Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Predicting the mechanical properties of spider silk as a model nanostructured polymer

  • Regular Articles
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Spider silk is attractive because it is strong and tough. Moreover, an enormous range of mechanical properties can be achieved with only small changes in chemical structure. Our research shows that the full range of thermo-mechanical properties of silk fibres can be predicted from mean field theory for polymers in terms of chemical composition and the degree of order in the polymer structure. Thus, we can demonstrate an inherent simplicity at a macromolecular level in the design principles of natural materials. This surprising observation allows in depth comparison of natural with man-made materials.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  • D. Fox, New Scientist, 24 April 1999, pp. 38–41

  • F. Vollrath, Reviews in Molecular Biotechnology74, 67 (2000)

    Google Scholar 

  • Z. Shao, F. Vollrath, Nature418, 741 (2002)

    Google Scholar 

  • F. Vollrath, D. Knight, inHandbook of Biopolymers, edited by A. Steinbüchel, S. Fahnestock (Wiley-VCH, Heidelberg and New York, 2003), Chap. 2, p. 25

  • Z. Shao, Y. Yang, X. Chen, P. Zhou, D. Knight, D. Porter, F. Vollrath,Spider silk performs as much tougher material at low temperatures, Adv. Mater. (in press)

  • D.T. Grubb, L.W. Jelinski, Macromolecules30, 2860 (1997)

    Google Scholar 

  • J.D. van Beek et al., PNAS99, 10266 (2002)

    Google Scholar 

  • B.L. Thiel et al., Biopolymers34, 1089 (1994); B.L. Thiel, Biopolymers41, 703 (1997)

    Google Scholar 

  • J.M. Gosline et al., inSilk Polymers: Materials Science and Biotechnology, edited by Kaplan et al., ACS Symposium Series 544 (ACS Press, New York, 1994), Chap. 27, p. 328

  • M.A. Becker et al., inSilk Polymers: Materials Science and Biotechnology, edited by Kaplan et al., ACS Symposium Series 544 (ACS Press, New York, 1994), Chap. 17, p. 185

  • Y. Termonia, Macromolecules27, 7378 (1994)

    Google Scholar 

  • M.J. Forster, Micron33, 365 (2002)

    Google Scholar 

  • J.J.M. Baltussen, M.G. Northolt, Polymer40, 6113 (1999)

    Google Scholar 

  • A. Galeski, Prog. Polym. Sci.28, 1643 (2003)

    Google Scholar 

  • D. Porter,Group Interaction Modelling of Polymer Properties (Marcel Dekker, New York, 1995)

  • M.J. Buehler, F.F. Abraham, H. Gao, Nature426, 141 (2003)

    Google Scholar 

  • D. Porter, Mat. Sci. Eng. A365, 38 (2004)

    Google Scholar 

  • M. Xu, R.V. Lewis, Proc. Natl. Acad. Sci. USA87, 7120 (1990)

    Google Scholar 

  • D.W. van Krevelen,Properties of Polymers (Elsevier, Amsterdam, 1993)

  • J. Bicerano,Prediction of Polymer Properties (Marcel Dekker, New York, 1993)

  • J. Rossmeisl et al., J. Chem. Phys.118, 9783 (2003)

    Google Scholar 

  • Molecular mechanics and dynamics simulations performed on the Cerius2 system of Accelrys Inc.: seehttp://www.Accelrys.com

  • B. Wunderlich, S.Z.D. Cheng, K. Loufakis,Thermodynamic Properties in Encyclopedia of Polymer Science and Engineering, Vol. 16 (Wiley-Interscience, New York, 1989)

  • H.S. Bu, S.Z.D. Cheng, B. Wunderlich, J. Phys. Chem.91, 4179 (1987)

    Google Scholar 

  • V.V. Tarasov, G.A. Yunitskill, Russian J. Phys. Chem.39, 1109 (1965)

    Google Scholar 

  • N.G. McCrum, B.E. Read, G. Williams,Anelastic and Dielectric Effects in Polymeric Solids(John Wiley and Sons, London, 1967)

  • A. Bondi,Physical Properties of Molecular Crystals, Liquids, and Glasses (John Wiley and Sons Inc., New York, 1969), p. 401

  • F. Vollrath, Proc. R. Soc. Lond. B268, 2339 (2001)

    Google Scholar 

  • Z. Shao, F. Vollrath, Polymer40, 1799 (1999)

    Google Scholar 

  • D. Porter, J. Non-Newtonian Fluid Mech.68, 141 (1997)

    Google Scholar 

  • J. Perez-Rigueiro et al., J. Appl. Polym. Sci.82, 2245 (2001)

    Google Scholar 

  • A. Lazaris et al., Science295, 472 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK

    D. Porter & F. Vollrath

  2. Department of Macromolecular Science and Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Fudan University, 200433, Shanghai, P.R. China

    Z. Shao

Authors
  1. D. Porter
  2. F. Vollrath
  3. Z. Shao

Corresponding author

Correspondence toD. Porter.

Rights and permissions

About this article

Cite this article

Porter, D., Vollrath, F. & Shao, Z. Predicting the mechanical properties of spider silk as a model nanostructured polymer.Eur. Phys. J. E16, 199–206 (2005). https://doi.org/10.1140/epje/e2005-00021-2

Download citation

Keywords

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp