MatsuokaM.112. 2004. Generating high-yielding varieties by genetic manipulation of plant architecture.Curr. Opin. Biotechnol.15:144–47[Google Scholar]
    113. SeemannJR,BadgerMR,BerryJA.113. 1984. Variations in the specific activity of ribulose-1,5-bisphosphate carboxylase between species utilizing differing photosynthetic pathways.Plant Physiol.74:791–94[Google Scholar]
    114. ShikanaiT.114. 2007. Cyclic electron transport around photosystem I: genetic approaches.Annu. Rev. Plant Biol.58:199–217[Google Scholar]
    115. SinclairTR.115. 1998. Historical changes in harvest index and crop nitrogen accumulation.Crop Sci.38:638–43[Google Scholar]
    116. SmilV.116. 2005. Do we need higher farm yield during the first half of the 21st century.Yields of Farmed Species: Constraints and Opportunities in the 21st Century R Sylvester-Bradley, J Wiseman1–14 Nottingham, UK: Nottingham University Press[Google Scholar]
    117. SpreitzerRJ,SalvucciME.117. 2002. RUBISCO: Structure, regulatory interactions, and possibilities for a better enzyme.Annu. Rev. Plant Biol.53:449–75[Google Scholar]
    118. StittM,QuickWP,SchurrU,SchulzeED,RodermelSR,BogoradL.118. 1991. Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with antisense rbcS. II. Flux control coefficients for photosynthesis in varying light, CO2, and air humidity.Planta183:555–66[Google Scholar]
    119. SuzukiS,MuraiN,BurnellJN,AraiM.119. 2000. Changes in photosynthetic carbon flow in transgenic rice plants that express C4-type phosphoenolpyruvate carboxykinase fromUrochloa panicoides.Plant Physiol.124:163–72[Google Scholar]
    120. TabitaFR.120. 1999. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective.Photosynth. Res.60:1–28[Google Scholar]
    121. TazoeY,NoguchiKO,TerashimaI.121. 2006. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant,Amaranthus cruentus.Plant Cell Environ.29:691–700[Google Scholar]
    122. TerashimaI,EvansJR.122. 1988. Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach.Plant Cell Physiol.29:143–55[Google Scholar]
    123. TerashimaI,HanbaYT,TazoeY,VyasP,YanoS.123. 2006. Irradiance and phenotype: Comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion.J. Exp. Bot.57:343–54[Google Scholar]
    124. TurinaP,SamorayD,GraberP.124. 2003. H+/ATP ratio of proton transport–coupled ATP synthesis and hydrolysis catalysed by CF0F1-liposomes.EMBO J.22:418–26[Google Scholar]
    125. UemuraK,AnwaruzzamanM,MiyachiS,YokotaA.125. 1997. Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation.Biochem. Biophys. Res. Commun.233:568–71[Google Scholar]
    126. UenoO.126. 1998. Induction of Kranz anatomy and C-4-like biochemical characteristics in a submerged amphibious plant by abscisic acid.Plant Cell.10:571–83[Google Scholar]
    127. von CaemmererS.127. 2000. Biochemical models of leaf photosynthesis. Collingwood, Aust: CSIRO
    128. von CaemmererS.128. 2003. C-4 photosynthesis in a single C-3 cell is theoretically inefficient but may ameliorate internal CO2 diffusion limitations of C-3 leaves.Plant Cell Environ.26:1191–97[Google Scholar]
    129. VoznesenskayaEV,FranceschiVR,KiiratsO,ArtyushevaEG,FreitagH,EdwardsGE.129. 2002. Proof of C-4 photosynthesis without kranz anatomy inBienertia cycloptera (Chenopodiaceae).Plant J.31:649–62[Google Scholar]
    130. VoznesenskayaEV,FranceschiVR,KiiratsO,FreitagH,EdwardsGE.130. 2001. Kranz anatomy is not essential for terrestrial C-4 plant photosynthesis.Nature414:543–46[Google Scholar]
    131. WangDF,PortisAR,MooseSP,LongSP.131. 2008. Cool C-4 photosynthesis: pyruvate P-i dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation inMiscanthus xgiganteus.Plant Physiol.148:557–67[Google Scholar]
    132. WhitneySM,AndrewsTJ.132. 2001. The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco.Plant Cell.13:193–205[Google Scholar]
    133. WhitneySM,AndrewsTJ.133. 2001. Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) supports photosynthesis and growth in tobacco.Proc. Natl. Acad. Sci. USA98:14738–43[Google Scholar]
    134. WhitneySM,SharwoodRE.134. 2007. Linked Rubisco subunits can assemble into functional oligomers without impeding catalytic performance.J. Biol. Chem.282:3809–18[Google Scholar]
    135. WhitmarshJ,OrtDR.135. 1984. Stoichiometries of electron transport complexes in spinach chloroplasts.Arch. Biochem. Biophys.231:378–89[Google Scholar]
    136. WiebeK.136. 2008.The State of Food and Agriculture 2008.Biofuels: Prospects, Risks and Opportunities Food and Agriculture Organization of the United Nations, Rome, Italy[Google Scholar]
    137. WilsonD.137. 1975. Variation in leaf respiration in relation to growth and photosynthesis ofLolium.Ann. Appl. Biol.80:323–38[Google Scholar]
    138. WilsonD,JonesJG.138. 1982. Effect of selection for dark respiration rate of mature leaves on crop yields ofLolium perenne cv. S23.Ann. Bot.49:313–20[Google Scholar]
    139. WongS,CowanIR,FarquharGD.139. 1979. Stomatal conductance correlates with photosynthetic capacity.Nature282:424–26[Google Scholar]
    140. WullschlegerSD.140. 1993. Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 species.J. Exp. Bot.44:907–20[Google Scholar]
    141. ZhuXG,de SturlerE,LongSP.141. 2007. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm.Plant Physiol.145:513–26[Google Scholar]
    142. ZhuXG,LongSP,OrtDR.142. 2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?.Curr. Opin. Biotechnol.19:153–59[Google Scholar]
    143. ZhuXG,OrtDR,WhitmarshJ,LongSP.143. 2004. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis.J. Exp. Bot.55:1167–75[Google Scholar]
    144. ZhuX,PortisARJr,LongSP.144. 2004. Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis.Plant Cell Environ.27:155–65[Google Scholar]
    /content/journals/10.1146/annurev-arplant-042809-112206
    Loading
    Improving Photosynthetic Efficiency for Greater Yield
    Annual Review of Plant Biology61, 235 (2010);https://doi.org/10.1146/annurev-arplant-042809-112206
    /content/journals/10.1146/annurev-arplant-042809-112206
    /content/journals/10.1146/annurev-arplant-042809-112206
    Loading

    Data & Media loading...

    Supplementary Data

    Most Read This Month

    Article
    content/journals/arplant
    Journal
    5
    3
    false
    en
    Loading

    Most CitedMost Cited RSS feed

    Related Articles from Annual Reviews

    /content/journals/10.1146/annurev-arplant-042809-112206
    dcterms_title,dcterms_subject,pub_keyword
    -contentType:Journal -contentType:Contributor -contentType:Concept -contentType:Institution
    4
    4

    Literature Cited

    1. AhnTK,AvensonTJ,BallottariM,ChengYC,NiyogiKK.1.  et al.2008. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.Science320:794–97[Google Scholar]
    2. AinsworthEA,LongSP.2. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy.New Phytol.165:351–71[Google Scholar]
    3. AmthorJS.3. 1989.Respiration and Crop Productivity New York: Springer-Verlag[Google Scholar]
    4. AmthorJS.4. 2007. Improving photosynthesis and yield potential.Improvements of Crop Plants for Industrial End Uses P Ranalli27–58 Dordrecht, Netherlands: Springer[Google Scholar]
    5. AnderssonI,TaylorTC.5. 2003. Structural framework for catalysis and regulation in ribulose-15-bisphosphate carboxylase/oxygenase.Arch. Biochem. Biophys.414:130–40[Google Scholar]
    6. AtkinOK,MacherelD.6. 2009. The crucial role of plant mitochondria in orchestrating drought tolerance.Ann. Bot.103:581–97[Google Scholar]
    7. BainbridgeG,MadgwickP,ParmarS,MitchellR,PaulM.7.  et al.1995. Engineering Rubisco to change its catalytic properties.J. Exp. Bot.46:1269–76[Google Scholar]
    8. BakerNR,EastTM,LongSP.8. 1983. Chilling damage to photosynthesis in youngZea mays.J. Exp. Bot.34:189–97[Google Scholar]
    9. BallJT,WoodrowIE,BerryJA.9. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions.Progress in Photosynthesis Research J Biggens4221–24 Dordrecht, Netherlands: Martinus Nijhoff[Google Scholar]
    10. BarnolaJM,RaynaudD,LoriusC,BarkovN.10. 1999. Historical CO2 record from the Vostok ice core.Trends: A Compendium of Data on Global Change Carbon Dioxide Information Analysis Center, U.S. Dept. of Energy, Oak Ridge National Laboratory, Oak Ridge, TN[Google Scholar]
    11. BarrettCL,KimTY,KimHU,PalssonBO,LeeSY.11. 2006. Systems biology as a foundation for genome-scale synthetic biology.Curr. Opin. Biotechnol.17:488–92[Google Scholar]
    12. BeadleCL,LongSP.12. 1985. Photosynthesis—is it limiting to biomass production.Biomass.8:119–68[Google Scholar]
    13. BeadleCL,LongSP,ImbambaSK,HallDO,OlemboRJ.13. 1985. Photosynthesis in relation to plant production in terrestrial environments. UN Environ. Programme (UNEP) Oxford, UK: Tycooly Int.156[Google Scholar]
    14. BealeCV,MorrisonJIL,LongSP.14. 1999. Water use efficiency of C4 perennial grasses in a temperate climate.Agric. For. Meteorol.96:103–15[Google Scholar]
    15. BealeCV,LongSP.15. 1995. Can perennial C-4 grasses attain high efficiencies of radiant energy–conversion in cool climates.Plant Cell Environ.18:641–50[Google Scholar]
    16. BernacchiCJ,LeakeyADB,HeadyLE,MorganPB,DohlemanFG.16.  et al.2006. Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions.Plant Cell Environ.29:2077–90[Google Scholar]
    17. BernacchiCJ,PortisAR,NakanoH,von CaemmererS,LongSP.17. 2002. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo.Plant Physiol.130:1992–98[Google Scholar]
    18. BjörkmanO,DemmigB.18. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins.Planta.170:489–504[Google Scholar]
    19. ChenX,ZhangW,XieY,LuW,ZhangR.19. 2007. Comparative proteomics of thylakoid membrane from a chlorophyllb–less rice mutant and its wild type.Plant Sci.173:397[Google Scholar]
    20. ChengSH,DemooreB,WuJR,EdwardsGE,KuMSB.20. 1989. Photosynthetic plasticity in flaveria-brownii—growth irradiance and the expression of C-4 photosynthesis.Plant Physiol.89:1129–35[Google Scholar]
    21. CosentinoSL,PataneC,SanzoneE,CopaniV,FotiS.21. 2007. Effects of soil water content and nitrogen supply on the productivity ofMiscanthus xgiganteus Greef et Deu. in a mediterranean environment.Ind. Crops Prod.25:75–88[Google Scholar]
    22. CramerWA,ZhangHM,YanJS,KurisuG,SmithJL.22. 2006. Transmembrane traffic in the cytochrome b6f complex.Annu. Rev. Biochem.75:769–90[Google Scholar]
    23. DaiXB,XuXM,LuW,KuangTY.23. 2003. Photoinhibition characteristics of a low chlorophyll b mutant of high yield rice.Photosynthetica.41:57–60[Google Scholar]
    24. DermodyO,LongSP,McConnaughayK,DeLuciaEH.24. 2008. How do elevated CO2 and O3 affect the interception and utilization of radiation by a soybean canopy?.Glob. Change Biol.14:556–64[Google Scholar]
    25. DohlemanFG,LongSP.25. 2009. More productive than maize in the Midwest—How doesMiscanthus do it?.Plant Physiol.150:2104–15[Google Scholar]
    26. DuncanWG.26. 1971. Leaf angle, leaf area and crop photosynthesis.Crop Sci.11:482–85[Google Scholar]
    27. EarlHJ,TollenaarM.27. 1998. Difference among commercial maize (Zea mays L.) hybrids in respiration rates of mature leaves.Field Crops Res.59:9–19[Google Scholar]
    28. EberhardS,FinazziG,WollmanFA.28. 2008. The dynamics of photosynthesis.Annu. Rev. Genet.42:463–515[Google Scholar]
    29. EhleringerJ,PearcyRW.29. 1983. Variation in quantum yield for CO2 uptake among C3 and C4 plants.Plant Physiol.73:555–59[Google Scholar]
    30. ErcoliL,MariottiM,MasoniA,BonariE.30. 1999. Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of miscanthus.Field Crops Res.63:3–11[Google Scholar]
    31. EvansLT.31. 1993.Crop Evolution, Adaptation and Yield Cambridge: Cambridge Univ. Press[Google Scholar]
    32. FalkS,LeverenzJW,SamuelssonG,OquistG.32. 1992. Changes in photosystem II fluorescence inChlamydomonas reinhardtii exposed to increasing levels of irradiance in relationship to the photosynthetic response to light.Photosynth. Res.31:31–40[Google Scholar]
    33. FalkowskiPG,DubindkyZ.33. 1981. Light shade adaption ofStylophora pistillata, a hermatypic coral from the Gulf of Eilat.Nature289:172–74[Google Scholar]
    34. 34. FAOSTAT2007. FAO statistical databases. Food and Agriculture Organization of the United Nations Rome, Italy:http://www.fao.org
    35. FarquharGD,von CaemmererS,BerryJA.35. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.Planta149:78–90[Google Scholar]
    36. FergusonSJ.36. 2000. ATP synthase: What dictates the size of a ring?Curr.Biol.10:R804–8[Google Scholar]
    37. FieldC.37. 2008.Agriculture in a changing environment Presented at Phytopathology, Carnegie Inst. Sci., Stanford Univ.98S2[Google Scholar]
    38. FlexasJ,Ribas-CarboM,Diaz-EspejoA,GalmesJ,MedranoH.38. 2008. Mesophyll conductance to CO2: Current knowledge and future prospects.Plant Cell Environ.31:602–21[Google Scholar]
    39. FoyerCH,BloomAJ,QuevalG,NoctorG.39. 2009. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling.Annu. Rev. Plant Biol.61:455–84[Google Scholar]
    40. FurbankRT,HatchMD.40. 1987. Mechanism of C4 photosynthesis—the size and composition of the inorganic carbon pool in bundle sheath cells.Plant Physiol.85:958–64[Google Scholar]
    41. GalmesJ,FlexasJ,KeysAJ,CifreJ,MitchellRAC.41.  et al.2005. Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves.Plant Cell Environ.28:571–79[Google Scholar]
    42. GlickRE,MelisA.42. 1988. Minimum photosynthetic unit size in system-I and system-II of barley chloroplasts.Biochim. Biophys. Acta934:151–55[Google Scholar]
    43. HallAJ,ConnorDJ,SadrasVO.43. 1995. Radiation use efficiency of sunflower crops—effects of specific leaf nitrogen and ontogeny.Field Crop. Res.41:65–77[Google Scholar]
    44. HarleyPC,SharkeyTD.44. 1991. An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast.Photosynth. Res.27:169–78[Google Scholar]
    45. HarrisonEP,OlcerH,LloydJC,LongSP,RainesCA.45. 2001. Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity.J. Exp. Bot.52:1779–84[Google Scholar]
    46. HarrisonEP,WillinghamNM,LloydJC,RainesCA.46. 1998. Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation.Planta204:27–36[Google Scholar]
    47. HayRKM.47. 1995. Harvest index—a review of its use in plant-breeding and crop physiology.Ann. Appl. Biol.126:197–216[Google Scholar]
    48. HenkesS,SonnewaldU,BadurR,FlachmannR,StittM.48. 2001. A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism.Plant Cell13:535–51[Google Scholar]
    49. HibberdJM,CovshoffS.49.  The regulation of gene expression required for C4 photosynthesis.Annu. Rev. of Plant Biol.61: In press[Google Scholar]
    50. HibberdJM,QuickWP.50. 2002. Characteristics of C-4 photosynthesis in stems and petioles of C-3 flowering plants.Nature415:451–54[Google Scholar]
    51. HibberdJM,SheehyJE,LangdaleJA.51. 2008. Using C-4 photosynthesis to increase the yield of rice—rationale and feasibility.Curr. Opin. Plant Biol.11:228–31[Google Scholar]
    52. HikosakaK,TerashimaI.52. 1995. A model of the acclimation of photosynthesis in the leaves of C-3 plants to sun and shade with respect to nitrogen use.Plant Cell Environ.18:605–18[Google Scholar]
    53. HortonP,JohnsonMP,Perez-BuenoML,KissAZ,RubanAV.53. 2008. Photosynthetic acclimation: Does the dynamic structure and macro-organization of photosystem II in higher plant grana membranes regulate light harvesting states?.FEBS J.275:1069–79[Google Scholar]
    54. HoutzRL,PortisAR.54. 2003. The life of ribulose 1,5-bisphosphate carboxylase/oxygenase-posttranslational facts and mysteries.Arch. Biochem. Biophys.414:150–58[Google Scholar]
    55. JohnsonMP,DavisonPA,RubanAV,HortonP.55. 2008. The xanthophyll cycle pool size controls the kinetics of nonphotochemical quenching inArabidopsis thaliana.FEBS Lett.582:262–66[Google Scholar]
    56. KanevskiI,MaligaP,RhoadesDF,GutteridgeS.56. 1999. Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid.Plant Physiol.119:133–41[Google Scholar]
    57. KarkehabadiS,PeddiSR,AnwaruzzamanM,TaylorTC,CederlundA.57.  et al.2005. Chimeric small subunits influence catalysis without causing global conformational changes in the crystal structure of ribulose-1,5-bisphosphate carboxylase/oxygenase.Biochemistry44:9851–61[Google Scholar]
    58. KebeishR,NiessenM,ThiruveedhiK,BariR,HirschH.58.  et al.2007. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production inArabidopsis thaliana.Nat. Biotechnol.25:593–99[Google Scholar]
    59. KramerDM,CruzJA,KanazawaA.59. 2003. Balancing the central roles of the thylakoid proton gradient.Trends Plant Sci.8:27–32[Google Scholar]
    60. LangdaleJA,ZelitchI,MillerE,NelsonT.60. 1988. Cell position and light influence C-4 versus C-3 patterns of photosynthetic gene-expression in maize.EMBO J.7:3643–51[Google Scholar]
    61. LawlorDW,TezaraW.61. 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes.Ann. Bot.103:561–79[Google Scholar]
    62. LeakeyADB,BernacchiCJ,OrtDR,LongSP.62. 2006. Growth of soybean under free-air [CO2] enrichment (FACE) does not cause stomatal acclimation.Plant Cell Environ.29:1794–1800[Google Scholar]
    63. LeakeyADB,XuF,GillespieKM,McGrathJM,AinsworthEA,OrtDR.63. 2009. Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide.Proc. Natl. Acad. Sci. USA106:3597–602[Google Scholar]
    64. LefebvreS,LawsonT,ZakhleniukOV,LloydJC,RainesCA.64. 2005. Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development.Plant Physiol.138:451–60[Google Scholar]
    65. LeverenzJW,FalkS,PilstromCM,SamuelssonG.65. 1990. The effects of photoinhibition on the photosynthetic light-response curve of green plant-cells (chlamydomonas-reinhardtii).Planta182:161–68[Google Scholar]
    66. LiZ,WakaoS,FischerBB,NiyogiKK.66. 2009. Sensing and responding to excess light.Annu. Rev. Plant Biol.60:239–60[Google Scholar]
    67. LongSP.67. 1999. Environmental responses.The Biology of C4 Photosynthesis RF Sage, RK Monson209–43 San Diego: Academic[Google Scholar]
    68. LongSP,AinsworthEA,RogersA,OrtDR.68. 2004. Rising atmospheric carbon dioxide: Plants FACE their future.Annu. Rev. Plant Biol.55:591–628[Google Scholar]
    69. LongSP,HumphriesSW,FalkowskiPG.69. 1994. Photoinhibition of photosynthesis in nature.Annu. Rev. Plant Physiol Plant Molec. Biol.45:633–62[Google Scholar]
    70. LongSP,IncollLD,WoolhouseHW.70. 1975. C4 photosynthesis in plants from cool temperate regions, with particular reference to Spartina-townsendii.Nature257:622–24[Google Scholar]
    71. LongSP,PostlWF,BolharnordenkampfHR.71. 1993. Quantum yields for uptake of carbon-dioxide in C-3 vascular plants of contrasting habitats and taxonomic groupings.Planta189:226–34[Google Scholar]
    72. LongSP,ZhuXG,NaiduSL,OrtDR.72. 2006. Can improvement in photosynthesis increase crop yields?.Plant Cell Environ.29:315–30[Google Scholar]
    73. LoomisRS,WilliamsWA,DuncanWG.73. 1967. Community architecture and the productivity of terrestrial plant communities.Harvesting the Sun: Photosynthesis in Plant Life A San Pietro, FA Greer, TJ Army291–308 New York: Academic[Google Scholar]
    74. MarshallB,BiscoePV.74. 1980. A model for C-3 leaves describing the dependence of net photosynthesis on irradiance 0.1. derivation.J. Exp. Bot.31:29–39[Google Scholar]
    75. MatsumuraI,PatelM,GreeneD.75. 2005. Directed evolution of Rubisco through genetic selections of metabolically engineeredEscherichia coli.FASEB J.19:A292[Google Scholar]
    76. MatsuokaM,FurbankRT,FukayamaH,MiyaoM.76. 2001. Molecular engineering of C4 photosynthesis.Annu. Rev. Plant Physiol. Plant Molec. Biol.52:297–314[Google Scholar]
    77. MeehlGA,StockerTF,CollinsWD,FriedlingsteinP,GayeAT.77.  et al.2007. Global climate projections.Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S Solomon, D Qin, M Manning, Z Chen, M Marquis, et al.119–234 Cambridge: Cambridge Univ. Press[Google Scholar]
    78. MelisA.78. 1996. Excitation energy transfer: functional and dynamic aspects of Lhc (cab) proteins.Oxygenic Photosynthesis: The Light Reactions DR Ort, CF Yocum523–38 Dordrecht, Netherlands: Kluwer Academic[Google Scholar]
    79. MelisA.79. 1999. Photosystem-II damage and repair cycle in chloroplasts: What modulates the rate of photodamage in vivo?.Trends Plant Sci.4:130–35[Google Scholar]
    80. MelisA.80. 2009. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency.Plant Sci.17:272–80[Google Scholar]
    81. MelisA,NeidhardtJ,BenemannJR.81. 1998.Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells.J. Appl. Phycol.10:515–25[Google Scholar]
    82. MiyaoM.82. 2003. Molecular evolution and genetic engineering of C4 photosynthetic enzymes.J. Exp. Bot.54:179–89[Google Scholar]
    83. MonteithJL.83. 1977. Climate and the efficiency of crop production in Britain.Philos. Trans. R. Soc. Lond. Ser. B281:277–94[Google Scholar]
    84. MorganPB,BolleroGA,NelsonRL,DohlemanFG,LongSP.84. 2005. Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation.Global Change Biol.11:1856–65[Google Scholar]
    85. MorinakaY,SakamotoT,InukaiY,AgetsumaM,KitanoH.85.  et al.2006. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice.Plant Physiol.141:924–31[Google Scholar]
    86. MuurinenS,Peltonen-SainioP.86. 2006. Radiation-use efficiency of modern and old spring cereal cultivars and its response to nitrogen in northern growing conditions.Field Crop. Res.96:363–73[Google Scholar]
    87. NausJ,MelisA.87. 1991. Changes of photosystem stoichiometry during cell-growth inDunaliella salina cultures.Plant Cell Physiol.32:569–75[Google Scholar]
    88. NeidhardtJ,BenemannJR,ZhangLP,MelisA.88. 1998. Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity inDunaliella salina (green algae).Photosynth. Res.56:175–84[Google Scholar]
    89. NelsonN,YocumCF.89. 2006. Structure and function of photosystems I and II.Annu. Rev. Plant Biol.57:521–65[Google Scholar]
    90. NiinemetsU.90. 2007. Photosynthesis and resource distribution through plant canopies.Plant Cell Environ.30:1052–71[Google Scholar]
    91. NiinemetsU,Diaz-EspejoA,FlexasJ,GalmesJ,WarrenCR.91. 2009. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field.J. Exp. Bot.60:2271–82[Google Scholar]
    92. NiyogiKK.92. 1999. Photoprotection revisited: genetic and molecular approaches.Annu. Rev. Plant Physiol. Plant Mol. Biol.50:333–59[Google Scholar]
    93. NiyogiKK,LiX-P,RosenbergV,JungH-S.93. 2005. Is PsbS the site of non-photochemical quenching in photosynthesis?.J.Exp. Bot.56:375–82[Google Scholar]
    94. OgrenE,SjostromM.94. 1990. Estimation of the effect of photoinhibition on the carbon gain in leaves of a willow canopy.Planta181:560–67[Google Scholar]
    95. OrtDR.95. 2001. When there is too much light.Plant Physiol.125:29–32[Google Scholar]
    96. Ortiz-LopezA,NieGY,OrtDR,BakerNE.96. 1990. The involvement of the photoinhibition of photosystem II and impaired membrane energization in the reduced quantum yield of carbon assimilation in chilled maize..Planta181:78–84[Google Scholar]
    97. ParryMAJ,AndralojcPJ,MitchellRAC,MadgwickPJ,KeysAJ.97. 2003. Manipulation of Rubisco: The amount, activity, function and regulation.J. Exp. Bot.54:1321–33[Google Scholar]
    98. PengSB,TangQ,ZouY.98. 2009. Current status and challenges of rice production in china.Plant Prod. Sci.12:3–8[Google Scholar]
    99. Penning de VriesFWT,BrunstingAHM,van LaarHH.99. 1974. Products, requirement and efficiency of biosynthesis: A quantitative approach.J. Theor. Biol.45:339–77[Google Scholar]
    100. PettigrewWT,HeskethJD,PetersDB,WoolleyJT.100. 1989. Characterization of canopy photosynthesis of chlorophyll-deficient soybean isolinew.Crop Sci.29:1025–29[Google Scholar]
    101. PiedadeMTF,JunkWJ,LongSP.101. 1991. The productivity of the C4 grass echinochloa-polystachya on the Amazon floodplain.Ecology72:1456–63[Google Scholar]
    102. PimentelC,DaveyPA,JuvikJA,LongSP.102. 2005. Gene loci in maize influencing susceptibility to chilling dependent photoinhibition of photosynthesis.Photosynth. Res.85:319–26[Google Scholar]
    103. PowlesSB.103. 1984. Photoinhibition of photosynthesis induced by visible-light.Annu. Rev. Plant Physiol. Plant Mol. Biol.35:15–44[Google Scholar]
    104. PykeKA,LeechRM.104. 1987. The control of chloroplast number in wheat mesophyll cells.Planta170:416–20[Google Scholar]
    105. RainesCA.105. 2003. The Calvin cycle revisited.Photosynth. Res.75:1–10[Google Scholar]
    106. RainesCA.106. 2006. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle.Plant Cell Environ.29:331–39[Google Scholar]
    107. ReynoldsMP,van GinkelM,RibautJM.107. 2000. Avenues for genetic modification of radiation use efficiency in wheat.J. Exp. Bot.51:459–73[Google Scholar]
    108. RichardsRA.108. 2000. Selectable traits to increase crop photosynthesis and yield of grain crops.J. Exp. Bot.51:447–58[Google Scholar]
    109. RichterML.109. 2004. Gamma-epsilon interactions regulate the chloroplast ATP synthase.Photosynth. Res.79:319–29[Google Scholar]
    110. SageRF.110. 2002. Variation in the k(cat) of Rubisco in C-3 and C-4 plants and some implications for photosynthetic performance at high and low temperature.J. Exp. Bot.53:609–20[Google Scholar]
    111. SageRF.111. 2004. The evolution of C-4 photosynthesis.New Phytologist161:341–70[Google Scholar]
    112. SakamotoT,MatsuokaM.112. 2004. Generating high-yielding varieties by genetic manipulation of plant architecture.Curr. Opin. Biotechnol.15:144–47[Google Scholar]
    113. SeemannJR,BadgerMR,BerryJA.113. 1984. Variations in the specific activity of ribulose-1,5-bisphosphate carboxylase between species utilizing differing photosynthetic pathways.Plant Physiol.74:791–94[Google Scholar]
    114. ShikanaiT.114. 2007. Cyclic electron transport around photosystem I: genetic approaches.Annu. Rev. Plant Biol.58:199–217[Google Scholar]
    115. SinclairTR.115. 1998. Historical changes in harvest index and crop nitrogen accumulation.Crop Sci.38:638–43[Google Scholar]
    116. SmilV.116. 2005. Do we need higher farm yield during the first half of the 21st century.Yields of Farmed Species: Constraints and Opportunities in the 21st Century R Sylvester-Bradley, J Wiseman1–14 Nottingham, UK: Nottingham University Press[Google Scholar]
    117. SpreitzerRJ,SalvucciME.117. 2002. RUBISCO: Structure, regulatory interactions, and possibilities for a better enzyme.Annu. Rev. Plant Biol.53:449–75[Google Scholar]
    118. StittM,QuickWP,SchurrU,SchulzeED,RodermelSR,BogoradL.118. 1991. Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with antisense rbcS. II. Flux control coefficients for photosynthesis in varying light, CO2, and air humidity.Planta183:555–66[Google Scholar]
    119. SuzukiS,MuraiN,BurnellJN,AraiM.119. 2000. Changes in photosynthetic carbon flow in transgenic rice plants that express C4-type phosphoenolpyruvate carboxykinase fromUrochloa panicoides.Plant Physiol.124:163–72[Google Scholar]
    120. TabitaFR.120. 1999. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective.Photosynth. Res.60:1–28[Google Scholar]
    121. TazoeY,NoguchiKO,TerashimaI.121. 2006. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant,Amaranthus cruentus.Plant Cell Environ.29:691–700[Google Scholar]
    122. TerashimaI,EvansJR.122. 1988. Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach.Plant Cell Physiol.29:143–55[Google Scholar]
    123. TerashimaI,HanbaYT,TazoeY,VyasP,YanoS.123. 2006. Irradiance and phenotype: Comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion.J. Exp. Bot.57:343–54[Google Scholar]
    124. TurinaP,SamorayD,GraberP.124. 2003. H+/ATP ratio of proton transport–coupled ATP synthesis and hydrolysis catalysed by CF0F1-liposomes.EMBO J.22:418–26[Google Scholar]
    125. UemuraK,AnwaruzzamanM,MiyachiS,YokotaA.125. 1997. Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic red algae with a strong specificity for CO2 fixation.Biochem. Biophys. Res. Commun.233:568–71[Google Scholar]
    126. UenoO.126. 1998. Induction of Kranz anatomy and C-4-like biochemical characteristics in a submerged amphibious plant by abscisic acid.Plant Cell.10:571–83[Google Scholar]
    127. von CaemmererS.127. 2000. Biochemical models of leaf photosynthesis. Collingwood, Aust: CSIRO
    128. von CaemmererS.128. 2003. C-4 photosynthesis in a single C-3 cell is theoretically inefficient but may ameliorate internal CO2 diffusion limitations of C-3 leaves.Plant Cell Environ.26:1191–97[Google Scholar]
    129. VoznesenskayaEV,FranceschiVR,KiiratsO,ArtyushevaEG,FreitagH,EdwardsGE.129. 2002. Proof of C-4 photosynthesis without kranz anatomy inBienertia cycloptera (Chenopodiaceae).Plant J.31:649–62[Google Scholar]
    130. VoznesenskayaEV,FranceschiVR,KiiratsO,FreitagH,EdwardsGE.130. 2001. Kranz anatomy is not essential for terrestrial C-4 plant photosynthesis.Nature414:543–46[Google Scholar]
    131. WangDF,PortisAR,MooseSP,LongSP.131. 2008. Cool C-4 photosynthesis: pyruvate P-i dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation inMiscanthus xgiganteus.Plant Physiol.148:557–67[Google Scholar]
    132. WhitneySM,AndrewsTJ.132. 2001. The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco.Plant Cell.13:193–205[Google Scholar]
    133. WhitneySM,AndrewsTJ.133. 2001. Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) supports photosynthesis and growth in tobacco.Proc. Natl. Acad. Sci. USA98:14738–43[Google Scholar]
    134. WhitneySM,SharwoodRE.134. 2007. Linked Rubisco subunits can assemble into functional oligomers without impeding catalytic performance.J. Biol. Chem.282:3809–18[Google Scholar]
    135. WhitmarshJ,OrtDR.135. 1984. Stoichiometries of electron transport complexes in spinach chloroplasts.Arch. Biochem. Biophys.231:378–89[Google Scholar]
    136. WiebeK.136. 2008.The State of Food and Agriculture 2008.Biofuels: Prospects, Risks and Opportunities Food and Agriculture Organization of the United Nations, Rome, Italy[Google Scholar]
    137. WilsonD.137. 1975. Variation in leaf respiration in relation to growth and photosynthesis ofLolium.Ann. Appl. Biol.80:323–38[Google Scholar]
    138. WilsonD,JonesJG.138. 1982. Effect of selection for dark respiration rate of mature leaves on crop yields ofLolium perenne cv. S23.Ann. Bot.49:313–20[Google Scholar]
    139. WongS,CowanIR,FarquharGD.139. 1979. Stomatal conductance correlates with photosynthetic capacity.Nature282:424–26[Google Scholar]
    140. WullschlegerSD.140. 1993. Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 species.J. Exp. Bot.44:907–20[Google Scholar]
    141. ZhuXG,de SturlerE,LongSP.141. 2007. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm.Plant Physiol.145:513–26[Google Scholar]
    142. ZhuXG,LongSP,OrtDR.142. 2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?.Curr. Opin. Biotechnol.19:153–59[Google Scholar]
    143. ZhuXG,OrtDR,WhitmarshJ,LongSP.143. 2004. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis.J. Exp. Bot.55:1167–75[Google Scholar]
    144. ZhuX,PortisARJr,LongSP.144. 2004. Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis.Plant Cell Environ.27:155–65[Google Scholar]

    FromKnowable Magazine:

    knowable magazine Teen Brain Bootcamp Special


    knowable magazine from Annual Reviews


    Bluesky share image


    Climate Resource Center, Article Collection from Annual Reviews


    Journal News

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Annual Reviews:
    http://instance.metastore.ingenta.com/content/journals/10.1146/annurev-arplant-042809-112206
    10.1146/annurev-arplant-042809-112206
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp