Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Mouse Models of Sepsis and Septic Shock

  • INFLAMMATION
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

An extensive network of regulation of systemic inflammation makes development of a reproducible experimental model of sepsis a complex task. There is no single mouse model that can capture all clinical aspects of this complicated pathology. However, a combination of existing approaches can go a long way towards analysis of specific mechanisms of sepsis development and to the design of novel therapeutic approaches. This review describes the popular mouse models of sepsis and septic shock, as well as their limitations and development strategies.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Article01 December 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

REFERENCES

  1. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M., Hotchkiss R.S., Levy M.M., Marshall J.C., Martin G.S., Opal S.M., et al. 2016. The Third International Consensus definitions for sepsis and septic shock (Sepsis-3).J. Am. Med. Assoc.315, 801‒810.

    Article CAS  Google Scholar 

  2. Reinhart K., Daniels R., Kissoon N., Machado F.R., Schachter R.D., Finfer S. 2017. Recognizing sepsis as a global health priority—a WHO resolution.N. Engl. J. Med.377, 414‒417.

    Article PubMed  Google Scholar 

  3. Fleischmann C., Scherag A., Adhikari N.K., Hartog C.S., Tsaganos T., Schlattmann P., Angus D.C., Reinhart K., International Forum of Acute Care. 2016. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations.Am. J. Respir. Crit. Care Med.193, 259‒272.

    Article CAS PubMed  Google Scholar 

  4. Rhee C., Dantes R., Epstein L., Murphy D.J., Seymour C.W., Iwashyna T.J., Kadri S.S., Angus D.C., Danner R.L., Fiore A.E., Jernigan J.A., Martin G.S., Septimus E., Warren D.K., Karcz A., et al. 2017. Incidence and trends of sepsis in US hospitals using clinical vs. claims data, 2009‒2014.J. Am. Med. Assoc.318, 1241‒1249.

    Article  Google Scholar 

  5. Angus D.C., van der Poll T. 2013. Severe sepsis and septic shock.N. Engl. J. Med.369, 840‒851.

    Article CAS PubMed  Google Scholar 

  6. Denstaedt S.J., Singer B.H., Standiford T.J. 2018. Sepsis and nosocomial infection: Patient characteristics, mechanisms, and modulation.Front. Immunol.9, 2446.

    Article PubMed PubMed Central CAS  Google Scholar 

  7. Ramachandran G. 2014. Gram-positive and gram-negative bacterial toxins in sepsis: A brief review.Virulence.5, 213‒218.

    Article PubMed  Google Scholar 

  8. Chen P., Stanojcic M., Jeschke M.G. 2014. Differences between murine and human sepsis.Surg. Clin. North Am.94, 1135‒1149.

    Article PubMed PubMed Central  Google Scholar 

  9. Ranieri V.M., Thompson B.T., Barie P.S., Dhainaut J.F., Douglas I.S., Finfer S., Gardlund B., Marshall J.C., Rhodes A., Artigas A., Payen D., Tenhunen J., Al-Khalidi H.R., Thompson V., Janes J., et al. 2012. Drotrecogin alfa (activated) in adults with septic shock.N. Engl. J. Med.366, 2055‒2064.

    Article CAS PubMed  Google Scholar 

  10. Gotts J.E., Matthay M.A. 2016. Sepsis: Pathophysiology and clinical management.Br. Med. J.353, i1585.

    Article  Google Scholar 

  11. Raymond S.L., Holden D.C., Mira J.C., Stortz J.A., Loftus T.J., Mohr A.M., Moldawer L.L., Moore F.A., Larson S.D., Efron P.A. 2017. Microbial recognition and danger signals in sepsis and trauma.Biochim. Biophys. Acta.Mol. Basis Dis.1863, 2564‒2573.

    Article CAS  Google Scholar 

  12. Ozment T.R., Ha T., Breuel K.F., Ford T.R., Ferguson D.A., Kalbfleisch J., Schweitzer J.B., Kelley J.L., Li C., Williams D.L. 2012. Scavenger receptor class a plays a central role in mediating mortality and the development of the pro-inflammatory phenotype in polymicrobial sepsis.PLoS Pathog.8, e1002967.

    Article PubMed PubMed Central  Google Scholar 

  13. Rittirsch D., Flierl M.A., Ward P.A. 2008. Harmful molecular mechanisms in sepsis.Nat. Rev. Immunol.8, 776‒787.

    Article CAS PubMed PubMed Central  Google Scholar 

  14. Kingsley S.M., Bhat B.V. 2016. Differential paradigms in animal models of sepsis.Curr. Infect. Dis. Rep.18, 26.

    Article PubMed  Google Scholar 

  15. Ward N.S., Casserly B., Ayala A. 2008. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients.Clin. Chest. Med.29, 617‒625, viii.

    Article PubMed PubMed Central  Google Scholar 

  16. Wannemuehler T.J., Manukyan M.C., Brewster B.D., Rouch J., Poynter J.A., Wang Y., Meldrum D.R. 2012. Advances in mesenchymal stem cell research in sepsis.J. Surg. Res.173, 113‒126.

    Article PubMed  Google Scholar 

  17. Copeland S., Warren H.S., Lowry S.F., Calvano S.E., Remick D., Inflammation, the Host Response to Injury I. 2005. Acute inflammatory response to endotoxin in mice and humans.Clin. Diagn. Lab. Immunol.12, 60‒67.

    CAS PubMed PubMed Central  Google Scholar 

  18. Warren H.S., Fitting C., Hoff E., Adib-Conquy M., Beasley-Topliffe L., Tesini B., Liang X., Valentine C., Hellman J., Hayden D., Cavaillon J.M. 2010. Resilience to bacterial infection: Difference between species could be due to proteins in serum.J. Infect. Dis.201, 223‒232.

    Article CAS PubMed  Google Scholar 

  19. Fink M.P. 2014. Animal models of sepsis.Virulence.5, 143‒153.

    Article PubMed  Google Scholar 

  20. Lewis A.J., Seymour C.W., Rosengart M.R. 2016. Current murine models of sepsis.Surg. Infect. (Larchmt).17, 385‒393.

    Article  Google Scholar 

  21. Korneev K.V., Kondakova A.N., Arbatsky N.P., Novototskaya-Vlasova K.A., Rivkina E.M., Anisimov A.P., Kruglov A.A., Kuprash D.V., Nedospasov S.A., Knirel Y.A., Drutskaya M.S. 2014. Distinct biological activity of lipopolysaccharides with different lipid A acylation status from mutant strains ofYersinia pestis and some members of genusPsychrobacter.Biochemistry (Moscow).79, 1333‒1338.)

    Article CAS  Google Scholar 

  22. Poli-de-Figueiredo L.F., Garrido A.G., Nakagawa N., Sannomiya P. 2008. Experimental models of sepsis and their clinical relevance.Shock.30 (Suppl. 1), 53‒59.

    Article CAS PubMed  Google Scholar 

  23. Silverstein R. 2004.D-galactosamine lethality model: Scope and limitations.J. Endotoxin. Res.10, 147‒162.

    CAS PubMed  Google Scholar 

  24. Lehmann V., Freudenberg M.A., Galanos C. 1987. Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal andD-galactosamine-treated mice.J. Exp. Med.165, 657‒663.

    Article CAS PubMed  Google Scholar 

  25. Maes M., Vinken M., Jaeschke H. 2016. Experimental models of hepatotoxicity related to acute liver failure.Toxicol. Appl. Pharmacol.290, 86‒97.

    Article CAS PubMed  Google Scholar 

  26. van Zoelen M.A., Schouten M., de Vos A.F., Florquin S., Meijers J.C., Nawroth P.P., Bierhaus A., van der Poll T. 2009. The receptor for advanced glycation end products impairs host defense in pneumococcal pneumonia.J. Immunol.182, 4349‒4356.

    Article CAS PubMed  Google Scholar 

  27. Achouiti A., de Vos A.F., de Beer R., Florquin S., van ‘t Veer C., van der Poll T. 2013. Limited role of the receptor for advanced glycation end products duringStreptococcus pneumoniae bacteremia.J. Innate Immun.5, 603‒612.

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Achouiti A., van der Meer A.J., Florquin S., Yang H., Tracey K.J., van’t Veer C., de Vos A.F., van der Poll T. 2013. High-mobility group box 1 and the receptor for advanced glycation end products contribute to lung injury duringStaphylococcus aureus pneumonia.Crit. Care.17, R296.

    Article PubMed PubMed Central  Google Scholar 

  29. Achouiti A., Van’t Veer C., de Vos A.F., van der Poll T. 2015. The receptor for advanced glycation end products promotes bacterial growth at distant body sites inStaphylococcus aureus skin infection.Microbes Infect.17, 622‒627.

    Article CAS PubMed  Google Scholar 

  30. Buras J.A., Holzmann B., Sitkovsky M. 2005. Animal models of sepsis: Setting the stage.Nat. Rev. Drug Discov.4, 854‒865.

    Article CAS PubMed  Google Scholar 

  31. van Zoelen M.A., Schmidt A.M., Florquin S., Meijers J.C., de Beer R., de Vos A.F., Nawroth P.P., Bierhaus A., van der Poll T. 2009. Receptor for advanced glycation end products facilitates host defense duringEscherichia coli-induced abdominal sepsis in mice.J. Infect. Dis.200, 765‒773.

    Article CAS PubMed  Google Scholar 

  32. Ramsgaard L., Englert J.M., Manni M.L., Milutinovic P.S., Gefter J., Tobolewski J., Crum L., Coudriet G.M., Piganelli J., Zamora R., Vodovotz Y., Enghild J.J., Oury T.D. 2011. Lack of the receptor for advanced glycation end-products attenuatesE. coli pneumonia in mice.PLoS One.6, e20132.

    Article CAS PubMed PubMed Central  Google Scholar 

  33. Tadie J.M., Bae H.B., Banerjee S., Zmijewski J.W., Abraham E. 2012. Differential activation of RAGE by HMGB1 modulates neutrophil-associated NADPH oxidase activity and bacterial killing.Am. J. Physiol. Cell. Physiol.302, C249‒C256.

    Article CAS PubMed  Google Scholar 

  34. Achouiti A., de Vos A.F., van’t Veer C., Florquin S., Tanck M.W., Nawroth P.P., Bierhaus A., van der Poll T., van Zoelen M.A. 2016. Receptor for advanced glycation end products (RAGE) serves a protective role duringKlebsiella pneumoniae-induced pneumonia.PLoS One.11, e0141000.

    Article PubMed PubMed Central CAS  Google Scholar 

  35. Noto M.J., Becker K.W., Boyd K.L., Schmidt A.M., Skaar E.P. 2017. RAGE-mediated suppression of interleukin-10 results in enhanced mortality in a murine model ofAcinetobacter baumannii sepsis.Infect. Immun.85, e00954-16.

    Article CAS PubMed PubMed Central  Google Scholar 

  36. van Zoelen M.A., Achouiti A., Schmidt A.M., Yang H., Florquin S., Tracey K.J., van der Poll T. 2010. Ligands of the receptor for advanced glycation end products, including high-mobility group box 1, limit bacterial dissemination duringEscherichia coli peritonitis.Crit. Care Med.38, 1414‒1422.

    Article CAS PubMed PubMed Central  Google Scholar 

  37. Witteveen E., Wieske L., Manders E., Verhamme C., Ottenheijm C.A.C., Schultz M.J., van Schaik I.N., Horn J. 2019. Muscle weakness in aS. pneumoniae sepsis mouse model.Ann. Transl. Med.7, 9.

    Article CAS PubMed PubMed Central  Google Scholar 

  38. Van Den Boogaard F.E., Brands X., Schultz M.J., Levi M., Roelofs J.J., Van’t Veer C., Van Der Poll T. 2011. Recombinant human tissue factor pathway inhibitor exerts anticoagulant, anti-inflammatory and antimicrobial effects in murine pneumococcal pneumonia.J. Thromb. Haemost.9, 122‒132.

    Article CAS PubMed  Google Scholar 

  39. Schouten M., van’t Veer C., van den Boogaard F.E., Gerlitz B., Grinnell B.W., Roelofs J.J., Levi M., van der Poll T. 2010. Therapeutic recombinant murine activated protein C attenuates pulmonary coagulopathy and improves survival in murine pneumococcal pneumonia.J. Infect. Dis.202, 1600‒1607.

    Article CAS PubMed  Google Scholar 

  40. Coopersmith C.M., Stromberg P.E., Dunne W.M., Davis C.G., Amiot D.M., 2nd, Buchman T.G., Karl I.E., Hotchkiss R.S. 2002. Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia-induced sepsis.J. Am. Med. Assoc.287, 1716‒1721.

    Article  Google Scholar 

  41. Coopersmith C.M., Amiot D.M. 2nd, Stromberg P.E., Dunne W.M., Davis C.G., Osborne D.F., Husain K.D., Turnbull I.R., Karl I.E., Hotchkiss R.S., Buchman T.G. 2003. Antibiotics improve survival and alter the inflammatory profile in a murine model of sepsis fromPseudomonas aeruginosa pneumonia.Shock.19, 408‒414.

    Article CAS PubMed  Google Scholar 

  42. Muenzer J.T., Davis C.G., Dunne B.S., Unsinger J., Dunne W.M., Hotchkiss R.S. 2006. Pneumonia after cecal ligation and puncture: A clinically relevant “two-hit” model of sepsis.Shock.26, 565‒570.

    Article PubMed  Google Scholar 

  43. Knapp S., Schultz M.J., van der Poll T. 2005. Pneumonia models and innate immunity to respiratory bacterial pathogens.Shock.24 (Suppl. 1), 12‒18.

    Article CAS PubMed  Google Scholar 

  44. van der Poll T. 2012. Preclinical sepsis models.Surg. Infect. (Larchmt).13, 287‒292.

    Article  Google Scholar 

  45. Chiavolini D., Pozzi G., Ricci S. 2008. Animal models ofStreptococcus pneumoniae disease.Clin. Microbiol. Rev.21, 666‒685.

    Article PubMed PubMed Central  Google Scholar 

  46. Murakami K., Bjertnaes L.J., Schmalstieg F.C., McGuire R., Cox R.A., Hawkins H.K., Herndon D.N., Traber L.D., Traber D.L. 2002. A novel animal model of sepsis after acute lung injury in sheep.Crit. Care Med.30, 2083‒2090.

    Article CAS PubMed  Google Scholar 

  47. Sordi R., Menezes-de-Lima O., Della-Justina A.M., Rezende E., Assreuy J. 2013. Pneumonia-induced sepsis in mice: Temporal study of inflammatory and cardiovascular parameters.Int. J. Exp. Pathol.94, 144‒155.

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Robertson C.M., Perrone E.E., McConnell K.W., Dunne W.M., Boody B., Brahmbhatt T., Diacovo M.J., Van Rooijen N., Hogue L.A., Cannon C.L., Buchman T.G., Hotchkiss R.S., Coopersmith C.M. 2008. Neutrophil depletion causes a fatal defect in murine pulmonaryStaphylococcus aureus clearance.J. Surg. Res.150, 278‒285.

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Torres A., Rello J. 2010. Update in community-acquired and nosocomial pneumonia 2009.Am. J. Respir. Crit. Care Med.181, 782‒787.

    Article PubMed  Google Scholar 

  50. Müller-Redetzky H., Suttorp N., Witzenrath M. 2012. Experimental models of pneumonia-induced sepsis.Drug Discov. Today: Disease Models.9, e23‒e32.

    Article CAS  Google Scholar 

  51. Sam A.D. 2nd, Sharma A.C., Law W.R., Ferguson J.L. 1997. Splanchnic vascular control during sepsis and endotoxemia.Front. Biosci.2, e72‒e92.

    Article CAS PubMed  Google Scholar 

  52. Starr M.E., Steele A.M., Saito M., Hacker B.J., Evers B.M., Saito H. 2014. A new cecal slurry preparation protocol with improved long-term reproducibility for animal models of sepsis.PLoS One.9, e115705.

    Article PubMed PubMed Central CAS  Google Scholar 

  53. Gentile L.F., Nacionales D.C., Lopez M.C., Vanzant E., Cuenca A., Cuenca A.G., Ungaro R., Szpila B.E., Larson S., Joseph A., Moore F.A., Leeuwenburgh C., Baker H.V., Moldawer L.L., Efron P.A. 2014. Protective immunity and defects in the neonatal and elderly immune response to sepsis.J. Immunol.192, 3156‒3165.

    Article CAS PubMed  Google Scholar 

  54. Gentile L.F., Nacionales D.C., Lopez M.C., Vanzant E., Cuenca A., Szpila B.E., Cuenca A.G., Joseph A., Moore F.A., Leeuwenburgh C., Baker H.V., Moldawer L.L., Efron P.A. 2014. Host responses to sepsis vary in different low-lethality murine models.PLoS One.9, e94404.

    Article PubMed PubMed Central CAS  Google Scholar 

  55. Brealey D., Karyampudi S., Jacques T.S., Novelli M., Stidwill R., Taylor V., Smolenski R.T., Singer M. 2004. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure.Am. J. Physiol. Regul. Integr. Comp. Physiol.286, R491‒R497.

    Article CAS PubMed  Google Scholar 

  56. Rittirsch D., Hoesel L.M., Ward P.A. 2007. The disconnect between animal models of sepsis and human sepsis.J. Leukoc. Biol.81, 137‒143.

    Article CAS PubMed  Google Scholar 

  57. Bernardshaw S., Hetland G., Grinde B., Johnson E. 2006. An extract of the mushroomAgaricus blazei Murill protects against lethal septicemia in a mouse model of fecal peritonitis.Shock.25, 420‒425.

    Article PubMed  Google Scholar 

  58. Mathiak G., Szewczyk D., Abdullah F., Ovadia P., Feuerstein G., Rabinovici R. 2000. An improved clinically relevant sepsis model in the conscious rat.Crit. Care Med.28, 1947‒1952.

    Article CAS PubMed  Google Scholar 

  59. Toky V., Sharma S., Arora B.B., Chhibber S. 2003. Establishment of a sepsis model following implantation ofKlebsiella pneumoniae-infected fibrin clot into the peritoneal cavity of mice.Folia Microbiol. (Praha).48, 665‒669.

    Article CAS  Google Scholar 

  60. Rittirsch D., Huber-Lang M.S., Flierl M.A., Ward P.A. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture.Nat. Protoc.4, 31‒36.

    Article CAS PubMed PubMed Central  Google Scholar 

  61. Mishra S.K., Choudhury S. 2018. Experimental protocol for cecal ligation and puncture model of polymicrobial sepsis and assessment of vascular functions in mice.Methods Mol. Biol.1717, 161‒187.

    Article CAS PubMed  Google Scholar 

  62. Wichterman K.A., Baue A.E., Chaudry I.H. 1980. Sepsis and septic shock: A review of laboratory models and a proposal.J. Surg. Res.29, 189‒201.

    Article CAS PubMed  Google Scholar 

  63. Herrmann I.K., Castellon M., Schwartz D.E., Hasler M., Urner M., Hu G., Minshall R.D., Beck-Schimmer B. 2013. Volatile anesthetics improve survival after cecal ligation and puncture.Anesthesiology.119, 901‒906.

    Article CAS PubMed  Google Scholar 

  64. Lewis A.J., Yuan D., Zhang X., Angus D.C., Rosengart M.R., Seymour C.W. 2016. Use of biotelemetry to define physiology-based deterioration thresholds in a murine cecal ligation and puncture model of sepsis.Crit. Care Med.44, e420‒e431.

    Article PubMed PubMed Central  Google Scholar 

  65. Dejager L., Pinheiro I., Dejonckheere E., Libert C. 2011. Cecal ligation and puncture: The gold standard model for polymicrobial sepsis?Trends Microbiol.19, 198‒208.

    Article CAS PubMed  Google Scholar 

  66. Tao W., Deyo D.J., Traber D.L., Johnston W.E., Sherwood E.R. 2004. Hemodynamic and cardiac contractile function during sepsis caused by cecal ligation and puncture in mice.Shock.21, 31‒37.

    Article PubMed  Google Scholar 

  67. Hubbard W.J., Choudhry M., Schwacha M.G., Kerby J.D., Rue L.W. 3rd, Bland K.I., Chaudry I.H. 2005. Cecal ligation and puncture.Shock.24 (Suppl. 1), 52‒57.

    Article PubMed  Google Scholar 

  68. Xiao H., Siddiqui J., Remick D.G. 2006. Mechanisms of mortality in early and late sepsis.Infect Immun.74, 5227‒5235.

    Article CAS PubMed PubMed Central  Google Scholar 

  69. Nacionales D.C., Szpila B., Ungaro R., Lopez M.C., Zhang J., Gentile L.F., Cuenca A.L., Vanzant E., Mathias B., Jyot J., Westerveld D., Bihorac A., Joseph A., Mohr A., Duckworth L.V., et al. 2015. A detailed characterization of the dysfunctional immunity and abnormal myelopoiesis induced by severe shock and trauma in the aged.J. Immunol.195, 2396‒2407.

    Article CAS PubMed  Google Scholar 

  70. Delano M.J., Scumpia P.O., Weinstein J.S., Coco D., Nagaraj S., Kelly-Scumpia K.M., O’Malley K.A., Wynn J.L., Antonenko S., Al-Quran S.Z., Swan R., Chung C.S., Atkinson M.A., Ramphal R., Gabrilovich D.I., et al. 2007. MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis.J. Exp. Med.204, 1463‒1474.

    Article CAS PubMed PubMed Central  Google Scholar 

  71. Maier S., Traeger T., Entleutner M., Westerholt A., Kleist B., Huser N., Holzmann B., Stier A., Pfeffer K., Heidecke C.D. 2004. Cecal ligation and puncture versus colon ascendens stent peritonitis: two distinct animal models for polymicrobial sepsis.Shock.21, 505‒511.

    Article PubMed  Google Scholar 

  72. Cavaillon J.M. 2018. New approaches to treat sepsis: Animal models “do not work” (review).Gen. Reanimatol.14, 46–53.

    Article  Google Scholar 

  73. Schabbauer G. 2012. Polymicrobial sepsis models: CLP versus CASP.Drug Discov. Today: Disease Models.9, e17‒e21.

    Google Scholar 

  74. Nakagawa N.K., Jukemura J., Aikawa P., Nogueira R.A., Poli-de-Figueiredo L.F., Sannomiya P. 2007. In vivo observation of mesenteric leukocyte-endothelial interactions after cecal ligation/puncture and surgical sepsis source control.Clinics (Sao Paulo).62, 321‒326.

    Article PubMed  Google Scholar 

  75. Doi K., Leelahavanichkul A., Hu X., Sidransky K.L., Zhou H., Qin Y., Eisner C., Schnermann J., Yuen P.S., Star R.A. 2008. Pre-existing renal disease promotes sepsis-induced acute kidney injury and worsens outcome.Kidney Int.74, 1017‒1025.

    Article CAS PubMed PubMed Central  Google Scholar 

  76. Traeger T., Koerner P., Kessler W., Cziupka K., Diedrich S., Busemann A., Heidecke C.D., Maier S. 2010. Colon ascendens stent peritonitis (CASP): A standardized model for polymicrobial abdominal sepsis.J. Vis. Exp.46, e2299.https://doi.org/10.3791/2299

    Article  Google Scholar 

  77. Zantl N., Uebe A., Neumann B., Wagner H., Siewert J.R., Holzmann B., Heidecke C.D., Pfeffer K. 1998. Essential role of gamma interferon in survival of colon ascendens stent peritonitis, a novel murine model of abdominal sepsis.Infect. Immun.66, 2300‒2309.

    CAS PubMed PubMed Central  Google Scholar 

  78. Gomez H.G., Gonzalez S.M., Londono J.M., Hoyos N.A., Nino C.D., Leon A.L., Velilla P.A., Rugeles M.T., Jaimes F.A. 2014. Immunological characterization of compensatory anti-inflammatory response syndrome in patients with severe sepsis: A longitudinal study.Crit. Care Med.42, 771‒780.

    Article CAS PubMed  Google Scholar 

  79. Scheiermann P., Hoegl S., Revermann M., Ahluwalia D., Zander J., Boost K.A., Nguyen T., Zwissler B., Muhl H., Hofstetter C. 2009. Cecal ligation and incision: An acute onset model of severe sepsis in rats.J. Surg. Res.151, 132‒137.

    Article PubMed  Google Scholar 

  80. Fink T., Heymann P., Taha-Melitz S., Taha A., Wolf B., Rensing H., Volk T., Mathes A.M. 2013. Dobutamine pretreatment improves survival, liver function, and hepatic microcirculation after polymicrobial sepsis in rat.Shock.40, 129‒135.

    Article CAS PubMed  Google Scholar 

  81. Fink T., Glas M., Wolf A., Kleber A., Reus E., Wolff M., Kiefer D., Wolf B., Rensing H., Volk T., Mathes A.M. 2014. Melatonin receptors mediate improvements of survival in a model of polymicrobial sepsis.Crit. Care Med.42, e22‒e31.

    Article CAS PubMed  Google Scholar 

  82. Korneev K.V., Arbatsky N.P., Molinaro A., Palmigiano A., Shaikhutdinova R.Z., Shneider M.M., Pier G.B., Kondakova A.N., Sviriaeva E.N., Sturiale L., Garozzo D., Kruglov A.A., Nedospasov S.A., Drutskaya M.S., Knirel Y.A., Kuprash D.V. 2015. Structural relationship of the lipid a acyl groups to activation of murine Toll-like receptor 4 by lipopolysaccharides from pathogenic strains ofBurkholderia mallei, Acinetobacter baumannii, andPseudomonas aeruginosa.Front. Immunol.6, 595.

    Article PubMed PubMed Central CAS  Google Scholar 

  83. Korneev K.V., Kondakova A.N., Sviriaeva E.N., Mitkin N.A., Palmigiano A., Kruglov A.A., Telegin G.B., Drutskaya M.S., Sturiale L., Garozzo D., Nedospasov S.A., Knirel Y.A., Kuprash D.V. 2018. Hypoacylated LPS from foodborne pathogenCampylobacter jejuni induces moderate TLR4-mediated inflammatory response in murine macrophages.Front. Cell. Infect. Microbiol.8, 58.

    Article PubMed PubMed Central CAS  Google Scholar 

  84. Stortz J.A., Raymond S.L., Mira J.C., Moldawer L.L., Mohr A.M., Efron P.A. 2017. Murine models of sepsis and trauma: can we bridge the Gap?ILAR J.58, 90‒105.

    Article CAS PubMed PubMed Central  Google Scholar 

  85. Ribes S., Domenech A., Cabellos C., Tubau F., Linares J., Viladrich P.F., Gudiol F. 2003. Experimental meningitis due to a high-level cephalosporin-resistant strain ofStreptococcus pneumoniae serotype 23F.Enferm. Infect. Microbiol. Clin.21, 329‒333.

    Article  Google Scholar 

  86. Svensson M., Yadav M., Holmqvist B., Lutay N., Svanborg C., Godaly G. 2011. Acute pyelonephritis and renal scarring are caused by dysfunctional innate immunity in mCxcr2 heterozygous mice.Kidney Int.80, 1064‒1072.

    Article CAS PubMed PubMed Central  Google Scholar 

  87. Cross A.S., Opal S.M., Sadoff J.C., Gemski P. 1993. Choice of bacteria in animal models of sepsis.Infect. Immun.61, 2741‒2747.

    CAS PubMed PubMed Central  Google Scholar 

  88. Sasaki S., Nishikawa S., Miura T., Mizuki M., Yamada K., Madarame H., Tagawa Y.I., Iwakura Y., Nakane A. 2000. Interleukin-4 and interleukin-10 are involved in host resistance toStaphylococcus aureus infection through regulation of gamma interferon.Infect. Immun.68, 2424‒2430.

    Article CAS PubMed PubMed Central  Google Scholar 

  89. Rubins J.B., Pomeroy C. 1997. Role of gamma interferon in the pathogenesis of bacteremic pneumococcal pneumonia.Infect. Immun.65, 2975‒2977.

    CAS PubMed PubMed Central  Google Scholar 

  90. van der Poll T., Marchant A., Keogh C.V., Goldman M., Lowry S.F. 1996. Interleukin-10 impairs host defense in murine pneumococcal pneumonia.J. Infect. Dis.174, 994‒1000.

    Article CAS PubMed  Google Scholar 

  91. van der Poll T., Marchant A., Buurman W.A., Berman L., Keogh C.V., Lazarus D.D., Nguyen L., Goldman M., Moldawer L.L., Lowry S.F. 1995. Endogenous IL-10 protects mice from death during septic peritonitis.J. Immunol.155, 5397‒5401.

    CAS PubMed  Google Scholar 

  92. Mittrucker H.W., Kaufmann S.H. 2000. Immune response to infection withSalmonella typhimurium in mice.J. Leukoc. Biol.67, 457‒463.

    Article CAS PubMed  Google Scholar 

  93. Nemzek J.A., Hugunin K.M., Opp M.R. 2008. Modeling sepsis in the laboratory: Merging sound science with animal well-being.Comp. Med.58, 120‒128.

    CAS PubMed PubMed Central  Google Scholar 

  94. Gonnert F.A., Recknagel P., Seidel M., Jbeily N., Dahlke K., Bockmeyer C.L., Winning J., Losche W., Claus R.A., Bauer M. 2011. Characteristics of clinical sepsis reflected in a reliable and reproducible rodent sepsis model.J. Surg. Res.170, e123‒e134.

    Article PubMed  Google Scholar 

  95. Ko J.J., Mann F.A. 2014. Barium peritonitis in small animals.J. Vet. Med. Sci.76, 621‒628.

    Article PubMed PubMed Central  Google Scholar 

  96. Sviryaeva E.N., Korneev K.V., Drutskaya M.S., Kuprash D.V. 2016. Mechanisms of changes in immune response during bacterial coinfections of the respiratory tract.Biochemistry (Moscow).81 (11), 1340–1349.

    Google Scholar 

  97. Sviryaeva E.N., Korneev K.V., Drutskaya M.S., Nedospasov S.A., Kuprash D.V. 2016. Modeling of viral–bacterial coinfections at the molecular level using agonists of innate immunity receptors.Dokl. Biochem. Biophys.471, 393–395.

    Article CAS  Google Scholar 

  98. Lepper P.M., Held T.K., Schneider E.M., Bolke E., Gerlach H., Trautmann M. 2002. Clinical implications of antibiotic-induced endotoxin release in septic shock.Intensive Care Med.28, 824‒833.

    Article CAS PubMed  Google Scholar 

  99. Ben Ari Z., Avlas O., Pappo O., Zilbermints V., Cheporko Y., Bachmetov L., Zemel R., Shainberg A., Sharon E., Grief F., Hochhauser E. 2012. Reduced hepatic injury in Toll-like receptor 4-deficient mice followingD-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.Cell Physiol. Biochem.29, 41‒50.

    Article CAS PubMed  Google Scholar 

  100. Kuzmich N.N., Sivak K.V., Chubarev V.N., Porozov Y.B., Savateeva-Lyubimova T.N., Peri F. 2017. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis.Vaccines (Basel).5, 34.

    Article PubMed Central CAS  Google Scholar 

  101. Wheeler M.D., Kono H., Yin M., Nakagami M., Uesugi T., Arteel G.E., Gabele E., Rusyn I., Yamashina S., Froh M., Adachi Y., Iimuro Y., Bradford B.U., Smutney O.M., Connor H.D., et al. 2001. The role of Kupffer cell oxidant production in early ethanol-induced liver disease.Free Radic. Biol. Med.31, 1544‒1549.

    Article CAS PubMed  Google Scholar 

  102. Lu J.W., Wang H., Yan-Li J., Zhang C., Ning H., Li X.Y., Zhang H., Duan Z.H., Zhao L., Wei W., Xu D.X. 2008. Differential effects of pyrrolidine dithiocarbamate on TNF-alpha-mediated liver injury in two different models of fulminant hepatitis.J. Hepatol.48, 442‒452.

    Article CAS PubMed  Google Scholar 

  103. Hoffmann F., Sass G., Zillies J., Zahler S., Tiegs G., Hartkorn A., Fuchs S., Wagner J., Winter G., Coester C., Gerbes A.L., Vollmar A.M. 2009. A novel technique for selective NF-kappaB inhibition in Kupffer cells: Contrary effects in fulminant hepatitis and ischaemia-reperfusion.Gut.58, 1670‒1678.

    Article CAS PubMed  Google Scholar 

  104. Decker K., Keppler D. 1974. Galactosamine hepatitis: Key role of the nucleotide deficiency period in the pathogenesis of cell injury and cell death.Rev. Physiol. Biochem. Pharmacol.71, 77‒106.

    Article CAS  Google Scholar 

  105. Leist M., Gantner F., Bohlinger I., Tiegs G., Germann P.G., Wendel A. 1995. Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models.Am. J. Pathol.146, 1220‒1234.

    CAS PubMed PubMed Central  Google Scholar 

  106. Zhou B.R., Gumenscheimer M., Freudenberg M., Galanos C. 2003. A striking correlation between lethal activity and apoptotic DNA fragmentation of liver in response ofD-galactosamine-sensitized mice to a non-lethal amount of lipopolysaccharide.Acta Pharmacol. Sin.24, 193‒198.

    CAS PubMed  Google Scholar 

  107. Mignon A., Rouquet N., Fabre M., Martin S., Pages J.C., Dhainaut J.F., Kahn A., Briand P., Joulin V. 1999. LPS challenge inD-galactosamine-sensitized mice accounts for caspase-dependent fulminant hepatitis, not for septic shock.Am. J. Respir. Crit. Care Med.159, 1308‒1315.

    Article CAS PubMed  Google Scholar 

  108. Kawaguchi K., Kikuchi S., Hasegawa H., Maruyama H., Morita H., Kumazawa Y. 1999. Suppression of lipopolysaccharide-induced tumor necrosis factor-release and liver injury in mice by naringin.Eur. J. Pharmacol.368, 245‒250.

    Article CAS PubMed  Google Scholar 

  109. Nakama T., Hirono S., Moriuchi A., Hasuike S., Nagata K., Hori T., Ido A., Hayashi K., Tsubouchi H. 2001. Etoposide prevents apoptosis in mouse liver withD-galactosamine/lipopolysaccharide-induced fulminant hepatic failure resulting in reduction of lethality.Hepatology.33, 1441‒1450.

    Article CAS PubMed  Google Scholar 

  110. Silverstein R., Norimatsu M., Morrison D.C. 1997. Fundamental differences during Gram-positive versus Gram-negative sepsis become apparent during bacterial challenge ofD-galactosamine-treated mice.J. Endotoxin Res.4, 173‒181.

    Article CAS  Google Scholar 

  111. Tsutsui H., Imamura M., Fujimoto J., Nakanishi K. 2010. The TLR4/TRIF-mediated activation of NLRP3 inflammasome underlies endotoxin-induced liver injury in mice.Gastroenterol. Res. Pract.2010, 641865.

    Article PubMed PubMed Central  Google Scholar 

  112. Yang P., Zhou W., Li C., Zhang M., Jiang Y., Jiang R., Ba H., Li C., Wang J., Yin B., Gong F., Li Z. 2016. Kupffer-cell-expressed transmembrane TNF-alpha is a major contributor to lipopolysaccharide andD-galactosamine-induced liver injury.Cell Tissue Res.363, 371‒383.

    Article CAS PubMed  Google Scholar 

  113. Lawson J.A., Burns A.R., Farhood A., Lynn Bajt M., Collins R.G., Smith C.W., Jaeschke H. 2000. Pathophysiologic importance ofE- andL-selectin for neutrophil-induced liver injury during endotoxemia in mice.Hepatology.32, 990‒998.

    Article CAS PubMed  Google Scholar 

  114. Bajt M.L., Farhood A., Jaeschke H. 2001. Effects of CXC chemokines on neutrophil activation and sequestration in hepatic vasculature.Am. J. Physiol. Gastrointest. Liver Physiol.281, G1188‒G1195.

    Article CAS PubMed  Google Scholar 

  115. Dorman R.B., Gujral J.S., Bajt M.L., Farhood A., Jaeschke H. 2005. Generation and functional significance of CXC chemokines for neutrophil-induced liver injury during endotoxemia.Am. J. Physiol. Gastrointest Liver Physiol.288, G880‒886.

    Article CAS PubMed  Google Scholar 

  116. Jaeschke H. 2006. Mechanisms of liver injury: 2. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions.Am. J. Physiol. Gastrointest Liver Physiol.290, G1083‒1088.

    Article CAS PubMed  Google Scholar 

  117. Zimmermann H.W., Trautwein C., Tacke F. 2012. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury.Front. Physiol.3, 56.

    Article CAS PubMed PubMed Central  Google Scholar 

  118. Liong E.C., Xiao J., Lau T.Y., Nanji A.A., Tipoe G.L. 2012. Cyclooxygenase inhibitors protectD-galactosamine/lipopolysaccharide induced acute hepatic injury in experimental mice model.Food Chem. Toxicol.50, 861‒866.

    Article CAS PubMed  Google Scholar 

  119. Zhou H., Tang L., Yang Y., Lin L., Dai J., Ge P., Ai Q., Jiang R., Zhang L. 2018. Dopamine alleviated acute liver injury induced by lipopolysaccharide/D-galactosamine in mice.Int. Immunopharmacol.61, 249‒255.

    Article CAS PubMed  Google Scholar 

  120. Wang Y.Y., Diao B.Z., Zhong L.H., Lu B.L., Cheng Y., Yu L., Zhu L.Y. 2018. Maslinic acid protects against lipopolysaccharide/D-galactosamine-induced acute liver injury in mice.Microb. Pathog.119, 49‒53.

    Article CAS PubMed  Google Scholar 

  121. Hu J.J., Wang H., Pan C.W., Lin M.X. 2018. Isovitexin alleviates liver injury induced by lipopolysaccharide/D-galactosamine by activating Nrf2 and inhibiting NF-kappaB activation.Microb. Pathog.119, 86‒92.

    Article CAS PubMed  Google Scholar 

  122. Liu T.G., Sha K.H., Zhang L.G., Liu X.X., Yang F., Cheng J.Y. 2019. Protective effects of alpinetin on lipopolysaccharide/D-galactosamine-induced liver injury through inhibiting inflammatory and oxidative responses.Microb. Pathog.126, 239‒244.

    Article CAS PubMed  Google Scholar 

  123. Pickkers P., Mehta R.L., Murray P.T., Joannidis M., Molitoris B.A., Kellum J.A., Bachler M., Hoste E.A.J., Hoiting O., Krell K., Ostermann M., Rozendaal W., Valkonen M., Brealey D., Beishuizen A., et al. 2018. Effect of human recombinant alkaline phosphatase on 7-day creatinine clearance in patients with sepsis-associated acute kidney injury: A randomized clinical trial.J. Am. Med. Assoc.320, 1998‒2009.

    Article CAS  Google Scholar 

  124. Ong G.L., Mattes M.J. 1989. Mouse strains with typical mammalian levels of complement activity.J. Immunol. Methods.125, 147‒158.

    Article CAS PubMed  Google Scholar 

  125. Ratelade J., Verkman A.S. 2014. Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica.Mol. Immunol.62, 104‒113.

    Article CAS PubMed PubMed Central  Google Scholar 

  126. Lewis A.J., Rosengart M.R. 2018. Bench-to-bedside: A translational perspective on murine models of sepsis.Surg. Infect. (Larchmt).19, 137‒141.

    Article  Google Scholar 

  127. Beura L.K., Hamilton S.E., Bi K., Schenkel J.M., Odumade O.A., Casey K.A., Thompson E.A., Fraser K.A., Rosato P.C., Filali-Mouhim A., Sekaly R.P., Jenkins M.K., Vezys V., Haining W.N., Jameson S.C., Masopust D. 2016. Normalizing the environment recapitulates adult human immune traits in laboratory mice.Nature.532, 512‒516.

    Article CAS PubMed PubMed Central  Google Scholar 

  128. Turner P.V. 2018. The role of the gut microbiota on animal model reproducibility.Animal.Model Exp. Med.1, 109‒115.

    Article  Google Scholar 

  129. Masopust D., Sivula C.P., Jameson S.C. 2017. Of mice, dirty mice, and men: Using mice to understand human immunology.J. Immunol.199, 383‒388.

    Article CAS PubMed  Google Scholar 

  130. Seboxa T., Amogne W., Abebe W., Tsegaye T., Azazh A., Hailu W., Fufa K., Grude N., Henriksen T.H. 2015. High mortality from blood stream infection in Addis Ababa, Ethiopia, is due to antimicrobial resistance.PLoS One.10, e0144944.

    Article PubMed PubMed Central CAS  Google Scholar 

  131. Chen L., Welty-Wolf K.E., Kraft B.D. 2019. Nonhuman primate species as models of human bacterial sepsis.Lab. Anim. (New York).48, 57‒65.

    Article  Google Scholar 

  132. Saito H., Sherwood E.R., Varma T.K., Evers B.M. 2003. Effects of aging on mortality, hypothermia, and cytokine induction in mice with endotoxemia or sepsis.Mech. Ageing Dev.124, 1047‒1058.

    Article CAS PubMed  Google Scholar 

  133. Howell G.M., Gomez H., Collage R.D., Loughran P., Zhang X., Escobar D.A., Billiar T.R., Zuckerbraun B.S., Rosengart M.R. 2013. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice.PLoS One.8, e69520.

    Article CAS PubMed PubMed Central  Google Scholar 

  134. Ernst W., Zimara N., Hanses F., Mannel D.N., Seelbach-Gobel B., Wege A.K. 2013. Humanized mice, a new model to study the influence of drug treatment on neonatal sepsis.Infect. Immun.81, 1520‒1531.

    Article CAS PubMed PubMed Central  Google Scholar 

  135. Turnbull I.R., Clark A.T., Stromberg P.E., Dixon D.J., Woolsey C.A., Davis C.G., Hotchkiss R.S., Buchman T.G., Coopersmith C.M. 2009. Effects of aging on the immunopathologic response to sepsis.Crit. Care Med.37, 1018‒1023.

    Article CAS PubMed PubMed Central  Google Scholar 

  136. Mege J.L., Bretelle F., Leone M. 2018. Sex and bacterial infectious diseases.New Microbes New Infect.26, S100‒S103.

    Article PubMed PubMed Central  Google Scholar 

  137. Seok J., Warren H.S., Cuenca A.G., Mindrinos M.N., Baker H.V., Xu W., Richards D.R., McDonald-Smith G.P., Gao H., Hennessy L., Finnerty C.C., Lopez C.M., Honari S., Moore E.E., Minei J.P., et al. 2013. Genomic responses in mouse models poorly mimic human inflammatory diseases.Proc. Natl. Acad. Sci. U. S. A.110, 3507‒3512.

    Article CAS PubMed PubMed Central  Google Scholar 

  138. Osuchowski M.F., Remick D.G., Lederer J.A., Lang C.H., Aasen A.O., Aibiki M., Azevedo L.C., Bahrami S., Boros M., Cooney R., Cuzzocrea S., Jiang Y., Junger W.G., Hirasawa H., Hotchkiss R.S., et al. 2014. Abandon the mouse research ship? Not just yet!Shock.41, 463‒475.

    Article PubMed PubMed Central  Google Scholar 

  139. Takao K., Miyakawa T. 2015. Genomic responses in mouse models greatly mimic human inflammatory diseases.Proc. Natl. Acad. Sci. U. S. A.112, 1167‒1172.

    Article CAS PubMed  Google Scholar 

  140. Efron P.A., Mohr A.M., Moore F.A., Moldawer L.L. 2015. The future of murine sepsis and trauma research models.J. Leukoc. Biol.98, 945‒952.

    Article CAS PubMed PubMed Central  Google Scholar 

  141. Laudanski K., Lapko N., Zawadka M., Zhou B.X., Danet-Desnoyers G., Worthen G.S. 2017. The clinical and immunological performance of 28 days survival model of cecal ligation and puncture in humanized mice.PLoS One.12, e0180377.

    Article PubMed PubMed Central CAS  Google Scholar 

  142. Parker D. 2017. Humanized mouse models ofStaphylococcus aureus infection.Front Immunol.8, 512.

    Article PubMed PubMed Central CAS  Google Scholar 

  143. Schlieckau F., Schulz D., Fill Malfertheiner S., Entleutner K., Seelbach-Goebel B., Ernst W. 2018. A novel model to study neonatalEscherichia coli sepsis and the effect of treatment on the human immune system using humanized mice.Am. J. Reprod. Immunol.80, e12859.

    Article PubMed CAS  Google Scholar 

  144. Lapko N., Zawadka M., Polosak J., Worthen G.S., Danet-Desnoyers G., Puzianowska-Kuznicka M., Laudanski K. 2017. Long-term monocyte dysfunction after sepsis in humanized mice is related to persisted activation of macrophage-colony stimulation factor (M-CSF) and demethylation of PU.1, and it can be reversed by blocking M-CSF in vitro or by transplanting naive autologous stem cells in vivo.Front. Immunol.8, 401.

    Article PubMed PubMed Central CAS  Google Scholar 

  145. Unsinger J., McDonough J.S., Shultz L.D., Ferguson T.A., Hotchkiss R.S. 2009. Sepsis-induced human lymphocyte apoptosis and cytokine production in “humanized” mice.J. Leukoc. Biol.86, 219‒227.

    Article CAS PubMed PubMed Central  Google Scholar 

  146. Laudanski K., Stentz M., DiMeglio M., Furey W., Steinberg T., Patel A. 2018. Potential pitfalls of the humanized mice in modeling sepsis.Int. J. Inflam.2018, 6563454.

    Article PubMed PubMed Central  Google Scholar 

  147. Deutschman C.S., Tracey K.J. 2014. Sepsis: Current dogma and new perspectives.Immunity.40, 463‒475.

    Article CAS PubMed  Google Scholar 

  148. Melican K., Michea Veloso P., Martin T., Bruneval P., Dumenil G. 2013. Adhesion ofNeisseria meningitidis to dermal vessels leads to local vascular damage and purpura in a humanized mouse model.PLoS Pathog.9, e1003139.

    Article CAS PubMed PubMed Central  Google Scholar 

  149. Rongvaux A., Willinger T., Martinek J., Strowig T., Gearty S.V., Teichmann L.L., Saito Y., Marches F., Halene S., Palucka A.K., Manz M.G., Flavell R.A. 2014. Development and function of human innate immune cells in a humanized mouse model.Nat. Biotechnol.32, 364‒372.

    Article CAS PubMed PubMed Central  Google Scholar 

  150. Osuchowski M.F., Thiemermann C., Remick D.G. 2017. Sepsis-3 on the block: What does it mean for preclinical sepsis modeling?Shock.47, 658‒660.

    Article PubMed PubMed Central  Google Scholar 

  151. Shrum B., Anantha R.V., Xu S.X., Donnelly M., Haeryfar S.M., McCormick J.K., Mele T. 2014. A robust scoring system to evaluate sepsis severity in an animal model.BMC Res. Notes.7, 233.

    Article PubMed PubMed Central  Google Scholar 

  152. Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene.Science.282, 2085‒2088.

    Article CAS PubMed  Google Scholar 

  153. Daubeuf B., Mathison J., Spiller S., Hugues S., Herren S., Ferlin W., Kosco-Vilbois M., Wagner H., Kirschning C.J., Ulevitch R., Elson G. 2007. TLR4/ MD-2 monoclonal antibody therapy affords protection in experimental models of septic shock.J. Immunol.179, 6107‒6114.

    Article CAS PubMed  Google Scholar 

  154. Cao C., Chai Y., Shou S., Wang J., Huang Y., Ma T. 2018. Toll-like receptor 4 deficiency increases resistance in sepsis-induced immune dysfunction.Int. Immunopharmacol.54, 169‒176.

    Article CAS PubMed  Google Scholar 

  155. Weighardt H., Kaiser-Moore S., Vabulas R.M., Kirschning C.J., Wagner H., Holzmann B. 2002. Cutting edge: Myeloid differentiation factor 88 deficiency improves resistance against sepsis caused by polymicrobial infection.J. Immunol.169, 2823‒2827.

    Article CAS PubMed  Google Scholar 

  156. Echtenacher B., Freudenberg M.A., Jack R.S., Mannel D.N. 2001. Differences in innate defense mechanisms in endotoxemia and polymicrobial septic peritonitis.Infect. Immun.69, 7271‒7276.

    Article CAS PubMed PubMed Central  Google Scholar 

  157. Feterowski C., Emmanuilidis K., Miethke T., Gerauer K., Rump M., Ulm K., Holzmann B., Weighardt H. 2003. Effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis.Immunology.109, 426‒431.

    Article CAS PubMed PubMed Central  Google Scholar 

  158. Entleutner M., Traeger T., Westerholt A., Holzmann B., Stier A., Pfeffer K., Maier S., Heidecke C.D. 2006. Impact of interleukin-12, oxidative burst, and iNOS on the survival of murine fecal peritonitis.Int. J. Colorectal Dis.21, 64‒70.

    Article PubMed  Google Scholar 

  159. Napier B.A., Brubaker S.W., Sweeney T.E., Monette P., Rothmeier G.H., Gertsvolf N.A., Puschnik A., Carette J.E., Khatri P., Monack D.M. 2016. Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity.J. Exp. Med.213, 2365‒2382.

    Article CAS PubMed PubMed Central  Google Scholar 

  160. Ward P.A., Fattahi F. 2019. New strategies for treatment of infectious sepsis.J. Leukoc. Biol.https://doi.org/10.1002/JLB.4MJR1118-425R

  161. Patil N.K., Guo Y., Luan L., Sherwood E.R. 2017. Targeting immune cell checkpoints during sepsis.Int. J. Mol. Sci.18, E2413.

    Article PubMed CAS  Google Scholar 

  162. Shin J., Jin M. 2017. Potential immunotherapeutics for immunosuppression in sepsis.Biomol. Ther. (Seoul).25, 569‒577.

    Article CAS  Google Scholar 

  163. Brown K.A., Brown G.A., Lewis S.M., Beale R., Treacher D.F. 2016. Targeting cytokines as a treatment for patients with sepsis: A lost cause or a strategy still worthy of pursuit?Int. Immunopharmacol.36, 291‒299.

    Article CAS PubMed  Google Scholar 

  164. Guo Y., Luan L., Patil N.K., Wang J., Bohannon J.K., Rabacal W., Fensterheim B.A., Hernandez A., Sherwood E.R. 2017. IL-15 enables septic shock by maintaining NK cell integrity and function.J. Immunol.198, 1320‒1333.

    Article CAS PubMed  Google Scholar 

  165. Alves-Filho J.C., Sonego F., Souto F.O., Freitas A., Verri W.A., Jr., Auxiliadora-Martins M., Basile-Filho A., McKenzie A.N., Xu D., Cunha F.Q., Liew F.Y. 2010. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection.Nat. Med.16, 708‒712.

    Article CAS PubMed  Google Scholar 

  166. Limongi D., D’Agostini C., Ciotti M. 2016. New sepsis biomarkers.Asian Pacific J. Trop. Biomed.6, 516‒519.

    Article  Google Scholar 

  167. Ueno T., Ikeda T., Yokoyama T., Kihara Y., Konno O., Nakamura Y., Iwamoto H., Shimizu T., McGrath M.M., Chandraker A. 2016. Reduction in circulating level of HMGB-1 following continuous renal replacement therapy in sepsis.Cytokine.83, 206‒209.

    Article CAS PubMed  Google Scholar 

  168. Nahid M.A., Satoh M., Chan E.K. 2011. Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling.J. Immunol.186, 1723‒1734.

    Article CAS PubMed  Google Scholar 

  169. Wang J.F., Yu M.L., Yu G., Bian J.J., Deng X.M., Wan X.J., Zhu K.M. 2010. Serum miR-146a and miR-223 as potential new biomarkers for sepsis.Biochem. Biophys. Res. Commun.394, 184‒188.

    Article CAS PubMed  Google Scholar 

  170. Pop-Began V., Paunescu V., Grigorean V., Pop-Began D., Popescu C. 2014. Molecular mechanisms in the pathogenesis of sepsis.J. Med. Life.7 (2), 38‒41.

    PubMed PubMed Central  Google Scholar 

  171. Heming N., Lamothe L., Ambrosi X., Annane D. 2016. Emerging drugs for the treatment of sepsis.Expert Opin. Emerg. Drugs.21, 27‒37.

    Article CAS PubMed  Google Scholar 

  172. McIntyre L.A., Stewart D.J., Mei S.H.J., Courtman D., Watpool I., Granton J., Marshall J., Dos Santos C., Walley K.R., Winston B.W., Schlosser K., Fergusson D.A., Canadian Critical Care Trials G., Canadian Critical Care Translational Biology G. 2018. Cellular immunotherapy for septic shock. A phase I clinical trial.Am. J. Respir. Crit. Care Med.197, 337‒347.

    Article CAS PubMed  Google Scholar 

  173. Krasnodembskaya A., Samarani G., Song Y., Zhuo H., Su X., Lee J.W., Gupta N., Petrini M., Matthay M.A. 2012. Human mesenchymal stem cells reduce mortality and bacteremia in Gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes.Am. J. Physiol. Lung Cell Mol. Physiol.302, L1003‒L1013.

    Article CAS PubMed PubMed Central  Google Scholar 

  174. Lewis A., Zuckerbraun B., Griepentrog J., Zhang X., Rosengart M. 2017. Reducing animal use with a biotelemetry-enhanced murine model of sepsis.Sci. Rep.7, 6622.

    Article PubMed PubMed Central CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to D.V. Kuprash for careful reading of the manuscript and helpful advice.

Funding

This work was supported by the Program of fundamental research for state academies for 2013–2020 (research topic no. 01201363823).

Author information

Authors and Affiliations

  1. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia

    K. V. Korneev

Authors
  1. K. V. Korneev

Corresponding author

Correspondence toK. V. Korneev.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: LPS, lipopolysaccharide;D-GalN,D-galactosamine; PRR, pattern recognition receptor; DAMP, damage-associated molecular pattern; CLP, cecal ligation and puncture; CASP, colon ascendens stent peritonitis.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korneev, K.V. Mouse Models of Sepsis and Septic Shock.Mol Biol53, 704–717 (2019). https://doi.org/10.1134/S0026893319050108

Download citation

Keywords:

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp