Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Journal Name Logo

Tellus B: Chemical and Physical Meteorology

Start Submission
Become a Reviewer
Press Logo

Contribution of anthropogenic land cover change emissions to pre-industrial atmospheric CO2

Original Research Papers

Authors

Abstract

Based on a recent reconstruction of anthropogenic land cover change (ALCC), we derive the associated CO2 emissions since 800ADby two independent methods: a bookkeeping approach and a process model. The results are comparedwith the pre-industrial development of atmospheric CO2 known from antarctic ice cores. Our results show that pre-industrial CO2 emissions from ALCC have been relevant for the pre-industrial carbon cycle, although before 1750 AD their trace in atmospheric CO2 is obscured by other processes of similar magnitude. After 1750 AD, the situation is different: the steep increase in atmospheric CO2 until 1850 AD—this is before fossil fuel emissions rose to significant values—is to a substantial part explained by growing emissions from ALCC.

Submitted on Nov 15, 2009
Accepted on Jun 11, 2010
Published on Jan 1, 2010
Peer Reviewed

References

  • Bondeau, A., Smith, P., Zaehle, S., Schaphoff, S., Lucht, W. and co-authors. 2007. Modelling the role of agriculture for the 20th century global terrestrial carbon balance.Global Change Biol. 13, 679-706, doi:https://doi.org/10.1111/j.1365-2486.2006.01305.x.  

  • Brovkin, V., Ganopolski, A., Claussen, M., Kubatzki, C. and Petoukhov, V. 1999. Modelling climate response to historical land cover change.Global EcoL Biogeogr8, 509–517.  

  • Canadell, J., LeQuére, C., Raupach, M., Field, C., Buitenhuis, E. and co-authors. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks.PNAS104, 18866-18870.  

  • de Campos, C. P., Muylaert, M. S. and Rosa, L. P. 2005. Historical CO2 emission and concentrations due to land use change of croplands and pastures by country.Sci. Total Environ. 346, 149–155.  

  • DeFries, R., Field, C., Fung, I., Collatz, G. and Bounoua, L.1999. Com-bining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity.Global Biogeochem. Cycles13, 803-815.  

  • Denman, K., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. and co-authors. 2007. Couplings between changes in the climate system and biogeochemistry. In:Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, (eds. S.Solomon, D.Qin, M.Manning, Z.Chen, M.Marquis, K.Averyt, M.Tignor and H.Miller), Cambridge University Press, Cambridge, UK and New York, NY, USA.  

  • Emanuel, W., Killough, G., Post, W. and Shugart, H. 1984. Modeling terrestrial ecosystems in the global carbon cycle with shifts in carbon storage capacity by land-use change.Ecology65, 970–983.  

  • Etheridge, D., Steele, L., Langenfelds, R., Francey, R., Bamola, J. M. and co-authors. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in antarctic ice and fim.J. Geophys. Res. 101, 4115-4128.  

  • Etheridge, D., Steele, L., Langenfelds, R., Francey, R., Bamola, 7.-M. and co-authors. 2001. Law dome atmospheric CO2 data, Techni-cal Report, IGBP PAGES/World Data Center for Paleoclimatology, NOAA/NGDC Paleoclimatology Program, Boulder CO, USA.  

  • Goosse, H., Arzel, O., Luterbacher, J., Mann, M., Renssen, H. and co-authors. 2006. The origin of the European medieval warm period.Clim. Past2, 99-113.  

  • Govindasamy, B., Duffy, P. and Caldeira, K.2001. Land use changes and northern hemisphere cooling.Geophys. Res. Lett. 28, 291-294.  

  • Guo, L. and Gifford, R. 2002. Soil carbon stocks and land use change: a meta analysis.Global Change Biol. 8, 345–360.  

  • Houghton, R. 1999. The annual net flux of carbon to the atmosphere from changes in land use 1850-1990.Tellus B51,298–313.  

  • Houghton, R. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management.Tellus55B, 378–390.  

  • Houghton, R. 2008. Carbon flux to the atmosphere from land-use changes: 1850-2005. In TRENDS: a compendium of data on global change, Technical Report, Carbon Dioxide Information Analysis Cen-ter,http://cdiac.oml.gov, Oak Ridge National Laboratory, U.S. De-partment of Energy, Oak Ridge, TN, USA.  

  • Houghton, R. and Goodale, C. 2004. Effects of land-use change on the carbon balance of terrestrial ecosystems. In:Ecosyst. Landuse Change (eds. R.Houghton, R.DeVries and G.Asner), Geophysical Monograph Series, Volume 153, AGU, Washington, DC.  

  • Houghton, R. and Hackler,J.1995. Continental scale estimates of the biotic carbon flux from land cover change: 1850-1980,Technical Re-port, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN.  

  • Houghton, R., Hobbie, J., Melillo, J., Moore, B., Peterson, B. and co-authors. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere.EcoL Monogr53, 235-262.  

  • House, J., Prentice, I. and LeQuere, C.2002. Maximum impacts of future reforestation or deforestation on atmospheric CO2.Global Change Biol. 8, 1047-1052.  

  • Indermiihle, A., Stocker, T., Joos, E, Fischer, H., Smith, H. and co-authors. 1999. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica.Nature398, 121-126.  

  • Ito, A., Penner, J., Prather, M., de Campos, C., Houghton, R. and co-authors. 2008. Can we reconcile differences in estimates of carbon fluxes from land-use change and forestry for the 1990s?.Atmos.Chem. Phys. 8, 3291-3310.  

  • Jain.,A. and Yang, X.2005. Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO2 and climate change.Global Biogeochem. Cycles19, GB2015, doi:https://doi.org/10.1029/2004GB002349.  

  • Joos, E, Meyer, R., Bruno, M. and Leuenberger, M. 1999. The variability in the carbon sinks as reconstructed for the last 1000 years.Geophys. Res. Lett. 26, 1437–1440.  

  • Kammen, D. and Marino, B. 1993. On the origin and magnitude of pre-industrial anthropogenic CO2 and CH4 emissions.Chemosphere26, 69–86.  

  • Kaplan, J., Krumhardt, K. and Zimmermann, N.2009. The prehis-toric and preindustrial deforestation of Europe.Quater. Sci. Rev. 28, 3016-3034.  

  • Klein-Goldewijk, K. 2001. Estimating global land use change over the past 300 years.Global Biogeochem. Cycles15, 417–433.  

  • Levchenko, V., Francey, R., Etheridge, D., Tuniz, C., Head,J. and co-authors. 1996. The 14C “bomb spike” determines the age spread and age of CO2 in law dome firm and ice.Geophys. Res. Lett. 23, 3345-3348.  

  • Levchenko, V., Etheridge, D., Francey, R., Trudinger, C., Tuniz, C. and co-authors. 1997. Measurements of the 14CO2 bomb pulse in fim and ice at Law Dome, Antarctica.NucL Instrum. Methods. Phys. Res. B123, 290-295.  

  • Levy, P., Friend, A., White, A. and Cannell, M. 2004. The influence of land use change on global-scale fluxes of carbon from terrestrial ecosystems.Clim. Change67, 185–209.  

  • Mann, M. 2007. Climate over the past two millennia.Ann. Rev. Earth. Planet. Sci. 35, 111–136.  

  • Marland, G., Andres, B. and Boden, T. 2008. Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751-2005.,Technical Report, Carbon Dioxide Information Analysis Center. Available:http://cdiac.oml.gov/ftp/ndp030/.  

  • Mather, A., Fairbanks, J. and Needle, C.1999. The course and drivers of forest transition: the case of France.J. Rural Stud. 15, 65-90.  

  • Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds and co-authors. 2006. Auxiliary material to: Law Dome CO2, CH4 and N20 ice core records extended to 2000 years BP.Geophys. Res. Lett. 33, L14810. doi:https://doi.org/10.1029/2006GL02615.  

  • Monnin, E., Steig, E., Siegenthaler, U., Kawamura, K., Schwander,J. and co-authors. 2004a. Evidence for substantial accumulation rate variability in Antarctica during the holocene through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores.Earth Planet. Sci. Lett. 224, 45-54. doi:https://doi.org/10.1016/j.eps1.2004.05.007.  

  • Monnin, E., Steig, E., Siegenthaler, U., Kawamura, K., Schwander,J. and co-authors. 2004b. EPICA Dome C ice core high resolution holocene and transition CO2 data, Technical Report, IGBP PAGES/World Data Center for Paleoclimatology,OAA/NGDC Paleoclimatology Pro-gram, Boulder CO, USA.  

  • Neftel, A., Moor, E., Oeschger, H. and Stauffer, B. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries.Nature315, 45–47.  

  • Olofsson, J. and Hickler, T.2008. Effects of human land-use on the global carbon cycle during the last 6,000 years.Vega Hist. Archaeoba17, 605-615.  

  • Osborn, T. and Briffa, K.2007. Fig. 6.13d in Denman et al. (2007). Data fromhttp:www.cru.uea.ac.uk/timo/datapagesfilefig6.13_ipccar4_wg1_2007.overlaps.txt.  

  • Pongratz, J., Reick, C., Raddatz, T. and Claussen, M.2008a. A global land cover reconstruction AD 800 to 1992 - Technical description, Reports on Earth System Science 51, Max Planck Institute for Mete-orology, Hamburg, Germany.  

  • Pongratz, J., Reick, C., Raddatz, T. and Claussen, M.2008b. A reconstruction of global agricultural areas and land cover for the last millennium.Global Biogeochem. Cycles22, GB3018. doi:https://doi.org/10.1029/2007GB003153.  

  • Pongratz, J., Raddatz, T., Reick, C., Esch, M. and Claussen, M. 2009a. Radiative forcing from anthropogenic land cover change since 800 AD.Geophys. Res. Lett. 36, L02709.  

  • Pongratz, J., Reick, C., Raddatz, T. and Claussen, M. 2009b. Ef-fects of anthropogenic land cover change on the carbon cycle of the last millennium.Global Biogeochem. Cycles23, GB4001. doi:https://doi.org/10.1029/2009GB003488.  

  • Raddatz, T., Reick, C., Knorr, W., Kattge, J., Roeckner, E. and co-authors. 2007. Will the tropical land biosphere dominate the climate carbon cycle feedback during the twenty-first century?Clim. Dynam. 29, 565-574.  

  • Ramankutty, N. and Foley, J. 1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992.Global Biogeochem. Cycles13, 997–1027.  

  • Ramankutty, N., Gibbs, H., Achard, E, DeFries, R., Foley, J. and co-authors. 2007. Challenges to estimating carbon emissions from trop-ical deforestation.Global Change Biol. 13, 51-66.  

  • Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S. and co-authors. 2005. Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model.J. Clim. 19, 3771-3791.  

  • Ruddiman, W. 2003. The anthropogenic greenhouse era began thousands of years ago.Clim. Change61, 261–293.  

  • Ruddiman, W. 2007. The early anthropogenic hypothesis: challenges and responses.Rev. Geophys. 45, RG4001, doi:https://doi.org/10.1029/2006RG000207.  

  • Siegenthaler,U.2005. EPICA Dronning Maud Land CO2 data for the last millennium, Data Contribution Series 2005-081, IGBP PAGES/World Data Center for Paleoclimatology, NOAA/ NCDC Paleoclimatology Program, Boulder CO, USA. Available via ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/maud/ edml-co2-2005.txt.  

  • Siegenthaler, U. and Oeschger, H. 1987. Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data.Tellus39B, 140–154.  

  • Siegenthaler, U., Monnin, E., Kawamura, K., Spahni, R., Schwan-der, J. and co-authors. 2005. Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium.Tellus57B, 51-57. doi:https://doi.org/10.1111/j.1600-0889.2005.00131.x.  

  • Sikes, L., Samson, C., Guilderson, T. and Howard, W. 2000. Old ra-diocarbon ages in the southwest pacific ocean during the last glacial period and deglaciation.Nature405, 555–559.  

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M. and co-authors. 2007. Climate change 2007: The physical science basis., Contribution of Working Group I to the Fourth Assessment Re-port of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.  

  • Strassmann, K., Joos, E. and Fischer, G.2008. Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity.Tellus60B, 583-603.  

  • Trudinger, C., Enting, I., Francey, R. and Etheridge, D. 1999. Long-term variability in the global carbon cycle inferred from a high precision CO2 and 313C ice core record.Tellus51B, 233–248.  

  • Trudinger, C., Enting, I., Rayner, P. and Francey, R. 2002. Kalman filter analysis of ice core data 2.: double deconvolution of CO2 and 313C measurements.J. Geophys. Res. 67, 174–180.  

  • Trudinger, C., Enting, I., Etheridge, D., Francey, R. and Rayner, P. 2005. The carbon cycle over the past 1000 years inferred from the inversion of ice core data. In:A History of Atmospheric CO2 and Its Effects on Plants, Animals and Ecosystems (ed.J.Ehleringer), Ecological Studies, Volume 177,Springer, New York, NY, 329-349.  

  • Wanner, H., Beer, J., Batikofer, J., Crowley, T., Cubasch, U. and co-authors. 2008. Mid- to late holocene climate change: an overview.Quater Sci. Rev. 27, 1791–1828.  


    [8]ページ先頭

    ©2009-2025 Movatter.jp