2. Structural commentary
Thecrystal structure of (I)
was solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. (Fig. 1
) The root-mean-square Cartesian displacement of the non-hydrogen citrate atoms in the Rietveld refined and DFT-optimized structures is 0.062 Å (Fig. 2
) The absolute difference in the position of the Mg cation in the unit cell is 0.055 Å. The excellent agreement between the structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014
): the rest of the discussion will emphasize the DFT-optimized structure. All of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by aMercury Mogul geometry check (Macraeet al., 2020
). The citrate anion occurs in thetrans, trans-conformation (about C2—C3 and C3—C4, respectively), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018
). The central carboxylate group and the hydroxyl group exhibit a significant twist [O17—C3—C6—O15 = −15.6°] from the normal planar arrangement.
![[Figure 1]](/image.pl?url=https%3a%2f%2fdoi.org%2fhb7927fig1thm.gif&f=jpg&w=240)
| Figure 1 The expanded asymmetric unit of (I) with the atom numbering and 50% probability spheroids. Symmetry-generated atoms [Mg19(x,y,z − 1) and O13(x,y,z + 1)] are linked by dashed bonds. |
![[Figure 2]](/image.pl?url=https%3a%2f%2fdoi.org%2fhb7927fig2thm.gif&f=jpg&w=240)
| Figure 2 Comparison of the refined and optimized structures of (I) . The refined structure is in red, and the DFT-optimized structure is in blue. |
The Mg cation in (I)
is six-coordinate (octahedral); the ligands are three carboxylate oxygen atoms, the citrate hydroxyl group, and twocis water molecules. The Mulliken overlap populations indicate that the Mg—O bonds have significant covalent character. The Mg bond-valence sum is 2.22. The citrate anion triply chelates to the Mg cation through the terminal carboxylate O14, the central carboxylate O15, and the hydroxyl group O17 oxygen atoms.
The Bravais–Friedel–Donnay–Harker (Bravais, 1866
; Friedel, 1907
; Donnay & Harker, 1937
) method suggests that we might expect platy morphology for magnesium hydrogen citrate dihydrate, with {200} as the major faces. A 4th order spherical harmonic model was included in the refinement. The texture index was 1.000 (0), indicating that preferred orientation was not significant in this rotated capillary specimen.
The crystal structure of (II) was solved and refined in the same way (Fig. 3
) The root-mean-square Cartesian displacement of the non-hydrogen citrate atoms in the Rietveld refined and DFT-optimized structures is 0.043 Å (Fig. 4
). The excellent agreement between the structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014
) and this discussion will emphasize the DFT-optimized structure. All of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by aMercury Mogul geometry check (Macraeet al., 2020
). The citrate anion occurs in thetrans, gauche-conformation (about C2—C3 and C3—C4, respectively), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018
). The central carboxylate group and the hydroxyl group exhibit a significant twist [O17—C3—C6—O16 = 10.6°] from the normal planar arrangement.
![[Figure 3]](/image.pl?url=https%3a%2f%2fdoi.org%2fhb7927fig3thm.gif&f=jpg&w=240)
| Figure 3 The asymmetric unit of (II) with the atom numbering and 50% probability spheroids. |
![[Figure 4]](/image.pl?url=https%3a%2f%2fdoi.org%2fhb7927fig4thm.gif&f=jpg&w=240)
| Figure 4 Comparison of the refined and optimized structures of (II). The refined structure is in red, and the DFT-optimized structure is in blue. |
The magnesium cation in (II) is six-coordinate (octahedral) and resides on a twofold axis; the ligands are twocis hydroxyl groups and 4 central carboxylate groups O16. Ionizing the central carboxylate group of citric acid first is the normal pattern (Rammohan & Kaduk, 2018
). The Mulliken overlap populations indicate that the Mg—O bonds have significant covalent character and the Mg bond-valence sum is 2.12. The citrate anion doubly chelates to the Mg cation through the hydroxyl group O17 and the central carboxylate group O16.
The Bravais–Friedel–Donnay–Harker method suggests that we might expect elongated morphology for crystals of (II), with [001] as the long axis. A 2nd order spherical harmonic model was included in the refinement. The texture index was 1.004 (0), indicating that preferred orientation was not significant in this rotated capillary specimen.
The root-mean-square Cartesian displacement of the non-hydrogen atoms in the reported and DFT-optimized structures of magnesium citrate decahydrate (MGCITD), [Mg(H2O)6][Mg(C6H5O7)(H2O)]2(H2O)2 are 0.016 Å for thehexaaqua cation and 0.030 Å for the citrate complex, confirming the excellent quality of the Johnson (1965
) single-crystal structure. The citrate anion occurs in thetrans, trans conformation. In Group 1 citrates, thetrans, gauche conformation is more common for salts of the smaller alkali metals, and thetrans, trans conformation is prevalent for the larger cations. Already with three Mg citrates, we see that the structures are more complicated. The torsion angle between the hydroxyl group and the central carboxylate is only −4.8°. The citrate triply chelates to a Mg through the hydroxyl group, the central carboxylate group, and one of the terminal carboxylate groups.
5. Synthesis and crystallization
To prepare (I)
, magnesium hydrogen citrate dihydrate was synthesized by dissolving 2.0798 g (10.0 mmol) of H3C6H5O7(H2O) in 10 ml of water, and adding 0.8427 g (10.0 mmol) of `MgCO3' to the clear solution [the magnesium carbonate reagent was actually Mg5(CO3)4(OH)2]. After slow fizzing, a clear colorless solution was obtained. This solution was dried in a 333 K oven to yield (I)
as a white solid.
Compound (II) was obtained from the scale [94.5 (1) wt% magnesian calcite Ca0.84Mg0.16CO3, 5.3 (4) wt% brucite Mg(OH)2, and 0.2 (1) wt% vaterite polymorph of CaCO3] in a Megahome water still. The still was cleaned by filling the tank with tap water (from Lake Michigan), adding several tablespoons of citric acid monohydrate, and boiling for ∼2 h. The pale-yellow solution was decanted into a plastic pail, and allowed to evaporate at ambient conditions. Over five months, several white solids (calcium citrates, which will be discussed in another paper) crystallized, and were isolated. After five months, a clear yellow syrup remained. This was dried at 423 K to yield (II) as a white powder.
6. Refinement
Crystal data, data collection and structurerefinement details for (I)
are summarized in Table 3
. A laboratory powder pattern, measured using CuKα radiation, was indexed usingDICVOL (Louër & Boultif, 2007
) as incorporated intoFOX (Favre-Nicolin & Černý, 2002
) on a primitive orthorhombic cell witha = 26.9042 (24),b = 5.9323 (4),c = 6.1649 (5) Å,V = 985.27 (17) Å3, andZ = 4. Attempts to solve the structure with multiple programs using the laboratory data were unsuccessful. The powder pattern measured at 11-BM using a wavelength of 0.413070 Å was indexed on a primitive orthorhombic cell withDICVOL as incorporated intoFOX:a = 26.91159 (14),b = 5.92442 (2),c = 6.15170 (2) Å,V = 980.800 (7) Å3, andZ = 4. TheSpace Group Explorer suggestedPna21, which was confirmed by successful solution and refinement of the structure. The structure was solved using Monte Carlo-simulated annealing techniques as implemented inFOX. The scatterers were a citrate anion, a Mg atom, and two O atoms (water molecules). In the best solution, one of the water molecules was too close to a carboxylate oxygen atom, and was discarded. The Mg coordination was 5/6 of an octahedron, so the second water molecule was placed manually usingMaterials Studio (Dassault Systems, 2019
).
| | (I) | (II) |
|---|
| Crystal data | | Chemical formula | Mg2+·C6H6O72−·2H2O | Mg(H2C6H5O7)2 | | Mr | 250.44 | 380.13 | | Crystal system, space group | Orthorhombic,Pna21 | Monoclinic,C2/c | | Temperature (K) | 295 | 295 | | a,b,c (Å) | 26.91181 (13), 5.924517 (17), 6.151787 (18) | 23.26381 (16), 10.97790 (4), 5.924466 (18) | | α,β,γ (°) | 90, 90, 90 | 90, 82.5511 (3), 90 | | V (Å3) | 980.84 (1) | 1500.267 (6) | | Z | 4 | 4 | | Radiation type | Synchrotron,λ = 0.41307 Å | Synchrotron,λ = 0.41307 Å | | Specimen shape, size (mm) | Cylinder, 3.0 × 1.5 | Cylinder, 3.0 × 1.5 | | | | Data collection | | Diffractometer | APS 11-BM | 11-BM APS | | Specimen mounting | Kapton capillary | Kapton capillary | | Data collection mode | Transmission | Transmission | | Data collection method | Step | Step | | θ values (°) | 2θmin = 0.500 2θmax = 49.991 2θstep = 0.001 | 2θmin = 0.500 2θmax = 49.991 2θstep = 0.001 | | | | Refinement | | R factors and goodness of fit | Rp = 0.086,Rwp = 0.110,Rexp = 0.060,χ2 = 3.486 | Rp = 0.098,Rwp = 0.120,Rexp = 0.083,χ2 = 2.16 | | No. of parameters | 76 | 60 | | No. of restraints | 29 | – | Computer programs:FOX (Favre-Nicolin & Černý, 2002 ),GSAS-II (Toby & Von Dreele, 2013 ),Mercury (Macraeet al., 2020 ),DIAMOND (Crystal Impact, 2015 ),publCIF (Westrip, 2010 ).
|
|
The structure of (I)
was refined by theRietveld method usingGSAS-II (Toby & Von Dreele, 2013
) (Fig. 8
). The initial refinement clarified the presence of extra peaks, which were identified as citric acid (02-061-2110; CITRAC10), which was added as a second phase; its concentration refined to 12.2 wt%. A few very weak peaks indicate the presence of an unidentified impurity. Analysis of potential hydrogen bonding usingMercury (Macraeet al., 2020
) made it possible to determine approximate positions for the hydroxyl hydrogen atom H18 and the four water molecule hydrogen atoms. The C1—O12 bond was longer than the other carboxylate distances, and the O12⋯O16i distance was 2.62 Å, making it clear that H26, the proton of the un-ionized carboxyl group, was located on O12. All heavy-atom bond distances and angles of the citrate anion were restrained: C1—C2 = C4—C5 = 1.51 (3), C2—C3 = C3—C4 = 1.54 (3), C3—C6 = 1.55 (3), C3—O17 = 1.42 (3), C1—O11 = 1.22 (3), C1—O12 = 1.32 (3), and the C—O of the ionized carboxylate groups = 1.27 (3) Å, C1—C2—C3 = C3—C4—C5 = 115 (3), the angles around C3 = 109.5 (3), the O—C—C angles of the carboxylate groups = 115 (3), and the O—C—O angles of the carboxylate groups = 130 (3)°. The restraints contributed 1.5% to the finalχ2. The hydrogen atoms were included in fixed positions, which were re-calculated during the course of the refinement usingMaterials Studio. TheUiso values of C2, C3, and C4 were constrained to be equal, and those of H7, H8, H9, and H10 were constrained to be 1.3× that of these carbon atoms. TheUiso values of C1, C5, C6, and the oxygen atoms were constrained to be equal, and that of H18 was constrained to be 1.3× this value. TheUiso values of the O atoms of the water molecules were constrained to be equal, and theUiso values of their H atoms to be 1.3× this value. The background was described by a four-term shifted Chebyshev polynomial, with a peak at 10.84° to describe the scattering from the Kapton capillary and any amorphous component.
![[Figure 8]](/image.pl?url=https%3a%2f%2fdoi.org%2fhb7927fig8thm.gif&f=jpg&w=240)
| Figure 8 Rietveld plot for (I) . The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The vertical scale has been multiplied by a factor of 5× for 2θ > 10.0°, and by a factor of 20× for 2θ > 15.0°. The row of blue tick marks indicates the calculated reflection positions, and the red tick marks indicate the peak positions for the citric acid impurity. The red line is the background curve. |
A density functional geometry optimization for (I)
(fixed experimental unit cell) was carried out usingCRYSTAL09 (Dovesiet al., 2005
). The basis sets for the H, C, N, and O atoms were those of Gattiet al. (1994
), and the basis set for Mg was that of McCarthy & Harrison (1994
). The calculation used 8k-points and the B3LYP functional, and took around four days on a 2.4 GHz PC.
Crystal data, data collection and structure refinement details for (II) are summarized in Table 3
. It proved difficult to index the laboratory pattern, though the correct cell was included in hits found byDICVOL06 (Louër & Boultif, 2007
). The synchrotron pattern was indexed on a primitive monoclinic unit cell withN-TREOR (Altomareet al., 2013
):a = 23.24984 (8),b = 10.97779 (3),c = 5.92449 (1) Å,β = 979.1860 (2)°,V = 1500.241 (8) Å3, andZ = 4. Thesystematic absences unambiguously determined thespace group asP21/c The structure was solved bydirect methods usingEXPO2009 (Altomareet al., 2013
), assuming that it was a Ca salt. During the refinement, the electron density at the metal site and the metal–oxygen bond distances made it clear that it was a Mg salt rather than a Ca compound.
The structure was refined by the Rietveld method usingGSAS-II (Toby & Von Dreele, 2013
) (Fig. 9
). Analysis of the refined structure usingPLATON (Spek, 2020
) and the Find Symmetry module ofMaterials Studio (Dassault Systems, 2019
) suggested the presence of extra symmetry, and that the true space group wasC2/c (transformation matrix 1 0 1 / 0
0 / 0 0
). The structure was re-refined in this space group, using the strategy described above for (I)
. The position of the peak in the background was 5.37°.
![[Figure 9]](/image.pl?url=https%3a%2f%2fdoi.org%2fhb7927fig9thm.gif&f=jpg&w=240)
| Figure 9 Rietveld plot for (II). The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The vertical scale has been multiplied by a factor of 2× for 2θ > 3.0°, by a factor of 10× for 2θ > 12.0°, and by a factor of 40× for 2θ > 17.0°. The row of blue tick marks indicates the calculated reflection positions. The red line is the background curve. |
A density functional geometry optimization for (II) (fixed experimental unit cell) was carried out usingCRYSTAL17 (Dovesiet al., 2018
). The basis sets for the H, C, N, and O atoms were those of Gattiet al. (1994
), and the basis set for Mg was that of Peintingeret al. (2013
). The calculation used 8k-points and the B3LYP functional, and took ∼15 h on a 3.54 GHz PC.
A density functional geometry optimization (fixed experimental unit cell) of the structure of magnesium citrate decahydrate (MGCITD) was carried out usingCRYSTAL09 (Dovesiet al., 2005
). The basis sets for the H, C, N, and O atoms were those of Gattiet al. (1994
), and the basis set for Mg was that of McCarthy & Harrison (1994
). The calculation used 8k-points and the B3LYP functional, and took 11 days on a 2.4 GHz PC.
Supporting information
Program(s) used to refine structure:GSAS-II (Toby & Von Dreele, 2013) for (II).
magnesium hydrogen citrate dihydrate (I)
topCrystal datatop| Mg2+·C6H6O72−·2H2O | V = 980.84 (1) Å3 |
| Mr = 250.44 | Z = 4 |
| Orthorhombic,Pna21 | Dx = 1.696 Mg m−3 |
| a = 26.91181 (13) Å | Synchrotron radiation |
| b = 5.924517 (17) Å | T = 295 K |
| c = 6.151787 (18) Å | cylinder, 3.0 × 1.5 mm |
Data collectiontopAPS 11-BM diffractometer | Data collection mode: transmission |
| Specimen mounting: Kapton capillary | Scan method: step |
Refinementtop| Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, G/L mix 19.594, 2586.054, 2128.049, 48.827, -44.218, 6452.631, 1.000, | Preferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,0) = 0.025(4); 0:0:C(2,2) = -0.025(5) |
| 29 restraints | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)top | x | y | z | Uiso*/Ueq | |
| C1 | 0.48943 (13) | 0.7789 (8) | 0.55610 | 0.0202 (4)* | |
| C2 | 0.46229 (15) | 0.7167 (7) | 0.3481 (7) | 0.0103 (9)* | |
| C3 | 0.40501 (13) | 0.7286 (6) | 0.3574 (9) | 0.0103* | |
| C4 | 0.38562 (14) | 0.7010 (7) | 0.1229 (9) | 0.0103* | |
| C5 | 0.32959 (12) | 0.6702 (9) | 0.0955 (9) | 0.0202* | |
| C6 | 0.38764 (16) | 0.9591 (6) | 0.4509 (10) | 0.0202* | |
| H7 | 0.47783 | 0.80849 | 0.21591 | 0.0133* | |
| H8 | 0.47190 | 0.53629 | 0.31678 | 0.0133* | |
| H9 | 0.39783 | 0.84023 | 0.00853 | 0.0133* | |
| H10 | 0.40434 | 0.55040 | 0.03933 | 0.0133* | |
| O11 | 0.46605 (12) | 0.8354 (7) | 0.7185 (7) | 0.0202* | |
| O12 | 0.53720 (11) | 0.7677 (6) | 0.5337 (8) | 0.0202* | |
| O13 | 0.31529 (12) | 0.6138 (6) | −0.0898 (9) | 0.0202* | |
| O14 | 0.30170 (12) | 0.6980 (6) | 0.2576 (9) | 0.0202* | |
| O15 | 0.35114 (12) | 0.9501 (5) | 0.5750 (9) | 0.0202* | |
| O16 | 0.40759 (12) | 1.1313 (6) | 0.3708 (9) | 0.0202* | |
| O17 | 0.38526 (12) | 0.5579 (5) | 0.4951 (9) | 0.0202* | |
| H18 | 0.39334 | 0.40298 | 0.44299 | 0.0263* | |
| Mg19 | 0.31438 (7) | 0.6445 (3) | 0.5864 (8) | 0.0152 (5)* | |
| O20 | 0.24223 (12) | 0.7558 (5) | 0.6155 (10) | 0.0183 (8)* | |
| O21 | 0.29100 (11) | 0.3095 (5) | 0.5592 (9) | 0.0183* | |
| H22 | 0.22860 | 0.77371 | 0.75942 | 0.0238* | |
| H23 | 0.22652 | 0.87428 | 0.52100 | 0.0238* | |
| H24 | 0.31432 | 0.18972 | 0.57251 | 0.0238* | |
| H25 | 0.25819 | 0.26280 | 0.61541 | 0.0238* | |
| H26 | 0.55280 | 0.81813 | 0.67454 | 0.0263* | |
Geometric parameters (Å, º)top| C1—C2 | 1.519 (4) | O13—C5 | 1.249 (4) |
| C1—O11 | 1.227 (4) | O13—Mg19i | 2.000 (4) |
| C1—O12 | 1.294 (3) | O14—C5 | 1.259 (4) |
| C2—C1 | 1.519 (4) | O14—Mg19 | 2.075 (4) |
| C2—C3 | 1.544 (4) | O15—C6 | 1.245 (4) |
| C2—H7 | 1.064 | O15—Mg19 | 2.065 (3) |
| C2—H8 | 1.117 | O16—C6 | 1.254 (4) |
| C3—C2 | 1.544 (4) | O17—C3 | 1.423 (4) |
| C3—C4 | 1.543 (4) | O17—H18 | 0.996 |
| C3—C6 | 1.553 (4) | O17—Mg19 | 2.054 (4) |
| C3—O17 | 1.423 (4) | H18—O17 | 0.996 (3) |
| C4—C3 | 1.543 (4) | Mg19—O13ii | 2.000 (4) |
| C4—C5 | 1.528 (4) | Mg19—O14 | 2.075 (4) |
| C4—H9 | 1.133 | Mg19—O15 | 2.065 (3) |
| C4—H10 | 1.147 | Mg19—O17 | 2.054 (4) |
| C5—C4 | 1.528 (4) | Mg19—O20 | 2.059 (4) |
| C5—O13 | 1.249 (4) | Mg19—O21 | 2.089 (3) |
| C5—O14 | 1.259 (4) | O20—Mg19 | 2.059 (4) |
| C6—C3 | 1.553 (4) | O20—H22 | 0.964 |
| C6—O15 | 1.245 (4) | O20—H23 | 1.005 |
| C6—O16 | 1.254 (4) | O21—Mg19 | 2.089 (3) |
| H7—C2 | 1.064 | O21—H24 | 0.9507 |
| H8—C2 | 1.117 | O21—H25 | 0.988 |
| H9—C4 | 1.133 | H22—O20 | 0.964 |
| H10—C4 | 1.147 | H23—O20 | 1.005 |
| O11—C1 | 1.227 (4) | H24—O21 | 0.950 |
| O12—C1 | 1.294 (3) | H25—O21 | 0.988 |
| O12—H26 | 1.008 | H26—O12 | 1.008 |
| | | |
| C2—C1—O11 | 120.4 (3) | C5—O13—Mg19i | 152.7 (4) |
| C2—C1—O12 | 112.0 (3) | C5—O14—Mg19 | 130.8 (3) |
| O11—C1—O12 | 127.6 (3) | C6—O15—Mg19 | 115.9 (3) |
| C1—C2—C3 | 115.9 (3) | C3—O17—H18 | 112.5 |
| C1—C2—H7 | 109.3 | C3—O17—Mg19 | 109.4 (2) |
| C3—C2—H7 | 113.4 | H18—O17—Mg19 | 121.41 |
| C1—C2—H8 | 105.4 | O13ii—Mg19—O14 | 170.49 (17) |
| C3—C2—H8 | 106.3 | O13ii—Mg19—O15 | 96.18 (18) |
| H7—C2—H8 | 105.5 | O14—Mg19—O15 | 84.94 (17) |
| C2—C3—C4 | 107.3 (3) | O13ii—Mg19—O17 | 103.79 (17) |
| C2—C3—C6 | 110.8 (3) | O14—Mg19—O17 | 85.67 (16) |
| C4—C3—C6 | 109.7 (3) | O15—Mg19—O17 | 76.40 (14) |
| C2—C3—O17 | 111.3 (3) | O13ii—Mg19—O20 | 87.36 (17) |
| C4—C3—O17 | 110.8 (3) | O14—Mg19—O20 | 83.15 (17) |
| C6—C3—O17 | 107.0 (3) | O15—Mg19—O20 | 100.02 (15) |
| C3—C4—C5 | 116.7 (3) | O17—Mg19—O20 | 168.5 (2) |
| C3—C4—H9 | 113.9 | O13ii—Mg19—O21 | 89.83 (17) |
| C5—C4—H9 | 107.7 | O14—Mg19—O21 | 91.01 (19) |
| C3—C4—H10 | 110.7 | O15—Mg19—O21 | 167.16 (18) |
| C5—C4—H10 | 106.9 | O17—Mg19—O21 | 91.17 (15) |
| H9—C4—H10 | 99.2 | O20—Mg19—O21 | 91.56 (15) |
| C4—C5—O13 | 115.9 (3) | Mg19—O20—H22 | 118.30 |
| C4—C5—O14 | 119.0 (3) | Mg19—O20—H23 | 124.8 |
| O13—C5—O14 | 125.1 (3) | H22—O20—H23 | 107.1 |
| C3—C6—O15 | 115.3 (3) | Mg19—O21—H24 | 120.21 |
| C3—C6—O16 | 116.2 (3) | Mg19—O21—H25 | 120.48 |
| O15—C6—O16 | 127.8 (3) | H24—O21—H25 | 110.6 |
| C1—O12—H26 | 107.9 | | |
| Symmetry codes: (i)x,y,z−1; (ii)x,y,z+1. |
Crystal datatop| C6H10MgO9 | b = 5.9244 Å |
| Mr = 250.44 | c = 6.1517 Å |
| Orthorhombic,Pna21 | V = 980.80 Å3 |
| a = 26.9116 Å | Z = 4 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)top | x | y | z | Uiso*/Ueq | |
| C1 | 0.48690 | 0.78384 | 0.55610 | 0.03000* | |
| C2 | 0.46156 | 0.71131 | 0.34896 | 0.03000* | |
| C3 | 0.40476 | 0.72893 | 0.34810 | 0.03000* | |
| C4 | 0.38635 | 0.69837 | 0.11128 | 0.03000* | |
| C5 | 0.33073 | 0.66732 | 0.08379 | 0.03000* | |
| C6 | 0.38608 | 0.95837 | 0.43867 | 0.03000* | |
| H7 | 0.47783 | 0.80849 | 0.21591 | 0.039000* | |
| H8 | 0.47190 | 0.53629 | 0.31678 | 0.039000* | |
| H9 | 0.39783 | 0.84023 | 0.00853 | 0.039000* | |
| H10 | 0.40434 | 0.55040 | 0.03933 | 0.039000* | |
| O11 | 0.46603 | 0.86068 | 0.71575 | 0.03000* | |
| O12 | 0.53597 | 0.75370 | 0.54317 | 0.03000* | |
| O13 | 0.31511 | 0.59826 | −0.09886 | 0.03000* | |
| O14 | 0.30103 | 0.70296 | 0.24037 | 0.03000* | |
| O15 | 0.34967 | 0.95455 | 0.57014 | 0.03000* | |
| O16 | 0.40589 | 1.13578 | 0.36647 | 0.03000* | |
| O17 | 0.38352 | 0.55877 | 0.48700 | 0.03000* | |
| H18 | 0.39334 | 0.40298 | 0.44299 | 0.039000* | |
| Mg19 | 0.31266 | 0.64580 | 0.57726 | 0.03000* | |
| O20 | 0.24313 | 0.76390 | 0.61354 | 0.03000* | |
| O21 | 0.28934 | 0.31025 | 0.54282 | 0.03000* | |
| H22 | 0.22860 | 0.77371 | 0.75942 | 0.039000* | |
| H23 | 0.22652 | 0.87428 | 0.52100 | 0.039000* | |
| H24 | 0.31432 | 0.18972 | 0.57251 | 0.039000* | |
| H25 | 0.25819 | 0.26280 | 0.61541 | 0.039000* | |
| H26 | 0.55280 | 0.81813 | 0.67454 | 0.039000* | |
Hydrogen-bond geometry (Å, º)top| D—H···A | D—H | H···A | D···A | D—H···A |
| O12—H26···O16i | 1.00 | 1.64 | 2.614 | 161 |
| O17—H18···O16ii | 1.00 | 1.69 | 2.682 | 176 |
| O20—H22···O21iii | 0.98 | 1.82 | 2.795 | 171 |
| O20—H23···O13iii | 0.98 | 1.89 | 2.844 | 166 |
| O21—H24···O15ii | 1.00 | 1.69 | 2.666 | 166 |
| O21—H25···O14iv | 0.99 | 1.81 | 2.792 | 174 |
| Symmetry codes: (i)−x+1,−y+2,z+1/2; (ii)x,y−1,z; (iii)−x+1/2,y+1/2,z+1/2; (iv)−x+1/2,y−1/2,z+1/2. |
Crystal datatop| C6H8O7 | β = 111.2291 (14)° |
| Mr = 192.12 | V = 770.06 (2) Å3 |
| Monoclinic,P21/a | Z = 4 |
| a = 12.8139 (7) Å | Dx = 1.657 Mg m−3 |
| b = 5.62177 (11) Å | T = 295 K |
| c = 11.4681 (6) Å | |
Refinementtop| Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 2.57(4)e3, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)top | x | y | z | Uiso*/Ueq | |
| C1 | 0.08920 | −0.54280 | 0.39950 | 0.025* | |
| C2 | 0.15990 | −0.56050 | 0.32070 | 0.025* | |
| C3 | 0.16260 | −0.80550 | 0.26120 | 0.025* | |
| C4 | 0.24750 | −0.79220 | 0.19560 | 0.025* | |
| C5 | 0.26980 | −1.03280 | 0.15150 | 0.025* | |
| C6 | 0.04560 | −0.86720 | 0.16750 | 0.025* | |
| H1 | 0.13730 | −0.43320 | 0.25620 | 0.025* | |
| H2 | 0.23180 | −0.52200 | 0.37470 | 0.025* | |
| H3 | 0.22140 | −0.68820 | 0.12140 | 0.025* | |
| H4 | 0.31830 | −0.72800 | 0.25370 | 0.025* | |
| H5 | 0.02820 | −0.31480 | 0.49180 | 0.025* | |
| H6 | 0.38460 | −1.22410 | 0.16410 | 0.025* | |
| H7 | −0.05570 | −0.76850 | 0.01350 | 0.025* | |
| H8 | 0.14360 | −1.03130 | 0.36590 | 0.025* | |
| O1 | 0.07850 | −0.32830 | 0.43520 | 0.025* | |
| O2 | 0.04560 | −0.71880 | 0.42820 | 0.025* | |
| O3 | 0.37730 | −1.07600 | 0.18790 | 0.025* | |
| O4 | 0.19930 | −1.17200 | 0.09030 | 0.025* | |
| O5 | 0.01470 | −0.72840 | 0.06840 | 0.025* | |
| O6 | −0.01090 | −1.02400 | 0.18460 | 0.025* | |
| O7 | 0.20030 | −0.98600 | 0.35170 | 0.025* | |
Geometric parameters (Å, º)top| C1—C2 | 1.4967 | H1—H2 | 1.5397 |
| C1—O1 | 1.2966 | H2—C2 | 0.9306 |
| C1—O2 | 1.2380 | H2—H1 | 1.5397 |
| C2—C1 | 1.4967 | H3—C4 | 0.9857 |
| C2—C3 | 1.5430 | H3—H4 | 1.5904 |
| C2—H1 | 0.994 | H4—C4 | 0.9795 |
| C2—H2 | 0.9306 | H4—H3 | 1.5904 |
| C3—C2 | 1.5430 | H5—O1 | 1.0703 |
| C3—C4 | 1.5322 | H6—O3 | 0.8916 |
| C3—C6 | 1.5349 | H7—O5 | 0.9218 |
| C3—O7 | 1.4061 | H8—O7 | 0.8396 |
| C4—C3 | 1.5322 | O1—C1 | 1.2966 |
| C4—C5 | 1.5072 | O1—H5 | 1.0703 |
| C4—H3 | 0.9857 | O2—C1 | 1.2380 |
| C4—H4 | 0.9795 | O3—C5 | 1.3093 |
| C5—C4 | 1.5072 | O3—H6 | 0.8916 |
| C5—O3 | 1.3093 | O4—C5 | 1.2091 |
| C5—O4 | 1.2091 | O5—C6 | 1.3158 |
| C6—C3 | 1.5349 | O5—H7 | 0.9218 |
| C6—O5 | 1.3158 | O6—C6 | 1.2010 |
| C6—O6 | 1.2010 | O7—C3 | 1.4061 |
| H1—C2 | 0.994 | O7—H8 | 0.8396 |
| | | |
| C2—C1—O1 | 114.13 | C3—C4—H3 | 111.932 |
| C2—C1—O2 | 122.512 | C5—C4—H3 | 106.793 |
| O1—C1—O2 | 123.357 | C3—C4—H4 | 109.352 |
| C1—C2—C3 | 116.215 | C5—C4—H4 | 108.511 |
| C1—C2—H1 | 108.935 | H3—C4—H4 | 108.048 |
| C3—C2—H1 | 111.145 | C4—C5—O3 | 111.401 |
| C1—C2—H2 | 104.631 | C4—C5—O4 | 125.664 |
| C3—C2—H2 | 109.06 | O3—C5—O4 | 122.935 |
| H1—C2—H2 | 106.214 | C3—C6—O5 | 112.508 |
| C2—C3—C4 | 107.888 | C3—C6—O6 | 123.044 |
| C2—C3—C6 | 109.796 | O5—C6—O6 | 124.445 |
| C4—C3—C6 | 110.76 | C1—O1—H5 | 114.406 |
| C2—C3—O7 | 111.993 | C5—O3—H6 | 106.888 |
| C4—C3—O7 | 106.402 | C6—O5—H7 | 111.033 |
| C6—C3—O7 | 109.943 | C3—O7—H8 | 105.778 |
| C3—C4—C5 | 112.058 | | |
Magnesium bis(dihydrogen citrate) (II)
topCrystal datatop| Mg2+·2C6H7O7− | V = 1500.27 (1) Å3 |
| Mr = 406.53 | Z = 4 |
| Monoclinic,C2/c | Dx = 1.800 Mg m−3 |
| a = 23.26381 (16) Å | Synchrotron radiation,λ = 0.41307 Å |
| b = 10.97790 (4) Å | T = 295 K |
| c = 5.924466 (18) Å | white |
| β = 82.5511 (3)° | cylinder, 3.0 × 1.5 mm |
Data collectiontopAPS 11-BM diffractometer | Scan method: step |
| Specimen mounting: Kapton capillary | 2θmin = 0.500°, 2θmax = 49.991°, 2θstep = 0.001° |
| Data collection mode: transmission | |
Refinementtop| Least-squares matrix: full | Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance(Gauss) = Utan(Th)2+Vtan(Th)+W: peak HW(Lorentz) = X/cos(Th)+Ytan(Th); SH/L = S/L+H/L U, V, W in (centideg)2, X & Y in centideg 1.163, -0.126, 0.063, 0.000, 0.000, 0.002, Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "uniaxial" model (106 * delta Q/Q) anisotropic axis is [0, 0, 1] parameters: equatorial mustrain, axial mustrain, G/L mix 1556(11), 880(8), 1.000, |
| Rp = 0.098 | 60 parameters |
| Rwp = 0.120 | H-atom parameters not defined? |
| Rexp = 0.083 | (Δ/σ)max = 2.829 |
| R(F2) = 0.08746 | Background function: Background function: "chebyschev-1" function with 4 terms: 75.08(16), -28.81(26), 8.70(18), -4.70(14), Background peak parameters: pos, int, sig, gam: 5.370(17), 7.52(18)e4, 6.02(27)e3, 0.100, |
| 49492 data points | Preferred orientation correction: Simple spherical harmonic correction Order = 2 Coefficients: 0:0:C(2,-2) = -0.0720(26); 0:0:C(2,0) = 0.039(4); 0:0:C(2,2) = 0.1089(29) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)top | x | y | z | Uiso*/Ueq | |
| C1 | 0.06727 (13) | 0.5905 (3) | 0.0107 (8) | 0.0280 (4)* | |
| C2 | 0.12138 (12) | 0.6630 (3) | 0.0408 (6) | 0.0135 (7)* | |
| C3 | 0.11122 (10) | 0.7998 (2) | 0.0807 (5) | 0.0135* | |
| C4 | 0.16939 (14) | 0.8630 (3) | 0.0995 (5) | 0.0135* | |
| C5 | 0.20688 (16) | 0.8168 (3) | 0.2773 (6) | 0.0280* | |
| C6 | 0.08530 (15) | 0.8589 (3) | −0.1256 (5) | 0.0280* | |
| H7 | 0.14177 | 0.62313 | 0.18170 | 0.0176* | |
| H8 | 0.14929 | 0.64867 | −0.11299 | 0.0176* | |
| H9 | 0.19616 | 0.85871 | −0.06251 | 0.0176* | |
| H10 | 0.16162 | 0.96177 | 0.13684 | 0.0176* | |
| O11 | 0.07343 (11) | 0.4733 (2) | 0.0383 (5) | 0.0280* | |
| O12 | 0.02252 (12) | 0.6459 (2) | −0.0215 (5) | 0.0280* | |
| O13 | 0.20723 (12) | 0.7082 (2) | 0.3239 (4) | 0.0280* | |
| O14 | 0.23727 (12) | 0.9021 (2) | 0.3559 (5) | 0.0280* | |
| O15 | 0.11197 (12) | 0.8383 (2) | −0.3181 (5) | 0.0280* | |
| O16 | 0.04262 (12) | 0.9288 (2) | −0.0762 (4) | 0.0280* | |
| O17 | 0.07035 (10) | 0.8186 (2) | 0.2785 (4) | 0.0280* | |
| H18 | 0.08676 | 0.82392 | 0.42629 | 0.0364* | |
| Mg19 | 0.00000 | 0.93974 (19) | 0.25000 | 0.0202 (7)* | |
| H20 | 0.25763 | 0.86212 | 0.48563 | 0.0364* | |
| H21 | 0.03540 | 0.42942 | 0.03325 | 0.0364* | |
Geometric parameters (Å, º)top| C1—C2 | 1.519 (3) | H10—C4 | 1.1165 |
| C1—O11 | 1.308 (3) | O11—C1 | 1.308 (3) |
| C1—O12 | 1.241 (3) | O11—H21 | 1.011 (3) |
| C2—C1 | 1.519 (3) | O12—C1 | 1.241 (3) |
| C2—C3 | 1.534 (3) | O13—C5 | 1.224 (3) |
| C2—H7 | 1.1030 | O14—C5 | 1.296 (3) |
| C2—H8 | 1.060 | O14—H20 | 1.0500 |
| C3—C2 | 1.534 (3) | O15—C6 | 1.247 (3) |
| C3—C4 | 1.538 (3) | O16—C6 | 1.259 (3) |
| C3—C6 | 1.571 (3) | O16—Mg19 | 2.058 (3) |
| C3—O17 | 1.425 (3) | O16—Mg19i | 2.096 (3) |
| C4—C3 | 1.538 (3) | O17—C3 | 1.425 (3) |
| C4—C5 | 1.538 (3) | O17—H18 | 1.0013 |
| C4—H9 | 1.076 | O17—Mg19 | 2.133 (3) |
| C4—H10 | 1.1165 | H18—O17 | 1.0013 |
| C5—C4 | 1.538 (3) | Mg19—O16 | 2.058 (3) |
| C5—O13 | 1.224 (3) | Mg19—O16ii | 2.058 (3) |
| C5—O14 | 1.296 (3) | Mg19—O16i | 2.096 (3) |
| C6—C3 | 1.571 (3) | Mg19—O16iii | 2.096 (3) |
| C6—O15 | 1.247 (3) | Mg19—O17 | 2.133 (3) |
| C6—O16 | 1.259 (3) | Mg19—O17ii | 2.133 (3) |
| H7—C2 | 1.1030 | H20—O14 | 1.0500 |
| H8—C2 | 1.060 | H21—O11 | 1.0110 |
| H9—C4 | 1.076 | | |
| | | |
| C2—C1—O11 | 113.3 (2) | H9—C4—H10 | 106.22 |
| C2—C1—O12 | 119.1 (2) | C4—C5—O13 | 119.8 (2) |
| O11—C1—O12 | 127.5 (3) | C4—C5—O14 | 113.1 (2) |
| C1—C2—C3 | 114.7 (2) | O13—C5—O14 | 127.1 (3) |
| C1—C2—H7 | 108.98 | O15—C6—O16 | 127.4 (3) |
| C3—C2—H7 | 110.16 | C1—O11—H21 | 110.75 |
| C1—C2—H8 | 104.24 | C5—O14—H20 | 106.25 |
| C3—C2—H8 | 110.07 | C6—O16—Mg19 | 121.5 (2) |
| H7—C2—H8 | 108.42 | C6—O16—Mg19i | 135.7 (2) |
| C2—C3—C4 | 109.49 (13) | Mg19—O16—Mg19i | 102.71 (11) |
| C2—C3—O17 | 110.0 (2) | C3—O17—H18 | 115.99 |
| C4—C3—O17 | 112.0 (2) | O16—Mg19—O16ii | 173.29 (19) |
| C3—C4—C5 | 118.9 (2) | O16—Mg19—O16i | 77.29 (11) |
| C3—C4—H9 | 109.19 | O16ii—Mg19—O16i | 107.49 (12) |
| C5—C4—H9 | 106.41 | O16—Mg19—O16iii | 107.49 (12) |
| C3—C4—H10 | 109.34 | O16ii—Mg19—O16iii | 77.29 (11) |
| C5—C4—H10 | 106.05 | O16i—Mg19—O16iii | 92.92 (17) |
| Symmetry codes: (i)−x,−y+2,−z; (ii)−x,y,−z+1/2; (iii)x,−y+2,z+3/2. |
Crystal datatop| C12H12MgO14 | c = 5.924466 Å |
| Mr = 380.13 | β = 82.5510° |
| Monoclinic,C2/c | V = 1500.25 Å3 |
| a = 23.263806 Å | Z = 4 |
| b = 10.977897 Å | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)top | x | y | z | Uiso*/Ueq | |
| C1 | 0.066697 | 0.592918 | 0.019370 | 0.02800* | |
| C2 | 0.120835 | 0.663366 | 0.040473 | 0.01350* | |
| C3 | 0.111356 | 0.800364 | 0.083233 | 0.01350* | |
| C4 | 0.169510 | 0.865519 | 0.103042 | 0.01350* | |
| C5 | 0.206049 | 0.815740 | 0.276452 | 0.02800* | |
| C6 | 0.086358 | 0.858791 | −0.123082 | 0.02800* | |
| H7 | 0.141872 | 0.622809 | 0.175820 | 0.017600* | |
| H8 | 0.149980 | 0.650794 | −0.118440 | 0.017600* | |
| H9 | 0.196771 | 0.859661 | −0.061861 | 0.017600* | |
| H10 | 0.161628 | 0.962195 | 0.135988 | 0.017600* | |
| O11 | 0.073635 | 0.474712 | 0.041921 | 0.02800* | |
| O12 | 0.020939 | 0.641776 | −0.015759 | 0.02800* | |
| O13 | 0.210674 | 0.706317 | 0.318331 | 0.02800* | |
| O14 | 0.235389 | 0.900676 | 0.369735 | 0.02800* | |
| O15 | 0.112196 | 0.838454 | −0.316242 | 0.02800* | |
| O16 | 0.041922 | 0.928258 | −0.075928 | 0.02800* | |
| O17 | 0.069907 | 0.823253 | 0.279849 | 0.02800* | |
| H18 | 0.086850 | 0.823247 | 0.424908 | 0.036400* | |
| Mg19 | 0.00000 | 0.939597 | 0.25000 | 0.020200* | |
| H20 | 0.257581 | 0.861395 | 0.484930 | 0.036400* | |
| H21 | 0.036202 | 0.428868 | 0.030415 | 0.036400* | |
Hydrogen-bond geometry (Å, º)top| D—H···A | D—H | H···A | D···A | D—H···A |
| O11—H21···O12i | 1.02 | 1.55 | 2.567 | 179 |
| O14—H20···O13ii | 1.01 | 1.64 | 2.640 | 176 |
| O17—H18···O15iii | 0.99 | 1.72 | 2.708 | 174 |
| C4—H9···O13iv | 1.10 | 2.57 | 3.580 | 152 |
| C4—H10···O15v | 1.09 | 2.47 | 3.522 | 161 |
| Symmetry codes: (i)−x,−y+1,−z; (ii)−x+1/2,−y+3/2,−z+1; (iii)x,y,z+1; (iv)−x+1/2,−y+3/2,−z; (v)x,−y+2,z+1/2. |
Crystal datatop| C12H30Mg3O24 | c = 9.1350 Å |
| Mr = 631.05 | β = 96.8600° |
| Monoclinic,P21/n | V = 1226.25 Å3 |
| a = 20.2220 Å | Z = 2 |
| b = 6.6860 Å | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)top | x | y | z | Uiso*/Ueq | |
| C1 | 0.32527 | 0.37608 | −0.21401 | 0.00000* | |
| C2 | 0.38451 | 0.45577 | −0.11329 | 0.00000* | |
| C3 | 0.36751 | −0.34515 | −0.03946 | 0.00000* | |
| C4 | 0.43213 | −0.25338 | 0.03746 | 0.00000* | |
| C5 | 0.42398 | −0.06235 | 0.12413 | 0.00000* | |
| C6 | 0.31593 | −0.38215 | 0.07191 | 0.00000* | |
| H7 | 0.42506 | 0.48305 | −0.17971 | 0.00000* | |
| H8 | 0.12316 | 0.09204 | −0.06504 | 0.00000* | |
| H9 | 0.10594 | 0.28446 | 0.02046 | 0.00000* | |
| H10 | −0.07582 | 0.31823 | 0.03007 | 0.00000* | |
| H11 | −0.02225 | 0.33290 | 0.17064 | 0.00000* | |
| H12 | 0.13541 | −0.44107 | 0.18391 | 0.00000* | |
| H13 | 0.18161 | −0.39965 | 0.06432 | 0.00000* | |
| H14 | 0.40011 | 0.34753 | −0.02685 | 0.00000* | |
| H15 | 0.46361 | −0.21620 | −0.04831 | 0.00000* | |
| H16 | 0.45875 | −0.36309 | 0.11100 | 0.00000* | |
| H17 | 0.31484 | −0.27005 | −0.23049 | 0.00000* | |
| H18 | 0.21544 | 0.09673 | 0.18783 | 0.00000* | |
| H19 | 0.26158 | 0.27605 | 0.15127 | 0.00000* | |
| H20 | 0.03218 | −0.25322 | 0.22859 | 0.00000* | |
| H21 | 0.08743 | −0.08738 | 0.24278 | 0.00000* | |
| Mg22 | 0.00000 | 0.00000 | 0.00000 | 0.00000* | |
| Mg23 | 0.28120 | 0.00002 | −0.03838 | 0.00000* | |
| O24 | 0.30983 | 0.47427 | −0.33321 | 0.00000* | |
| O25 | 0.08758 | 0.15699 | −0.01882 | 0.00000* | |
| O26 | −0.04215 | 0.24084 | 0.09404 | 0.00000* | |
| O27 | 0.13785 | −0.45485 | 0.07789 | 0.00000* | |
| O28 | 0.29211 | 0.23046 | −0.17595 | 0.00000* | |
| O29 | 0.47379 | −0.00062 | 0.20839 | 0.00000* | |
| O30 | 0.36791 | 0.02758 | 0.10966 | 0.00000* | |
| O31 | 0.26375 | −0.27533 | 0.05738 | 0.00000* | |
| O32 | 0.32823 | 0.48746 | 0.17156 | 0.00000* | |
| O33 | 0.33975 | −0.20083 | −0.14661 | 0.00000* | |
| O34 | 0.23596 | 0.16252 | 0.10819 | 0.00000* | |
| O35 | 0.04053 | −0.11092 | 0.20610 | 0.00000* | |
Bond lengths (Å)top| C1—C2 | 1.517 | H6—O4 | 0.980 |
| C1—O1 | 1.278 | H7—O4 | 0.980 |
| C1—O5 | 1.255 | H11—O10 | 0.981 |
| C2—C3i | 1.549 | H12—O11 | 0.983 |
| C2—H1 | 1.092 | H13—O11 | 0.975 |
| C2—H8 | 1.090 | H14—O12 | 0.992 |
| C3—C2ii | 1.549 | H15—O12 | 0.980 |
| C3—C4 | 1.536 | Mg2—O1iii | 2.069 |
| C3—C6 | 1.561 | Mg2—O5 | 2.017 |
| C3—O10 | 1.440 | Mg2—O7 | 2.091 |
| C4—C5 | 1.522 | Mg2—O8 | 2.086 |
| C4—H9 | 1.096 | Mg2—O10 | 2.112 |
| C4—H10 | 1.092 | Mg2—O11 | 2.026 |
| C5—O6 | 1.262 | O1—Mg2iv | 2.069 |
| C5—O7 | 1.276 | O2—Mg1 | 2.083 |
| C6—O8 | 1.268 | O3—Mg1 | 2.057 |
| C6—O9ii | 1.264 | O9—C6i | 1.264 |
| H2—O2 | 0.978 | O12—Mg1 | 2.097 |
| H3—O2 | 0.980 | Mg1—O2v | 2.083 |
| H4—O3 | 0.989 | Mg1—O3v | 2.057 |
| H5—O3 | 0.981 | Mg1—O12v | 2.097 |
| Symmetry codes: (i)x,y+1,z; (ii)x,y−1,z; (iii)−x+1/2,y−1/2,−z−1/2; (iv)−x+1/2,y+1/2,−z−1/2; (v)−x,−y,−z. |
Hydrogen-bond geometry (Å, º)top| D—H···A | D—H | H···A | D···A | D—H···A |
| O35—H21···O32 | 0.980 | 1.868 | 2.831 | 171.6 |
| O35—H20···O29 | 0.992 | 1.760 | 2.745 | 171.5 |
| O34—H19···O32 | 0.975 | 1.947 | 2.877 | 158.8 |
| O34—H18···O32 | 0.983 | 1.798 | 2.780 | 175.3 |
| O33—H17···O24 | 0.981 | 1.947 | 2.783 | 141.5 |
| O33—H17···O28 | 0.981 | 1.997 | 2.986 | 133.1 |
| O27—H13···O31 | 0.980 | 1.865 | 2.841 | 173.3 |
| O27—H12···O30 | 0.980 | 1.906 | 2.873 | 168.3 |
| O26—H11···O29 | 0.981 | 1.778 | 2.750 | 169.8 |
| O26—H10···O27 | 0.989 | 1.756 | 2.745 | 177.6 |
| O25—H9···O27 | 0.980 | 1.910 | 2.887 | 174.0 |
| O25—H8···O24 | 0.978 | 1.903 | 2.880 | 176.2 |
Acknowledgements
Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02–06CH11357. I thank Lynn Ribaud and Saul Lapidus for their assistance in the data collection.
References
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013).J. Appl. Cryst.46, 1231–1235. Web of ScienceCrossRefCASIUCr JournalsGoogle Scholar
Bravais, A. (1866).Études Cristallographiques. Paris: Gauthier Villars. Google Scholar
Crystal Impact (2015).DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dassault Systems (2019).Materials Studio, BIOVIA, San Diego, USA. Google Scholar
Donnay, J. D. H. & Harker, D. (1937).Am. Mineral.22, 446–467. CASGoogle Scholar
Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018).WIREs Comput. Mol. Sci.8, e1360. Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. & Zicovich-Wilson, C. M. (2005).Z. Kristallogr.220, 571–573. Web of ScienceCrossRefCASGoogle Scholar
Favre-Nicolin, V. & Černý, R. (2002).J. Appl. Cryst.35, 734–743. Web of ScienceCrossRefCASIUCr JournalsGoogle Scholar
Friedel, G. (1907).Bull. Soc. Fr. Mineral.30, 326–455. Google Scholar
Gates-Rector, S. & Blanton, T. N. (2019).Powder Diffr.34, 352–360. CASGoogle Scholar
Gatti, C., Saunders, V. R. & Roetti, C. (1994).J. Chem. Phys.101, 10686–10696. CrossRefCASWeb of ScienceGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016).Acta Cryst. B72, 171–179. Web of ScienceCrossRefIUCr JournalsGoogle Scholar
Hanawalt, J. D., Rinn, H. & Frevel, L. (1938).Ind. Eng. Chem. Anal. Ed.10, 457–512. CrossRefCASGoogle Scholar
Johnson, C. K. (1965).Acta Cryst.18, 1004–1018. CSDCrossRefIUCr JournalsWeb of ScienceGoogle Scholar
Louër, D. & Boultif, A. (2007).Z. Kristallogr. Suppl.26, 191–196. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020).J. Appl. Cryst.53, 226–235. Web of ScienceCrossRefCASIUCr JournalsGoogle Scholar
McCarthy, M. I. & Harrison, N. M. (1994).Phys. Rev. B,49, 8574–8582. CrossRefICSDCASWeb of ScienceGoogle Scholar
Peintinger, M. F., Oliveira, D. V. & Bredow, T. (2013).J. Comput. Chem.34, 451–459. Web of ScienceCrossRefCASPubMedGoogle Scholar
Rammohan, A. & Kaduk, J. A. (2018).Acta Cryst. B74, 239–252. Web of ScienceCSDCrossRefIUCr JournalsGoogle Scholar
Spek, A. L. (2020).Acta Cryst. E76, 1–11. Web of ScienceCrossRefIUCr JournalsGoogle Scholar
Streek, J. van de & Neumann, M. A. (2014).Acta Cryst. B70, 1020–1032. Web of ScienceCrossRefIUCr JournalsGoogle Scholar
Toby, B. H. & Von Dreele, R. B. (2013).J. Appl. Cryst.46, 544–549. Web of ScienceCrossRefCASIUCr JournalsGoogle Scholar
Westrip, S. P. (2010).J. Appl. Cryst.43, 920–925. Web of ScienceCrossRefCASIUCr JournalsGoogle Scholar
This is an open-access article distributed under the terms of theCreative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access