Movatterモバイル変換


[0]ホーム

URL:


Journal logoActa Crystallographica Section E
Acta Crystallographica
Section E
CRYSTALLOGRAPHIC COMMUNICATIONS
homearchiveeditorsfor authorsfor readerssubmitopen access
journal menu
homearchiveeditorsfor authorsfor readerssubmitopen access

research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two magnesium citrates from powder diffraction data

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, North Central College, 131 S. Loomis, St., Naperville IL, 60540, USA, andbDepartment of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago IL 60616, USA
*Correspondence e-mail:[email protected]

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 June 2020;accepted 28 August 2020;online 8 September 2020)

The crystal structures of magnesium hydrogen citrate dihydrate, Mg(HC6H5O7)(H2O)2, (I), and bis­(di­hydrogen citrato)magnesium, Mg(H2C6H5O7)2, (II), have been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. In (I), the citrate anion occurs in thetrans, trans-conformation, and triply chelates to the Mg cation. In (II), the citrate anion istrans, gauche, and doubly chelates to the Mg cation. In both compounds the Mg cation coordination polyhedron is an octa­hedron. In (I), the MgO6 coordination polyhedra are isolated, while in (II), they share edges to form chains. Strong O—H⋯O hydrogen bonds are prominent in the two structures, as well as in the previously reported magnesium citrate deca­hydrate.

1. Chemical context

A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). This paper represents the extension of the study to Group 2 (alkaline earth) citrates. The only magnesium citrate previously reported is Mg3(C6H5O7)2(H2O)10, more properly formulated as [Mg(H2O)6][Mg(C6H5O7)(H2O)]2(H2O)2 (MGCITD; Johnson, 1965[Johnson, C. K. (1965). Acta Cryst. 18, 1004-1018.]). I now describe the syntheses and crystal structures of magnesium hydrogen citrate dihydrate, Mg(HC6H5O7)(H2O)2 (I)[link] and bis­(di­hydro­gen­citrato)magnesium, Mg(H2C6H5O7)2 (II). Attempts to prepare Be(H2C6H5O7)2, BeHC6H5O7, and Be3(C6H5O7)2 by HCl-catalyzed reaction of Be metal with a citric acid solution have so far yielded only amorphous products (see Fig. S1 in thesupporting information).

[Scheme 1]

2. Structural commentary

Thecrystal structure of (I)[link] was solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. (Fig. 1[link]) The root-mean-square Cartesian displacement of the non-hydrogen citrate atoms in the Rietveld refined and DFT-optimized structures is 0.062 Å (Fig. 2[link]) The absolute difference in the position of the Mg cation in the unit cell is 0.055 Å. The excellent agreement between the structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]): the rest of the discussion will emphasize the DFT-optimized structure. All of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by aMercury Mogul geometry check (Macraeet al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The citrate anion occurs in thetrans, trans-conformation (about C2—C3 and C3—C4, respectively), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The central carboxyl­ate group and the hydroxyl group exhibit a significant twist [O17—C3—C6—O15 = −15.6°] from the normal planar arrangement.

[Figure 1]
Figure 1
The expanded asymmetric unit of (I)[link] with the atom numbering and 50% probability spheroids. Symmetry-generated atoms [Mg19(x,y,z − 1) and O13(x,y,z + 1)] are linked by dashed bonds.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of (I)[link]. The refined structure is in red, and the DFT-optimized structure is in blue.

The Mg cation in (I)[link] is six-coordinate (octa­hedral); the ligands are three carboxyl­ate oxygen atoms, the citrate hydroxyl group, and twocis water mol­ecules. The Mulliken overlap populations indicate that the Mg—O bonds have significant covalent character. The Mg bond-valence sum is 2.22. The citrate anion triply chelates to the Mg cation through the terminal carboxyl­ate O14, the central carboxyl­ate O15, and the hydroxyl group O17 oxygen atoms.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). Études Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) method suggests that we might expect platy morphology for magnesium hydrogen citrate dihydrate, with {200} as the major faces. A 4th order spherical harmonic model was included in the refinement. The texture index was 1.000 (0), indicating that preferred orientation was not significant in this rotated capillary specimen.

The crystal structure of (II) was solved and refined in the same way (Fig. 3[link]) The root-mean-square Cartesian displacement of the non-hydrogen citrate atoms in the Rietveld refined and DFT-optimized structures is 0.043 Å (Fig. 4[link]). The excellent agreement between the structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]) and this discussion will emphasize the DFT-optimized structure. All of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by aMercury Mogul geometry check (Macraeet al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The citrate anion occurs in thetrans, gauche-conformation (about C2—C3 and C3—C4, respectively), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The central carboxyl­ate group and the hydroxyl group exhibit a significant twist [O17—C3—C6—O16 = 10.6°] from the normal planar arrangement.

[Figure 3]
Figure 3
The asymmetric unit of (II) with the atom numbering and 50% probability spheroids.
[Figure 4]
Figure 4
Comparison of the refined and optimized structures of (II). The refined structure is in red, and the DFT-optimized structure is in blue.

The magnesium cation in (II) is six-coordinate (octa­hedral) and resides on a twofold axis; the ligands are twocis hydroxyl groups and 4 central carboxyl­ate groups O16. Ionizing the central carboxyl­ate group of citric acid first is the normal pattern (Rammohan & Kaduk, 2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The Mulliken overlap populations indicate that the Mg—O bonds have significant covalent character and the Mg bond-valence sum is 2.12. The citrate anion doubly chelates to the Mg cation through the hydroxyl group O17 and the central carboxyl­ate group O16.

The Bravais–Friedel–Donnay–Harker method suggests that we might expect elongated morphology for crystals of (II), with [001] as the long axis. A 2nd order spherical harmonic model was included in the refinement. The texture index was 1.004 (0), indicating that preferred orientation was not significant in this rotated capillary specimen.

The root-mean-square Cartesian displacement of the non-hydrogen atoms in the reported and DFT-optimized structures of magnesium citrate deca­hydrate (MGCITD), [Mg(H2O)6][Mg(C6H5O7)(H2O)]2(H2O)2 are 0.016 Å for thehexaaqua cation and 0.030 Å for the citrate complex, confirming the excellent quality of the Johnson (1965[Johnson, C. K. (1965). Acta Cryst. 18, 1004-1018.]) single-crystal structure. The citrate anion occurs in thetrans, trans conformation. In Group 1 citrates, thetrans, gauche conformation is more common for salts of the smaller alkali metals, and thetrans, trans conformation is prevalent for the larger cations. Already with three Mg citrates, we see that the structures are more complicated. The torsion angle between the hydroxyl group and the central carboxyl­ate is only −4.8°. The citrate triply chelates to a Mg through the hydroxyl group, the central carboxyl­ate group, and one of the terminal carboxyl­ate groups.

3. Supra­molecular features

The MgO6 coordination polyhedra in (I)[link] are isolated (Fig. 5[link]). The crystal structure is characterized by layers parallel to thebc-plane. The un-ionized carb­oxy­lic acid O12—H26 forms a strong charge-assisted hydrogen bond to the central carboxyl­ate group O16. The hydroxyl group O17—H18 also acts as a donor to O16. All four protons of the water mol­ecules act as donors in O—H⋯O hydrogen bonds. Three of them involve ionized carboxyl­ate groups, and the fourth is to the other water mol­ecule. (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I) (DFT)[link]

D—H⋯AD—HH⋯ADAD—H⋯A
O12—H26⋯O16i1.001.642.614161
O17—H18⋯O16ii1.001.692.682176
O20—H22⋯O21iii0.981.822.795171
O20—H23⋯O13iii0.981.892.844166
O21—H24⋯O15ii1.001.692.666166
O21—H25⋯O14iv0.991.812.792174
Symmetry codes: (i)Mathematical equation; (ii)x,y-1,z; (iii)Mathematical equation; (iv)Mathematical equation.
[Figure 5]
Figure 5
The crystal structure of (I)[link], viewed down theb axis.

The MgO6 octa­hedra in (II) share edges to form chains propagating along thec-axis direction (Fig. 6[link]). The two un-ionized terminal carb­oxy­lic acid groups form centrosymmetricR22(8) loops, which link the citrate anions into chains along thec-axis direction. The hydroxyl group O17 forms an inter­molecular hydrogen bond to the central carboxyl­ate O15. The energies of the O—H⋯O hydrogen bonds were calculated using the correlation of Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). Weak C—H⋯O hydrogen bonds are also present (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II) (DFT)[link]

D—H⋯AD—HH⋯ADAD—H⋯A
O11—H21⋯O12i1.021.552.567179
O14—H20⋯O13ii1.011.642.640176
O17—H18⋯O15iii0.991.722.708174
C4—H9⋯O13iv1.102.573.580152
C4—H10⋯O15v1.092.473.522161
Symmetry codes: (i)-x, -y+1, -z; (ii)Mathematical equation; (iii)x,y,z+1; (iv)Mathematical equation; (v)Mathematical equation.
[Figure 6]
Figure 6
The crystal structure of (II), viewed down thec axis.

In magnesium citrate deca­hydrate (MGCITD), [Mg(H2O)6][Mg(C6H5O7)(H2O)]2(H2O)2, the MgO6 octa­hedra are isolated (Fig. 7[link]). All of the H atoms of the water mol­ecules act as donors in O—H⋯O hydrogen bonds. The hydroxyl group forms bifurcated hydrogen bonds: one intra­molecular to the terminal carboxyl­ate O24 and the other inter­molecular to the terminal carboxyl­ate O28.

[Figure 7]
Figure 7
The crystal structure of [Mg(H2O)6][Mg(C6H5O7)(H2O)]2(H2O)2, (MGCITD) viewed down theb axis.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). A search of the Cambridge Structural Database (Groomet al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a citrate fragment and Mg, C, H, and O only yielded Mg3(C6H5O7)2(H2O)10 (MGCITD; Johnson, 1965[Johnson, C. K. (1965). Acta Cryst. 18, 1004-1018.]). Reduced-cell searches using the unit cells of both compounds of this study yielded no citrate structures. A search of the Powder Diffraction File (Gates-Rector & Blanton, 2019[Gates-Rector, S. & Blanton, T. N. (2019). Powder Diffr. 34, 352-360.]) yielded entry 02-063-3628 calculated from MGCITD, as well as the experimental entry 00-001-0186 (Hanawaltet al., 1938[Hanawalt, J. D., Rinn, H. & Frevel, L. (1938). Ind. Eng. Chem. Anal. Ed. 10, 457-512.]) for the same compound.

5. Synthesis and crystallization

To prepare (I)[link], magnesium hydrogen citrate dihydrate was synthesized by dissolving 2.0798 g (10.0 mmol) of H3C6H5O7(H2O) in 10 ml of water, and adding 0.8427 g (10.0 mmol) of `MgCO3' to the clear solution [the magnesium carbonate reagent was actually Mg5(CO3)4(OH)2]. After slow fizzing, a clear colorless solution was obtained. This solution was dried in a 333 K oven to yield (I)[link] as a white solid.

Compound (II) was obtained from the scale [94.5 (1) wt% magnesian calcite Ca0.84Mg0.16CO3, 5.3 (4) wt% brucite Mg(OH)2, and 0.2 (1) wt% vaterite polymorph of CaCO3] in a Megahome water still. The still was cleaned by filling the tank with tap water (from Lake Michigan), adding several tablespoons of citric acid monohydrate, and boiling for ∼2 h. The pale-yellow solution was deca­nted into a plastic pail, and allowed to evaporate at ambient conditions. Over five months, several white solids (calcium citrates, which will be discussed in another paper) crystallized, and were isolated. After five months, a clear yellow syrup remained. This was dried at 423 K to yield (II) as a white powder.

6. Refinement

Crystal data, data collection and structurerefinement details for (I)[link] are summarized in Table 3[link]. A laboratory powder pattern, measured using CuKα radiation, was indexed usingDICVOL (Louër & Boultif, 2007[Louër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. 26, 191-196.]) as incorporated intoFOX (Favre-Nicolin & Černý, 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]) on a primitive ortho­rhom­bic cell witha = 26.9042 (24),b = 5.9323 (4),c = 6.1649 (5) Å,V = 985.27 (17) Å3, andZ = 4. Attempts to solve the structure with multiple programs using the laboratory data were unsuccessful. The powder pattern measured at 11-BM using a wavelength of 0.413070 Å was indexed on a primitive ortho­rhom­bic cell withDICVOL as incorporated intoFOX:a = 26.91159 (14),b = 5.92442 (2),c = 6.15170 (2) Å,V = 980.800 (7) Å3, andZ = 4. TheSpace Group Explorer suggestedPna21, which was confirmed by successful solution and refinement of the structure. The structure was solved using Monte Carlo-simulated annealing techniques as implemented inFOX. The scatterers were a citrate anion, a Mg atom, and two O atoms (water mol­ecules). In the best solution, one of the water mol­ecules was too close to a carboxyl­ate oxygen atom, and was discarded. The Mg coordination was 5/6 of an octa­hedron, so the second water mol­ecule was placed manually usingMaterials Studio (Dassault Systems, 2019[Dassault Systems (2019). Materials Studio, BIOVIA, San Diego, USA.]).

Table 3
Experimental details

 (I)(II)
Crystal data
Chemical formulaMg2+·C6H6O72−·2H2OMg(H2C6H5O7)2
Mr250.44380.13
Crystal system, space groupOrthorhombic,Pna21Monoclinic,C2/c
Temperature (K)295295
a,b,c (Å)26.91181 (13), 5.924517 (17), 6.151787 (18)23.26381 (16), 10.97790 (4), 5.924466 (18)
α,β,γ (°)90, 90, 9090, 82.5511 (3), 90
V3)980.84 (1)1500.267 (6)
Z44
Radiation typeSynchrotron,λ = 0.41307 ÅSynchrotron,λ = 0.41307 Å
Specimen shape, size (mm)Cylinder, 3.0 × 1.5Cylinder, 3.0 × 1.5
 
Data collection
DiffractometerAPS 11-BM11-BM APS
Specimen mountingKapton capillaryKapton capillary
Data collection modeTransmissionTransmission
Data collection methodStepStep
θ values (°)2θmin = 0.500 2θmax = 49.991 2θstep = 0.0012θmin = 0.500 2θmax = 49.991 2θstep = 0.001
 
Refinement
R factors and goodness of fitRp = 0.086,Rwp = 0.110,Rexp = 0.060,χ2 = 3.486Rp = 0.098,Rwp = 0.120,Rexp = 0.083,χ2 = 2.16
No. of parameters7660
No. of restraints29
Computer programs:FOX (Favre-Nicolin & Černý, 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]),GSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]),Mercury (Macraeet al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]),DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]),publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The structure of (I)[link] was refined by theRietveld method usingGSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]) (Fig. 8[link]). The initial refinement clarified the presence of extra peaks, which were identified as citric acid (02-061-2110; CITRAC10), which was added as a second phase; its concentration refined to 12.2 wt%. A few very weak peaks indicate the presence of an unidentified impurity. Analysis of potential hydrogen bonding usingMercury (Macraeet al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) made it possible to determine approximate positions for the hydroxyl hydrogen atom H18 and the four water mol­ecule hydrogen atoms. The C1—O12 bond was longer than the other carboxyl­ate distances, and the O12⋯O16i distance was 2.62 Å, making it clear that H26, the proton of the un-ionized carboxyl group, was located on O12. All heavy-atom bond distances and angles of the citrate anion were restrained: C1—C2 = C4—C5 = 1.51 (3), C2—C3 = C3—C4 = 1.54 (3), C3—C6 = 1.55 (3), C3—O17 = 1.42 (3), C1—O11 = 1.22 (3), C1—O12 = 1.32 (3), and the C—O of the ionized carboxyl­ate groups = 1.27 (3) Å, C1—C2—C3 = C3—C4—C5 = 115 (3), the angles around C3 = 109.5 (3), the O—C—C angles of the carboxyl­ate groups = 115 (3), and the O—C—O angles of the carboxyl­ate groups = 130 (3)°. The restraints contributed 1.5% to the finalχ2. The hydrogen atoms were included in fixed positions, which were re-calculated during the course of the refinement usingMaterials Studio. TheUiso values of C2, C3, and C4 were constrained to be equal, and those of H7, H8, H9, and H10 were constrained to be 1.3× that of these carbon atoms. TheUiso values of C1, C5, C6, and the oxygen atoms were constrained to be equal, and that of H18 was constrained to be 1.3× this value. TheUiso values of the O atoms of the water mol­ecules were constrained to be equal, and theUiso values of their H atoms to be 1.3× this value. The background was described by a four-term shifted Chebyshev polynomial, with a peak at 10.84° to describe the scattering from the Kapton capillary and any amorphous component.

[Figure 8]
Figure 8
Rietveld plot for (I)[link]. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The vertical scale has been multiplied by a factor of 5× for 2θ > 10.0°, and by a factor of 20× for 2θ > 15.0°. The row of blue tick marks indicates the calculated reflection positions, and the red tick marks indicate the peak positions for the citric acid impurity. The red line is the background curve.

A density functional geometry optimization for (I)[link] (fixed experimental unit cell) was carried out usingCRYSTAL09 (Dovesiet al., 2005[Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.]). The basis sets for the H, C, N, and O atoms were those of Gattiet al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for Mg was that of McCarthy & Harrison (1994[McCarthy, M. I. & Harrison, N. M. (1994). Phys. Rev. B, 49, 8574-8582.]). The calculation used 8k-points and the B3LYP functional, and took around four days on a 2.4 GHz PC.

Crystal data, data collection and structure refinement details for (II) are summarized in Table 3[link]. It proved difficult to index the laboratory pattern, though the correct cell was included in hits found byDICVOL06 (Louër & Boultif, 2007[Louër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. 26, 191-196.]). The synchrotron pattern was indexed on a primitive monoclinic unit cell withN-TREOR (Altomareet al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]):a = 23.24984 (8),b = 10.97779 (3),c = 5.92449 (1) Å,β = 979.1860 (2)°,V = 1500.241 (8) Å3, andZ = 4. Thesystematic absences unambiguously determined thespace group asP21/c The structure was solved bydirect methods usingEXPO2009 (Altomareet al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]), assuming that it was a Ca salt. During the refinement, the electron density at the metal site and the metal–oxygen bond distances made it clear that it was a Mg salt rather than a Ca compound.

The structure was refined by the Rietveld method usingGSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]) (Fig. 9[link]). Analysis of the refined structure usingPLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and the Find Symmetry module ofMaterials Studio (Dassault Systems, 2019[Dassault Systems (2019). Materials Studio, BIOVIA, San Diego, USA.]) suggested the presence of extra symmetry, and that the true space group wasC2/c (transformation matrix 1 0 1 / 0Mathematical equation 0 / 0 0Mathematical equation). The structure was re-refined in this space group, using the strategy described above for (I)[link]. The position of the peak in the background was 5.37°.

[Figure 9]
Figure 9
Rietveld plot for (II). The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The vertical scale has been multiplied by a factor of 2× for 2θ > 3.0°, by a factor of 10× for 2θ > 12.0°, and by a factor of 40× for 2θ > 17.0°. The row of blue tick marks indicates the calculated reflection positions. The red line is the background curve.

A density functional geometry optimization for (II) (fixed experimental unit cell) was carried out usingCRYSTAL17 (Dovesiet al., 2018[Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360.]). The basis sets for the H, C, N, and O atoms were those of Gattiet al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for Mg was that of Peintingeret al. (2013[Peintinger, M. F., Oliveira, D. V. & Bredow, T. (2013). J. Comput. Chem. 34, 451-459.]). The calculation used 8k-points and the B3LYP functional, and took ∼15 h on a 3.54 GHz PC.

A density functional geometry optimization (fixed experimental unit cell) of the structure of magnesium citrate deca­hydrate (MGCITD) was carried out usingCRYSTAL09 (Dovesiet al., 2005[Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.]). The basis sets for the H, C, N, and O atoms were those of Gattiet al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for Mg was that of McCarthy & Harrison (1994[McCarthy, M. I. & Harrison, N. M. (1994). Phys. Rev. B, 49, 8574-8582.]). The calculation used 8k-points and the B3LYP functional, and took 11 days on a 2.4 GHz PC.

Supporting information

Crystal structure: contains datablocks global, II, MGCITD_DFT, I_overall, I, ramm026_11bm_pwd_0, I_impurity, I_DFT, II_DFT. DOI:https://doi.org/10.1107/S2056989020011913/hb7927sup1.cif

Powder patters of beryllium citrates. DOI:https://doi.org/10.1107/S2056989020011913/hb7927sup2.docx


Computing detailstop

Program(s) used to refine structure:GSAS-II (Toby & Von Dreele, 2013) for (II).

magnesium hydrogen citrate dihydrate (I)top
Crystal datatop
Mg2+·C6H6O72·2H2OV = 980.84 (1) Å3
Mr = 250.44Z = 4
Orthorhombic,Pna21Dx = 1.696 Mg m3
a = 26.91181 (13) ÅSynchrotron radiation
b = 5.924517 (17) ÅT = 295 K
c = 6.151787 (18) Åcylinder, 3.0 × 1.5 mm
Data collectiontop
APS 11-BM
diffractometer
Data collection mode: transmission
Specimen mounting: Kapton capillaryScan method: step
Refinementtop
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, G/L mix 19.594, 2586.054, 2128.049, 48.827, -44.218, 6452.631, 1.000,Preferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,0) = 0.025(4); 0:0:C(2,2) = -0.025(5)
29 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)top
xyzUiso*/Ueq
C10.48943 (13)0.7789 (8)0.556100.0202 (4)*
C20.46229 (15)0.7167 (7)0.3481 (7)0.0103 (9)*
C30.40501 (13)0.7286 (6)0.3574 (9)0.0103*
C40.38562 (14)0.7010 (7)0.1229 (9)0.0103*
C50.32959 (12)0.6702 (9)0.0955 (9)0.0202*
C60.38764 (16)0.9591 (6)0.4509 (10)0.0202*
H70.477830.808490.215910.0133*
H80.471900.536290.316780.0133*
H90.397830.840230.008530.0133*
H100.404340.550400.039330.0133*
O110.46605 (12)0.8354 (7)0.7185 (7)0.0202*
O120.53720 (11)0.7677 (6)0.5337 (8)0.0202*
O130.31529 (12)0.6138 (6)0.0898 (9)0.0202*
O140.30170 (12)0.6980 (6)0.2576 (9)0.0202*
O150.35114 (12)0.9501 (5)0.5750 (9)0.0202*
O160.40759 (12)1.1313 (6)0.3708 (9)0.0202*
O170.38526 (12)0.5579 (5)0.4951 (9)0.0202*
H180.393340.402980.442990.0263*
Mg190.31438 (7)0.6445 (3)0.5864 (8)0.0152 (5)*
O200.24223 (12)0.7558 (5)0.6155 (10)0.0183 (8)*
O210.29100 (11)0.3095 (5)0.5592 (9)0.0183*
H220.228600.773710.759420.0238*
H230.226520.874280.521000.0238*
H240.314320.189720.572510.0238*
H250.258190.262800.615410.0238*
H260.552800.818130.674540.0263*
Geometric parameters (Å, º)top
C1—C21.519 (4)O13—C51.249 (4)
C1—O111.227 (4)O13—Mg19i2.000 (4)
C1—O121.294 (3)O14—C51.259 (4)
C2—C11.519 (4)O14—Mg192.075 (4)
C2—C31.544 (4)O15—C61.245 (4)
C2—H71.064O15—Mg192.065 (3)
C2—H81.117O16—C61.254 (4)
C3—C21.544 (4)O17—C31.423 (4)
C3—C41.543 (4)O17—H180.996
C3—C61.553 (4)O17—Mg192.054 (4)
C3—O171.423 (4)H18—O170.996 (3)
C4—C31.543 (4)Mg19—O13ii2.000 (4)
C4—C51.528 (4)Mg19—O142.075 (4)
C4—H91.133Mg19—O152.065 (3)
C4—H101.147Mg19—O172.054 (4)
C5—C41.528 (4)Mg19—O202.059 (4)
C5—O131.249 (4)Mg19—O212.089 (3)
C5—O141.259 (4)O20—Mg192.059 (4)
C6—C31.553 (4)O20—H220.964
C6—O151.245 (4)O20—H231.005
C6—O161.254 (4)O21—Mg192.089 (3)
H7—C21.064O21—H240.9507
H8—C21.117O21—H250.988
H9—C41.133H22—O200.964
H10—C41.147H23—O201.005
O11—C11.227 (4)H24—O210.950
O12—C11.294 (3)H25—O210.988
O12—H261.008H26—O121.008
C2—C1—O11120.4 (3)C5—O13—Mg19i152.7 (4)
C2—C1—O12112.0 (3)C5—O14—Mg19130.8 (3)
O11—C1—O12127.6 (3)C6—O15—Mg19115.9 (3)
C1—C2—C3115.9 (3)C3—O17—H18112.5
C1—C2—H7109.3C3—O17—Mg19109.4 (2)
C3—C2—H7113.4H18—O17—Mg19121.41
C1—C2—H8105.4O13ii—Mg19—O14170.49 (17)
C3—C2—H8106.3O13ii—Mg19—O1596.18 (18)
H7—C2—H8105.5O14—Mg19—O1584.94 (17)
C2—C3—C4107.3 (3)O13ii—Mg19—O17103.79 (17)
C2—C3—C6110.8 (3)O14—Mg19—O1785.67 (16)
C4—C3—C6109.7 (3)O15—Mg19—O1776.40 (14)
C2—C3—O17111.3 (3)O13ii—Mg19—O2087.36 (17)
C4—C3—O17110.8 (3)O14—Mg19—O2083.15 (17)
C6—C3—O17107.0 (3)O15—Mg19—O20100.02 (15)
C3—C4—C5116.7 (3)O17—Mg19—O20168.5 (2)
C3—C4—H9113.9O13ii—Mg19—O2189.83 (17)
C5—C4—H9107.7O14—Mg19—O2191.01 (19)
C3—C4—H10110.7O15—Mg19—O21167.16 (18)
C5—C4—H10106.9O17—Mg19—O2191.17 (15)
H9—C4—H1099.2O20—Mg19—O2191.56 (15)
C4—C5—O13115.9 (3)Mg19—O20—H22118.30
C4—C5—O14119.0 (3)Mg19—O20—H23124.8
O13—C5—O14125.1 (3)H22—O20—H23107.1
C3—C6—O15115.3 (3)Mg19—O21—H24120.21
C3—C6—O16116.2 (3)Mg19—O21—H25120.48
O15—C6—O16127.8 (3)H24—O21—H25110.6
C1—O12—H26107.9
Symmetry codes: (i)x,y,z1; (ii)x,y,z+1.
(I_DFT)top
Crystal datatop
C6H10MgO9b = 5.9244 Å
Mr = 250.44c = 6.1517 Å
Orthorhombic,Pna21V = 980.80 Å3
a = 26.9116 ÅZ = 4
Data collectiontop
h =l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)top
xyzUiso*/Ueq
C10.486900.783840.556100.03000*
C20.461560.711310.348960.03000*
C30.404760.728930.348100.03000*
C40.386350.698370.111280.03000*
C50.330730.667320.083790.03000*
C60.386080.958370.438670.03000*
H70.477830.808490.215910.039000*
H80.471900.536290.316780.039000*
H90.397830.840230.008530.039000*
H100.404340.550400.039330.039000*
O110.466030.860680.715750.03000*
O120.535970.753700.543170.03000*
O130.315110.598260.098860.03000*
O140.301030.702960.240370.03000*
O150.349670.954550.570140.03000*
O160.405891.135780.366470.03000*
O170.383520.558770.487000.03000*
H180.393340.402980.442990.039000*
Mg190.312660.645800.577260.03000*
O200.243130.763900.613540.03000*
O210.289340.310250.542820.03000*
H220.228600.773710.759420.039000*
H230.226520.874280.521000.039000*
H240.314320.189720.572510.039000*
H250.258190.262800.615410.039000*
H260.552800.818130.674540.039000*
Hydrogen-bond geometry (Å, º)top
D—H···AD—HH···AD···AD—H···A
O12—H26···O16i1.001.642.614161
O17—H18···O16ii1.001.692.682176
O20—H22···O21iii0.981.822.795171
O20—H23···O13iii0.981.892.844166
O21—H24···O15ii1.001.692.666166
O21—H25···O14iv0.991.812.792174
Symmetry codes: (i)x+1,y+2,z+1/2; (ii)x,y1,z; (iii)x+1/2,y+1/2,z+1/2; (iv)x+1/2,y1/2,z+1/2.
(I_impurity)top
Crystal datatop
C6H8O7β = 111.2291 (14)°
Mr = 192.12V = 770.06 (2) Å3
Monoclinic,P21/aZ = 4
a = 12.8139 (7) ÅDx = 1.657 Mg m3
b = 5.62177 (11) ÅT = 295 K
c = 11.4681 (6) Å
Refinementtop
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 2.57(4)e3, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)top
xyzUiso*/Ueq
C10.089200.542800.399500.025*
C20.159900.560500.320700.025*
C30.162600.805500.261200.025*
C40.247500.792200.195600.025*
C50.269801.032800.151500.025*
C60.045600.867200.167500.025*
H10.137300.433200.256200.025*
H20.231800.522000.374700.025*
H30.221400.688200.121400.025*
H40.318300.728000.253700.025*
H50.028200.314800.491800.025*
H60.384601.224100.164100.025*
H70.055700.768500.013500.025*
H80.143601.031300.365900.025*
O10.078500.328300.435200.025*
O20.045600.718800.428200.025*
O30.377301.076000.187900.025*
O40.199301.172000.090300.025*
O50.014700.728400.068400.025*
O60.010901.024000.184600.025*
O70.200300.986000.351700.025*
Geometric parameters (Å, º)top
C1—C21.4967H1—H21.5397
C1—O11.2966H2—C20.9306
C1—O21.2380H2—H11.5397
C2—C11.4967H3—C40.9857
C2—C31.5430H3—H41.5904
C2—H10.994H4—C40.9795
C2—H20.9306H4—H31.5904
C3—C21.5430H5—O11.0703
C3—C41.5322H6—O30.8916
C3—C61.5349H7—O50.9218
C3—O71.4061H8—O70.8396
C4—C31.5322O1—C11.2966
C4—C51.5072O1—H51.0703
C4—H30.9857O2—C11.2380
C4—H40.9795O3—C51.3093
C5—C41.5072O3—H60.8916
C5—O31.3093O4—C51.2091
C5—O41.2091O5—C61.3158
C6—C31.5349O5—H70.9218
C6—O51.3158O6—C61.2010
C6—O61.2010O7—C31.4061
H1—C20.994O7—H80.8396
C2—C1—O1114.13C3—C4—H3111.932
C2—C1—O2122.512C5—C4—H3106.793
O1—C1—O2123.357C3—C4—H4109.352
C1—C2—C3116.215C5—C4—H4108.511
C1—C2—H1108.935H3—C4—H4108.048
C3—C2—H1111.145C4—C5—O3111.401
C1—C2—H2104.631C4—C5—O4125.664
C3—C2—H2109.06O3—C5—O4122.935
H1—C2—H2106.214C3—C6—O5112.508
C2—C3—C4107.888C3—C6—O6123.044
C2—C3—C6109.796O5—C6—O6124.445
C4—C3—C6110.76C1—O1—H5114.406
C2—C3—O7111.993C5—O3—H6106.888
C4—C3—O7106.402C6—O5—H7111.033
C6—C3—O7109.943C3—O7—H8105.778
C3—C4—C5112.058
Magnesium bis(dihydrogen citrate) (II)top
Crystal datatop
Mg2+·2C6H7O7V = 1500.27 (1) Å3
Mr = 406.53Z = 4
Monoclinic,C2/cDx = 1.800 Mg m3
a = 23.26381 (16) ÅSynchrotron radiation,λ = 0.41307 Å
b = 10.97790 (4) ÅT = 295 K
c = 5.924466 (18) Åwhite
β = 82.5511 (3)°cylinder, 3.0 × 1.5 mm
Data collectiontop
APS 11-BM
diffractometer
Scan method: step
Specimen mounting: Kapton capillary2θmin = 0.500°, 2θmax = 49.991°, 2θstep = 0.001°
Data collection mode: transmission
Refinementtop
Least-squares matrix: fullProfile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 1.163, -0.126, 0.063, 0.000, 0.000, 0.002, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "uniaxial" model (106 * delta Q/Q) anisotropic axis is [0, 0, 1] parameters: equatorial mustrain, axial mustrain, G/L mix 1556(11), 880(8), 1.000,
Rp = 0.09860 parameters
Rwp = 0.120H-atom parameters not defined?
Rexp = 0.083(Δ/σ)max = 2.829
R(F2) = 0.08746Background function: Background function: "chebyschev-1" function with 4 terms: 75.08(16), -28.81(26), 8.70(18), -4.70(14), Background peak parameters: pos, int, sig, gam: 5.370(17), 7.52(18)e4, 6.02(27)e3, 0.100,
49492 data pointsPreferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,-2) = -0.0720(26); 0:0:C(2,0) = 0.039(4); 0:0:C(2,2) = 0.1089(29)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)top
xyzUiso*/Ueq
C10.06727 (13)0.5905 (3)0.0107 (8)0.0280 (4)*
C20.12138 (12)0.6630 (3)0.0408 (6)0.0135 (7)*
C30.11122 (10)0.7998 (2)0.0807 (5)0.0135*
C40.16939 (14)0.8630 (3)0.0995 (5)0.0135*
C50.20688 (16)0.8168 (3)0.2773 (6)0.0280*
C60.08530 (15)0.8589 (3)0.1256 (5)0.0280*
H70.141770.623130.181700.0176*
H80.149290.648670.112990.0176*
H90.196160.858710.062510.0176*
H100.161620.961770.136840.0176*
O110.07343 (11)0.4733 (2)0.0383 (5)0.0280*
O120.02252 (12)0.6459 (2)0.0215 (5)0.0280*
O130.20723 (12)0.7082 (2)0.3239 (4)0.0280*
O140.23727 (12)0.9021 (2)0.3559 (5)0.0280*
O150.11197 (12)0.8383 (2)0.3181 (5)0.0280*
O160.04262 (12)0.9288 (2)0.0762 (4)0.0280*
O170.07035 (10)0.8186 (2)0.2785 (4)0.0280*
H180.086760.823920.426290.0364*
Mg190.000000.93974 (19)0.250000.0202 (7)*
H200.257630.862120.485630.0364*
H210.035400.429420.033250.0364*
Geometric parameters (Å, º)top
C1—C21.519 (3)H10—C41.1165
C1—O111.308 (3)O11—C11.308 (3)
C1—O121.241 (3)O11—H211.011 (3)
C2—C11.519 (3)O12—C11.241 (3)
C2—C31.534 (3)O13—C51.224 (3)
C2—H71.1030O14—C51.296 (3)
C2—H81.060O14—H201.0500
C3—C21.534 (3)O15—C61.247 (3)
C3—C41.538 (3)O16—C61.259 (3)
C3—C61.571 (3)O16—Mg192.058 (3)
C3—O171.425 (3)O16—Mg19i2.096 (3)
C4—C31.538 (3)O17—C31.425 (3)
C4—C51.538 (3)O17—H181.0013
C4—H91.076O17—Mg192.133 (3)
C4—H101.1165H18—O171.0013
C5—C41.538 (3)Mg19—O162.058 (3)
C5—O131.224 (3)Mg19—O16ii2.058 (3)
C5—O141.296 (3)Mg19—O16i2.096 (3)
C6—C31.571 (3)Mg19—O16iii2.096 (3)
C6—O151.247 (3)Mg19—O172.133 (3)
C6—O161.259 (3)Mg19—O17ii2.133 (3)
H7—C21.1030H20—O141.0500
H8—C21.060H21—O111.0110
H9—C41.076
C2—C1—O11113.3 (2)H9—C4—H10106.22
C2—C1—O12119.1 (2)C4—C5—O13119.8 (2)
O11—C1—O12127.5 (3)C4—C5—O14113.1 (2)
C1—C2—C3114.7 (2)O13—C5—O14127.1 (3)
C1—C2—H7108.98O15—C6—O16127.4 (3)
C3—C2—H7110.16C1—O11—H21110.75
C1—C2—H8104.24C5—O14—H20106.25
C3—C2—H8110.07C6—O16—Mg19121.5 (2)
H7—C2—H8108.42C6—O16—Mg19i135.7 (2)
C2—C3—C4109.49 (13)Mg19—O16—Mg19i102.71 (11)
C2—C3—O17110.0 (2)C3—O17—H18115.99
C4—C3—O17112.0 (2)O16—Mg19—O16ii173.29 (19)
C3—C4—C5118.9 (2)O16—Mg19—O16i77.29 (11)
C3—C4—H9109.19O16ii—Mg19—O16i107.49 (12)
C5—C4—H9106.41O16—Mg19—O16iii107.49 (12)
C3—C4—H10109.34O16ii—Mg19—O16iii77.29 (11)
C5—C4—H10106.05O16i—Mg19—O16iii92.92 (17)
Symmetry codes: (i)x,y+2,z; (ii)x,y,z+1/2; (iii)x,y+2,z+3/2.
(II_DFT)top
Crystal datatop
C12H12MgO14c = 5.924466 Å
Mr = 380.13β = 82.5510°
Monoclinic,C2/cV = 1500.25 Å3
a = 23.263806 ÅZ = 4
b = 10.977897 Å
Data collectiontop
h =l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)top
xyzUiso*/Ueq
C10.0666970.5929180.0193700.02800*
C20.1208350.6633660.0404730.01350*
C30.1113560.8003640.0832330.01350*
C40.1695100.8655190.1030420.01350*
C50.2060490.8157400.2764520.02800*
C60.0863580.8587910.1230820.02800*
H70.1418720.6228090.1758200.017600*
H80.1499800.6507940.1184400.017600*
H90.1967710.8596610.0618610.017600*
H100.1616280.9621950.1359880.017600*
O110.0736350.4747120.0419210.02800*
O120.0209390.6417760.0157590.02800*
O130.2106740.7063170.3183310.02800*
O140.2353890.9006760.3697350.02800*
O150.1121960.8384540.3162420.02800*
O160.0419220.9282580.0759280.02800*
O170.0699070.8232530.2798490.02800*
H180.0868500.8232470.4249080.036400*
Mg190.000000.9395970.250000.020200*
H200.2575810.8613950.4849300.036400*
H210.0362020.4288680.0304150.036400*
Hydrogen-bond geometry (Å, º)top
D—H···AD—HH···AD···AD—H···A
O11—H21···O12i1.021.552.567179
O14—H20···O13ii1.011.642.640176
O17—H18···O15iii0.991.722.708174
C4—H9···O13iv1.102.573.580152
C4—H10···O15v1.092.473.522161
Symmetry codes: (i)x,y+1,z; (ii)x+1/2,y+3/2,z+1; (iii)x,y,z+1; (iv)x+1/2,y+3/2,z; (v)x,y+2,z+1/2.
(MGCITD_DFT)top
Crystal datatop
C12H30Mg3O24c = 9.1350 Å
Mr = 631.05β = 96.8600°
Monoclinic,P21/nV = 1226.25 Å3
a = 20.2220 ÅZ = 2
b = 6.6860 Å
Data collectiontop
h =l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)top
xyzUiso*/Ueq
C10.325270.376080.214010.00000*
C20.384510.455770.113290.00000*
C30.367510.345150.039460.00000*
C40.432130.253380.037460.00000*
C50.423980.062350.124130.00000*
C60.315930.382150.071910.00000*
H70.425060.483050.179710.00000*
H80.123160.092040.065040.00000*
H90.105940.284460.020460.00000*
H100.075820.318230.030070.00000*
H110.022250.332900.170640.00000*
H120.135410.441070.183910.00000*
H130.181610.399650.064320.00000*
H140.400110.347530.026850.00000*
H150.463610.216200.048310.00000*
H160.458750.363090.111000.00000*
H170.314840.270050.230490.00000*
H180.215440.096730.187830.00000*
H190.261580.276050.151270.00000*
H200.032180.253220.228590.00000*
H210.087430.087380.242780.00000*
Mg220.000000.000000.000000.00000*
Mg230.281200.000020.038380.00000*
O240.309830.474270.333210.00000*
O250.087580.156990.018820.00000*
O260.042150.240840.094040.00000*
O270.137850.454850.077890.00000*
O280.292110.230460.175950.00000*
O290.473790.000620.208390.00000*
O300.367910.027580.109660.00000*
O310.263750.275330.057380.00000*
O320.328230.487460.171560.00000*
O330.339750.200830.146610.00000*
O340.235960.162520.108190.00000*
O350.040530.110920.206100.00000*
Bond lengths (Å)top
C1—C21.517H6—O40.980
C1—O11.278H7—O40.980
C1—O51.255H11—O100.981
C2—C3i1.549H12—O110.983
C2—H11.092H13—O110.975
C2—H81.090H14—O120.992
C3—C2ii1.549H15—O120.980
C3—C41.536Mg2—O1iii2.069
C3—C61.561Mg2—O52.017
C3—O101.440Mg2—O72.091
C4—C51.522Mg2—O82.086
C4—H91.096Mg2—O102.112
C4—H101.092Mg2—O112.026
C5—O61.262O1—Mg2iv2.069
C5—O71.276O2—Mg12.083
C6—O81.268O3—Mg12.057
C6—O9ii1.264O9—C6i1.264
H2—O20.978O12—Mg12.097
H3—O20.980Mg1—O2v2.083
H4—O30.989Mg1—O3v2.057
H5—O30.981Mg1—O12v2.097
Symmetry codes: (i)x,y+1,z; (ii)x,y1,z; (iii)x+1/2,y1/2,z1/2; (iv)x+1/2,y+1/2,z1/2; (v)x,y,z.
Hydrogen-bond geometry (Å, º)top
D—H···AD—HH···AD···AD—H···A
O35—H21···O320.9801.8682.831171.6
O35—H20···O290.9921.7602.745171.5
O34—H19···O320.9751.9472.877158.8
O34—H18···O320.9831.7982.780175.3
O33—H17···O240.9811.9472.783141.5
O33—H17···O280.9811.9972.986133.1
O27—H13···O310.9801.8652.841173.3
O27—H12···O300.9801.9062.873168.3
O26—H11···O290.9811.7782.750169.8
O26—H10···O270.9891.7562.745177.6
O25—H9···O270.9801.9102.887174.0
O25—H8···O240.9781.9032.880176.2
 

Acknowledgements

Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02–06CH11357. I thank Lynn Ribaud and Saul Lapidus for their assistance in the data collection.

References

First citationAltomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013).J. Appl. Cryst.46, 1231–1235. Web of ScienceCrossRefCASIUCr JournalsGoogle Scholar
First citationBravais, A. (1866).Études Cristallographiques. Paris: Gauthier Villars. Google Scholar
First citationCrystal Impact (2015).DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
First citationDassault Systems (2019).Materials Studio, BIOVIA, San Diego, USA. Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937).Am. Mineral.22, 446–467. CASGoogle Scholar
First citationDovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018).WIREs Comput. Mol. Sci.8, e1360. Google Scholar
First citationDovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005).Z. Kristallogr.220, 571–573. Web of ScienceCrossRefCASGoogle Scholar
First citationFavre-Nicolin, V. & Černý, R. (2002).J. Appl. Cryst.35, 734–743. Web of ScienceCrossRefCASIUCr JournalsGoogle Scholar
First citationFriedel, G. (1907).Bull. Soc. Fr. Mineral.30, 326–455. Google Scholar
First citationGates-Rector, S. & Blanton, T. N. (2019).Powder Diffr.34, 352–360. CASGoogle Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994).J. Chem. Phys.101, 10686–10696. CrossRefCASWeb of ScienceGoogle Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016).Acta Cryst. B72, 171–179. Web of ScienceCrossRefIUCr JournalsGoogle Scholar
First citationHanawalt, J. D., Rinn, H. & Frevel, L. (1938).Ind. Eng. Chem. Anal. Ed.10, 457–512. CrossRefCASGoogle Scholar
First citationJohnson, C. K. (1965).Acta Cryst.18, 1004–1018. CSDCrossRefIUCr JournalsWeb of ScienceGoogle Scholar
First citationLouër, D. & Boultif, A. (2007).Z. Kristallogr. Suppl.26, 191–196. Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020).J. Appl. Cryst.53, 226–235. Web of ScienceCrossRefCASIUCr JournalsGoogle Scholar
First citationMcCarthy, M. I. & Harrison, N. M. (1994).Phys. Rev. B,49, 8574–8582. CrossRefICSDCASWeb of ScienceGoogle Scholar
First citationPeintinger, M. F., Oliveira, D. V. & Bredow, T. (2013).J. Comput. Chem.34, 451–459. Web of ScienceCrossRefCASPubMedGoogle Scholar
First citationRammohan, A. & Kaduk, J. A. (2018).Acta Cryst. B74, 239–252. Web of ScienceCSDCrossRefIUCr JournalsGoogle Scholar
First citationSpek, A. L. (2020).Acta Cryst. E76, 1–11. Web of ScienceCrossRefIUCr JournalsGoogle Scholar
First citationStreek, J. van de & Neumann, M. A. (2014).Acta Cryst. B70, 1020–1032. Web of ScienceCrossRefIUCr JournalsGoogle Scholar
First citationToby, B. H. & Von Dreele, R. B. (2013).J. Appl. Cryst.46, 544–549. Web of ScienceCrossRefCASIUCr JournalsGoogle Scholar
First citationWestrip, S. P. (2010).J. Appl. Cryst.43, 920–925. Web of ScienceCrossRefCASIUCr JournalsGoogle Scholar

This is an open-access article distributed under the terms of theCreative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
E-alerts
Follow Acta Cryst. on Twitter
Twitter
Follow us on facebook
Facebook
Sign up for RSS feeds
RSS


Advanced search
Copyright ©International Union of Crystallography
HomeContact usSite indexAbout usPartners and site creditsHelpTerms of usePrivacy and cookies
The IUCr is a scientific union serving the interests of crystallographers and other scientists employing crystallographic methods.

[8]ページ先頭

©2009-2026 Movatter.jp