290Accesses
57Citations
79 Altmetric
10Mentions
Abstract
Dynamicalmass estimates for the main asteroid belt and the trans-Neptunian Kuiper belt have been found from their gravitational influence on the motion of planets. Discrete rotating models consisting ofmovingmaterial points have been used tomodel the total attraction fromsmall or as yet undetected bodies of the belts. The masses of the model belts have been included in the set of parameters being refined and determined and have been obtained by processing more than 800 thousand modern positional observations of planets and spacecraft. We have processed the observations and determined the parameters based on the new EPM2017 version of the IAA RAS planetary ephemerides. The large observed radial extent of the belts (more than 1.2 AU for the main belt and more than 8 AU for the Kuiper belt) and the concentration of bodies in the Kuiper belt at a distance of about 44 AU found from observations have been taken into account in the discrete models. We have also used individual mass estimates for large bodies of the belts as well as for objects that spacecraft have approached and for bodies with satellites. Our mass estimate for the main asteroid belt is (4.008 ± 0.029) × 10−4/m⊕ (3σ). The bulk of the Kuiper belt objects are in the ring zone from 39.4 to 47.8 AU. The estimate of its total mass together with the mass of the 31 largest trans-Neptunian Kuiper belt objects is (1.97 ± 0.30) × 10−2m⊕ (3σ), which exceeds the mass of the main asteroid belt almost by a factor of 50. The mass of the 31 largest trans-Neptunian objects (TNOs) is only about 40% of the total one.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
R. L. Allen, G. M. Bernstein, and R. Malhotra, Astron. J.124, 2949 (2002).
M. T. Bannister, J. J. Kavelaars, J.-M. Petit, B. J. Gladman, S. D. J. Gwyn, Y.-T. Chen, K. Volk, M. Alexandersen, et al., Astron. J.152, 70 (2016).
G. Benedetti-Rossi, R. Vieira Martins, J. I. B. Camargo, M. Assafin, and F. Braga-Ribas, Astron. Astrophys. 570, A86 (2014).
G. M. Bernstein, D. E. Trilling, R. L. Allen, M. E. Brown, M. Holman, and R. Malhotra, Astron. J.128, 1364 (2004).
M. Booth, M. C. Wyatt, and A. Morbidelli, Mon. Not. R. Astron. Soc.399, 385 (2009).
M. Buie and W. M. Folkner, Astron. J.149, 22 (2015).
E. I. Chiang and M. E. Brown, Astron. J.118, 1411 (1999).
A. Delsanti and D. Jewitt,in Solar System Update, Ed. P. Blondel and J. Mason (Springer, Berlin, 2006), p. 267.
J. L. Elliot, S. D. Kern, K. B. Clancy, A. A. S. Gulbis, R. L. Millis, M. W. Buie, L. H. Wasserman, E. I. Chiang, et al., Astron. J.129, 1117 (2005).
W. M. Folkner, J. G. Williams, D. H. Boggs, R. S. Park, and P. Kychynka, IPN Prog. Rep. 42–196 (2014).
B. Gladman, Highlights Astron.12, 193 (2002).
B. Gladman, J. J. Kavelaars, J.-M. Petit, A. Morbidelli, M. J. Holman, and T. Loredo, Astron. J.122, 1051 (2001).
A. Hees, W. Folkner, R. Jacobson, and R. Park, Phys. Rev. D89, 102002 (2014).
D. Jewitt, J. Luu, and C. Trujillo, Astron. J.115, 2125 (1998).
S. Kenyon, Publ. Astron. Soc. Pacif.114, 265 (2002).
S. J. Kenyon and J. Luu, Astron. J.118, 1101 (1999).
G. A. Krasinsky, E. V. Pitjeva, M. V. Vasilyev, and E. I. Yagudina, Icarus158, 98 (2002).
P. Kuchynka and W. Folkner, Icarus222, 243 (2013).
H. F. Levison and A. Morbidelli, Nature (London, U. K. )426, 419 (2003).
J. X. Luu and D. C. Jewitt, Ann. Rev.40, 63 (2002).
N. McBride and D. W. Hughes, Mon. Not. R. Astron. Soc.244, 513 (1990).
R. S. Park, W. M. Folkner, A. S. Konopliv, J. G. Williams, D. E. Smith, and M. T. Zuber, Astron. J.153, 121 (2017).
D. A. Pavlov and V. I. Skripcnichenko,in Proceedings Journees 2014 on Systemes de Reference Spatio-Temporels, Ed. by Z. Malkin and N. Capitaine (Pulkovo Observ., 2015), p. 243.
D. A. Pavlov, J. G. Williams, and V. V. Suvorkin, Celest. Mech. Dyn. Astron.126, 61 (2016).
J.-M. Petit, A. Morbidelli, and J. Chambers, Icarus153, 338 (2001).
E. V. Pit’eva, N. P. Pit’ev, D. A. Pavlov, and M. A. Bodunova, Tr. IPA RAN43, 113 (2017).
E. V. Pitjeva, Solar Syst. Res.39, 176 (2005).
E. V. Pitjeva,in Proceedings of the IAU Symposium 263 on Icy Bodies of the Solar System, Ed. by D. Lazzaro, D. Prialnik, R. Schulz, and J. A. Fernandez (Cambridge Univ. Press, Cambridge, 2010a), p. 93.
E. V. Pitjeva,in Protecting the Earth against Collisions with Asteroids and Comet Nuclei, Ed. by A. Finkelstein, W. Huebner, and V. Shor (Nauka, St. Petersburg, 2010b), p. 237.
E. V. Pitjeva, Solar Syst. Res.47, 386 (2013).
E. V. Pitjeva and N. H. Pitjev, Celest. Mech. Dyn. Astron.119, 237 (2014).
E. V. Pitjeva and N. H. Pitjev,in Proceedings of the IAU Symp. No. 318 on Asteroids: New Observations, New Models, Ed. by S. Chesley, A. Morbidelli, R. Jedicke, and D. Farnocchia (Cambridge Univ. Press, Cambridge, 2016), p. 212.
M. C. de Sanctis, M. T. Capria, and A. Coradini, Astron. J.121, 2792 (2001).
S. A. Stern and J. E. Colwell, Astrophys. J.490, 879 (1997).
C. A. Trujillo and M. E. Brown, Astrophys. J. 554, L95 (2001).
T. Vinogradova, Tr. IPA RAN26, 110 (2012).
C. Vitense, A. Krivov, and T. Lohne, Astron. Astrophys. 520, A32 (2010).
P. R. Weissman and H. F. Levison,Ed. by A. Stern and D. J. Tholen (Univer. Arizona Press, Tucson, 1997), p. 559.
Author information
Authors and Affiliations
Institute of Applied Astronomy, Russian Academy of Sciences (IAA RAS), nab. Kutuzova 10, St. Petersburg, 191187, Russia
E. V. Pitjeva & N. P. Pitjev
St. Petersburg State University, Universitetski pr. 28, St. Petersburg, 198504, Russia
N. P. Pitjev
- E. V. Pitjeva
Search author on:PubMed Google Scholar
- N. P. Pitjev
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toE. V. Pitjeva.
Additional information
Original Russian Text © E.V. Pitjeva, N.P. Pitjev, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, Nos. 8–9, pp. 604–617.
Rights and permissions
About this article
Cite this article
Pitjeva, E.V., Pitjev, N.P. Masses of the Main Asteroid Belt and the Kuiper Belt from the Motions of Planets and Spacecraft.Astron. Lett.44, 554–566 (2018). https://doi.org/10.1134/S1063773718090050
Received:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
