Movatterモバイル変換


[0]ホーム

URL:


Skip to content
1887
  • search icon
  • account icon
  • shopping cart icon
  • Research Article

    Free

    The Phylogeny of the GenusClostridium: Proposal of Five New Genera and Eleven New Species CombinationsFree

    Abstract

    The 16S rRNA gene sequences of 34 named and unnamed clostridial strains were determined by PCR direct sequencing and were compared with more than 80 previously determined clostridial sequences and the previously published sequences of representative species of other low- G+C-content gram-positive genera, thereby providing an almost complete picture of the genealogical interrelationships of the clostridia. The results of our phylogenetic analysis corroborate and extend previous findings in showing that the genusClostridium is extremely heterogeneous, with many species phylogenetically intermixed with other sporeforming and non-sporeforming genera. The genusClostridium is clearly in need of major revision, and the rRNA structures defined in this and previous studies may provide a sound basis for future taxonomic restructuring. The problems and different possibilities for restructuring are discussed in light of the phenotypic and phylogenetic data, and a possible hierarchical structure for the clostridia and their close relatives is presented. On the basis of phenotypic criteria and the results of phylogenetic analyses the following five new genera and 11 new combinations are proposed:Caloramator gen. nov., withCaloramator fervidus comb. nov.;Filifactor gen. nov., withFilifactor villosus comb. nov.;Moorella gen. nov., withMoorella thermoacetica comb. nov. andMoorella thermoautotrophica comb. nov.;Oxobacter gen. nov., withOxobacter pfennigii comb. nov.;Oxalophagus gen. nov., withOxalophagus oxalicus comb. nov.;Eubacterium barkeri comb. nov.;Paenibacillus durum comb. nov.;Thermoanaerobacter kivui comb. nov.;Thermoanaerobacter thermocopriae comb. nov.; andThermoanerobacterium thermosaccharolyticum comb. nov.

    • Published Online:
    Copyright © 1994 International Union of Microbiological Societies
    Loading

    Article metrics loading...

    /content/journal/ijsem/10.1099/00207713-44-4-812
    1994-10-01
    2025-10-26
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/ijsem/44/4/ijs-44-4-812.html?itemId=/content/journal/ijsem/10.1099/00207713-44-4-812&mimeType=html&fmt=ahah

    References

    1. AshC.,FarrowJ. A. E.,WallbanksS.,CollinsM. D.1991; Phylogenetic heterogeneity of the genusBacillus revealed by comparative analysis of small-subunit ribosomal RNA sequences.Lett. Appl. Microbiol. 13:202–206
      [Google Scholar]
    2. AshC.,PriestF. G.,CollinsM. D.1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test: proposal for the creation of a new genusPaenibacillus.Antonie van Leeuwenhoek 64:253–260
      [Google Scholar]
    3. CatoE.,StackebrandtE.1989; Taxonomy and phylogeny.1–26 InMintonN. P.,ClarkD. J.(ed.)Clostridia Plenum Press; New York:
      [Google Scholar]
    4. CatoE. P.,GeorgeW. L.,FinegoldS. M.1986; GenusClostridium.1141–1200 InSneathP. H. A.,MairN. S.,SharpeM. E.,HoltJ. G.(ed.)Bergey’s manual of systematic bacteriology vol. 2 Williams and Wilkins; Baltimore:
      [Google Scholar]
    5. CollinsM. D.,RodriguesU. M.,DaintyR. H.,EdwardsR. A.,RobertsT. A.1992; Taxonomic studies on a psychrophilicClostridium from vacuum packed beef: description ofClostridium estertheticum sp. nov.FÈMS Microbiol. Lett. 96:235–240
      [Google Scholar]
    6. DehningI.,SchinkB.1989; Two new species of anaerobic oxalate-fermenting bacteria,Oxalobacter vibrioformis sp. nov. andClostridium oxalicum sp. nov., from sediment samples.Arch. Microbiol. 153:79–84
      [Google Scholar]
    7. DevereuxJ.,HaeberliP.,SmithiesD.1984; A comprehensive set of sequence analysis programs for the VAX.Nucleic Acids Res. 12:387–395
      [Google Scholar]
    8. DotT. D.,OsawaR.,StackebrandtE.1993;Phascolarctobacterium faecium gen. nov., spec, nov., a novel taxon of theSporomusa group of bacteria.Syst. Appl. Microbiol. 16:380–384
      [Google Scholar]
    9. DuncanA. J.,CarmanR. J.,OlsenG. L.,WilsonK. H.1993; Assignment of the agent of Tyzzer’s disease toClostridium piliforme comb. nov. on the basis of 16S rRNA sequence analysis.Int. J. Syst. Bacteriol. 43:314–318
      [Google Scholar]
    10. EzakiT.,LiN.,HashimotoY.,MiuraH.,YamamotoH.1994; 16S ribosomal DNA sequences of anaerobic cocci and proposal ofRuminococcus hansenii comb. nov. andRuminococcus productus comb. nov.Int. J. Syst. Bacteriol. 44:130–136
      [Google Scholar]
    11. FarrowJ. A. E.,AshC.,WallbanksS.,CollinsM. D.1992; Phylogenetic analysis of the generaPlanococcus, Marinococcus andSporosarcina and their relationships to members of the genusBacillus. FEMS Microbiol.Lett. 93:167–172
      [Google Scholar]
    12. FelsensteinJ.1989; PHYLIP—phylogeny inference package (version 3.2).Cladistics 5:164–166
      [Google Scholar]
    13. FitchW. M.,MargoliashE.1967; Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability.Science 155:279–284
      [Google Scholar]
    14. FontaineF. E.,PetersonW. H.,McCoyE.,JohnsonM. J.1942; A new type of glucose fermentation byClostridium thermoaceticum n. sp.J. Bacteriol. 43:701–715
      [Google Scholar]
    15. FoxG. E.,StackebrandtE.,HespellR. B.,GibsonJ.,ManiloffJ.,DyerT. A.,WolfeR. S.,BalchW. E.,TannerR. S.,MagrumL. J.,ZahlenL. B.,BlakemoreR.,GuptaR.,BonenL.,LewisB. J.,StahlD. A.,LuehrsenK. R.,ChenK.,WoeseC. R.1980; The phylogeny of prokaryotes.Science 209:457–463
      [Google Scholar]
    16. GottschalkE. M.,HippeH.,PatzkeF.1991; Creatinine deiminase (EC3. 4. 3. 21) from bacterium BNII: purification, properties and applicability in serum/urine creatinine assay.Clin. Chim. Acta 204:223–238
      [Google Scholar]
    17. HermannM.,KnerrH. J.,MaiN.,GrossA.,KaltwasserH.1992; Creatinine and N-methylhydantoin degradation in two newly isolatedClostridium species.Arch. Microbiol. 157:395–401
      [Google Scholar]
    18. HippeH.,AndreesenJ. R.,GottschalkG.1992; The genusClostridium—nonmedical.1800–1866 InBalowsA.,TrüperH. G.,DworkinM.,HarderW.,SchleiferK. H.(ed.)The prokaryotes vol. 2 Springer-Verlag; New York:
      [Google Scholar]
    19. HutsonR. A.,ThompsonD. E.,CollinsM. D.1993; Genetic interrelationships of saccharolyticClostridium botulinum types B, E and F and related clostridia as revealed by small-subunit rRNA gene sequences.FEMS Microbiol. Lett. 108:103–110
      [Google Scholar]
    20. HutsonR. A.,ThompsonD. E.,LawsonP. A.,Schocken-ItturinoR. P.,BöttgerE. C.,CollinsM. D.1993; Genetic interrelationships of proteolyticClostridium botulinum types A, B, and F and other members of theClostridium botulinum complex as revealed by small-subunit rRNA gene sequences.Antonie van Leeuwenhoek 64:278–283
      [Google Scholar]
    21. JinF.,YamasatoK.,TodaK.1988;Clostridium thermocopriae sp. nov., a cellulolytic thermophile from animal feces, compost, soil, and a hot spring in Japan.Int. J. Syst. Bacteriol. 38:279–281
      [Google Scholar]
    22. JohnsonJ. L.,FrancisB. S.1975; Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species.J. Gen. Microbiol. 88:229–244
      [Google Scholar]
    23. KellyW. J.,AsmundsonR. V.,HopcroftD. H.1987; Isolation and characterization of a strictly anaerobic, cellulolytic spore former:Clostridium chartatabidum sp. nov.Arch. Microbiol. 147:169–173
      [Google Scholar]
    24. KrasilnikovN. A.,PivovarovG. E.,DudaV. I.1971; Physiological properties of anaerobic soil bacteria which form vesicular caps on their spores.Microbiology (Engl. Transi. Mikrobiologiya) 40:783–788
      [Google Scholar]
    25. KrumholzL. R.,BryantM. P.1985;Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate.Int. J. Syst. Bacteriol. 35:454–456
      [Google Scholar]
    26. LawsonP. A.,GharbiaS. E.,ShahH. N.,ClarkD. R.1989; Recognition ofFusobacterium nucleatum subgroups Fn-1, Fn-2 and Fn-3 by ribosomal RNA gene restriction patterns.FEMS Microbiol. Lett. 65:41–46
      [Google Scholar]
    27. LawsonP. A.,PerezP. L.,HutsonR. A.,HippeH.,CollinsM. D.1993; Towards a phylogeny of the Clostridia based on 16S rRNA sequences.FEMS Microbiol. Lett. 113:87–92
      [Google Scholar]
    28. LeighJ. A.,WolfeR. S.1983;Acetogenium kivui, a thermophilic acetogenic bacterium.Int. J. Syst. Bacteriol. 33:886
      [Google Scholar]
    29. LiY.,EngleM.,WeissN.,MandelcoL.,WiegelJ.1994;Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermo-tolerant facultative alkaliphile.Int. J. Syst. Bacteriol. 44:111–118
      [Google Scholar]
    30. LiY.,MandelcoL.,WiegelJ.1993; Isolation and characterization of a moderately thermophilic alkaliphile,Clostridium paradoxum sp. nov.Int. J. Syst. Bacteriol. 43:450–460
      [Google Scholar]
    31. LoveD. N.,JonesR. F.,BaileyM.1979;Clostridium villosum sp. nov. from subcutaneous abscesses in cats.Int. J. Syst. Bacteriol. 29:241–244
      [Google Scholar]
    32. LudwigW.,WeizeneggerM.,Kilpper-BälzR.,SchleiferK. H.1988; Phylogenetic relationships of anaerobic streptococci.Int. J. Syst. Bacteriol. 38:15–18
      [Google Scholar]
    33. McClungL. S.1935; Studies on anaerobic bacteria. IV. Taxonomy of cultures of a thermophilic species causing “swells” of canned food.J. Bacteriol. 29:189–202
      [Google Scholar]
    34. OlsenG. J.,OverbeekR.,LarsenN.,MarshT. L.,McCaugheyM. J.,MaciukenasM. A.,KuanW. M.,MackeT. J.,XingY.,WoeseC. R.1992; The Ribosomal Database Project.Nucleic Acids Res. 20:2199–2200
      [Google Scholar]
    35. PasterB. J.,RussellJ. B.,YangC. M. J.,ChowJ. M.,WoeseC. R.,TannerR.1993; Phylogeny of the ammonia-producing ruminai bacteriaPeptostreptococcus anaerobius, Clostridium sticklandii, andClostridium aminophilum sp. nov.Int. J. Syst. Bacteriol. 43:107–110
      [Google Scholar]
    36. PatelB. K. C.,MonkC.,LittleworthH.,MorganH. W.,DanielR. M.1987;Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile.Int. J. Syst. Bacteriol. 37:123–126
      [Google Scholar]
    37. RaineyF. A.,StackebrandtE.1993; 16S rRNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia.FEMS Microbiol. Lett. 113:125–128
      [Google Scholar]
    38. RaineyF. A.,WardN. L.,MorganH. W.,ToalsterR.,StackebrandtE.1993; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification.J. Bacteriol. 175:4772–4779
      [Google Scholar]
    39. SaitouN.,NeiM.1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4:406–425
      [Google Scholar]
    40. SchinkB.,PfenningN.1982;Propionigenium modestum gen. nov., sp. nov., a new strictly anaerobic, nonsporing bacterium growing on succinate.Arch. Microbiol. 133:209–216
      [Google Scholar]
    41. SchleiferK. H.,LeuteritzM.,WeissN.,LudwigW.,KirchhofG.,RuferH. S.1990; Taxonomic study of anaerobic, gram-negative, rod-shaped bacteria from breweries: emended description ofPectinatus cerevisiiphilus and descriptions ofPectinatus frisingensis sp. nov.,Selenomonas lacticifex sp. nov.,Zymophilus raffinosivorans gen. nov., sp. nov., andZymophilus paucivorans sp. nov.Int. J. Syst. Bacteriol. 40:19–27
      [Google Scholar]
    42. SmithL. D. S.,CatoE. P.1974;Clostridium durum sp. nov., the predominant organism in a sediment core from the Black Sea.Can. J. Microbiol. 20:1393–1397
      [Google Scholar]
    43. StackebrandtE.1992; Unifying phylogeny and phenotypic diversity.19–47 InBalowsA.,TrüperH. G.,DworkinM.,HarderW.,SchleiferK. H.(ed.)The prokaryotes vol. 1 Springer-Verlag; New York:
      [Google Scholar]
    44. StadtmanE. R.,StadtmanT. C.,PastanI.,SmithL. D. S.1972;Clostridium barkeri sp. n.J. Bacteriol. 110:758–760
      [Google Scholar]
    45. SuenJ. C.,HathewayC. L.,SteigerwaltA. G.,BrennerD. J.1988;Clostridium argentinense sp. nov.: a genetically homogeneous group composed of all strains ofClostridium botulinum toxin type G and some nontoxigenic strains previously identified asClostridium subterminale andClostridium hastiforme.Int. J. Syst. Bacteriol. 38:375–381
      [Google Scholar]
    46. TannerR. S.,StackebrandtE.,FoxG. E.,GuptaL. J.,MagrumL. J.,WoeseC. R.1982; A phylogenetic analysis of anaerobic eubacteria capable of synthesizing acetate from carbon dioxide.Curr. Microbiol. 7:127–132
      [Google Scholar]
    47. TannerR. S.,StackebrandtE.,FoxG. E.,WoeseC. R.1981; A phylogenetic analysis ofAcetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, andEubacterium tenue. Curr.Microbiol. 5:35–38
      [Google Scholar]
    48. WeisburgW. G.,TullyJ. G.,RoseD. L.,PetzelJ. P.,OyaizuH.,YangD.,MandelcoL.,SechrestJ.,LawrenceT. G.,Van EttenJ.,ManiloffJ.,WoeseC. R.1989; A phylogenetic analysis of the mycoplasmas: basis for their classification.J. Bacteriol. 171:6455–6467
      [Google Scholar]
    49. WiegelJ.,BraunM.,GottschalkG.1981;Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide.Curr. Microbiol. 5:255–260
      [Google Scholar]
    50. WillemsA.,CollinsM. D.1994; Phylogenetic placement ofSarcina ventriculi andSarcina maxima within group IClostridium: a possible problem for the future revision of the genusClostridium.Int. J. Syst. Bacteriol. 44:591–593
      [Google Scholar]
    51. WisotzkeyJ. D.,JurtshukP.Jr.,FoxG. E.,DeinhardG.,PorallaK.1992; Comparative sequence analysis of the 16S rRNA ofBacillus acidocaldarius, Bacillus acidoterrestris, andBacillus cycloheptanicus: proposal for a new genus,Alicyclobacillus gen. nov.Int. J. Syst. Bacteriol. 42:263–269
      [Google Scholar]
    52. WoeseC. R.1987; Bacterial evolution.Microbiol. Rev. 51:221–271
      [Google Scholar]
    53. ZhaoH.,YangD.,WoeseC. R.,BryantM. P.1993; Assignment of fatty acid-oxidizing syntrophic bacteria toSyntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analysis.Int. J. Syst. Bacteriol. 43:278–286
      [Google Scholar]
    /content/journal/ijsem/10.1099/00207713-44-4-812
    Loading
    The Phylogeny of the Genus Clostridium: Proposal of Five New Genera and Eleven New Species Combinations
    Int J Syst Evol Microbiol44, 812 (1994);https://doi.org/10.1099/00207713-44-4-812
    /content/journal/ijsem/10.1099/00207713-44-4-812
    /content/journal/ijsem/10.1099/00207713-44-4-812
    Loading

    Data & Media loading...

    Most read this month

    Article
    content/journal/ijsem
    Journal
    5
    3
    false
    en
    Loading

    Most citedMost Cited RSS feed

    We Recommend

    Access key

    • Subscribed Subscribed content
    • Open Access Open Access content
    • Free Trial Free Trial content
    • Frees Free content

    Microbiology Outlooks joins the portfolio

    White text on blue background

    Our newest title will publish authoritative reviews and forward-looking perspectives across the breadth of microbiology. For further information please visit thejournal's homepage.

    Fee Free Open Access Publishing via Publish and Read

    Are you eligible forfree Open Access publishing via a Publish and Read agreement inInternational Journal of Systematic and Evolutionary Microbiology, the official publication for novel microbial taxa? Check if your institution is signed uphere

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An error occurred
    Approval was partially successful, following selected items could not be processed due to error
    Microbiology Society:
    http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-44-4-812
    10.1099/00207713-44-4-812
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp