Movatterモバイル変換


[0]ホーム

URL:


ORGANIZATIONAL
Sign in with credentials provided by your organization.
INSTITUTIONAL
Select your institution to access the SPIE Digital Library.
SELECT YOUR INSTITUTION
PERSONAL
Sign in with your personal SPIE Account.
PERSONAL SIGN IN
No SPIE Account?Create one
;
SPIE digital library
CONFERENCE PROCEEDINGS
Advanced Search
Home> Proceedings> Volume 3972>Article
Paper
23 December 1999Automatic selection of visual features and classifiers
Author Affiliations +
Alejandro Jaimes,1 Shih-Fu Chang1

1Columbia Univ. (United States)
ORGANIZATIONAL
Sign in with credentials provided by your organization.
INSTITUTIONAL
Select your institution to access the SPIE Digital Library.
PERSONAL
Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
No SPIE Account?Create one
;
PURCHASE THIS CONTENT
SUBSCRIBE TO DIGITAL LIBRARY
50 downloads per 1-year subscription
Members: $195
Non-members: $335ADD TO CART
25 downloads per 1-year subscription
Members: $145
Non-members: $250ADD TO CART
PURCHASE SINGLE ARTICLE
Includes PDF, HTML & Video, when available
Members:
Non-members:ADD TO CART
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
This content is available for download via your institution's subscription. To access this item, please sign in to your personal account.
Forgot your username?
No SPIE account?Create an account
My Library
You currently do not have any folders to save your paper to! Create a new folder below.
Abstract
In this paper, we propose a dynamic approach to feature and classifier selection. In our approach, based on performance, visual features and classifiers are selected automatically. In earlier work, we presented the Visual Apprentice, in which users can define visual object models via a multiple- level object definition hierarchy. Visual Object Detectors are learned, using various learning algorithms - as the user provides examples from images or video, visual features are extracted and multiple classifiers are learned for each node of the hierarchy. In this paper, features and classifiers are selected automatically at each node, depending on their performance over the training set introduce the concept of Recurrent Visual Semantics and show how it can be used to identify domains in which performance-based learning techniques such as the one presented can be applied. We then show experimental results in detecting Baseball video shots, images that contain handshakes,and images that contain skies. These result demonstrate the importance, feasibility, and usefulness of dynamic feature/classifier selection for classification of visual information, and the performance benefits of using multiple learning algorithms to build classifiers. Based on our experiments, we also discuss some of the issues that arise when applying learning techniques in real-world content-based applications.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alejandro Jaimes andShih-Fu Chang"Automatic selection of visual features and classifiers", Proc. SPIE 3972, Storage and Retrieval for Media Databases 2000, (23 December 1999);https://doi.org/10.1117/12.373566
ACCESS THE FULL ARTICLE
ORGANIZATIONAL
Sign in with credentials provided by your organization.
INSTITUTIONAL
Select your institution to access the SPIE Digital Library.
PERSONAL
Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
No SPIE Account?Create one
;
PURCHASE THIS CONTENT
SUBSCRIBE TO DIGITAL LIBRARY
50 downloads per 1-year subscription
Members: $195
Non-members: $335ADD TO CART
25 downloads per 1-year subscription
Members: $145
Non-members: $250ADD TO CART
PURCHASE SINGLE ARTICLE
Includes PDF, HTML & Video, when available
Members:$17.00
Non-members:$21.00ADD TO CART
Lens.org Logo
CITATIONS
Cited by 17 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission Get copyright permission on Copyright Marketplace
KEYWORDS
Visualization

Sensors

Video

Information visualization

Feature extraction

Feature selection

Image segmentation

Cameras

Machine learning

Visual process modeling

Erratum Email Alerts notify you when an article has been updated or the paper is withdrawn.
VisitMy Account to manage your email alerts.
The alert successfully saved.
VisitMy Account to manage your email alerts.
The alert did not successfully save. Please try again later.
Alejandro Jaimes, Shih-Fu Chang, "Automatic selection of visual features and classifiers," Proc. SPIE 3972, Storage and Retrieval for Media Databases 2000, (23 December 1999); https://doi.org/10.1117/12.373566
Include:
Format:
Back to Top

Keywords/Phrases

Keywords
in
Remove
in
Remove
in
Remove
+ Add another field

Search In:























Publication Years

Range
Single Year

Clear Form

[8]ページ先頭

©2009-2025 Movatter.jp