Movatterモバイル変換


[0]ホーム

URL:


Skip to content
1887
  • search icon
  • account icon
  • shopping cart icon
  • Other

    Free

    Rectinema cohabitans gen. nov., sp. nov., a rod-shaped spirochaete isolated from an anaerobic naphthalene-degrading enrichment cultureFree

    Abstract

    The anaerobic, non-motile strain HMT was isolated from the naphthalene-degrading, sulfate-reducing enrichment culture N47. For 20 years, strain HMT has been a stable member of culture N47 although it is neither able to degrade naphthalene nor able to reduce sulfate in pure culture. The highest similarity of the 16S rRNA gene sequence of strain HMT (89 %) is with a cultivated member of the familySpirochaetaceae,Treponema caldariumstrain H1T (=DSM 7334T), an obligately anaerobic, thermophilic spirochaete isolated from cyanobacterial mat samples collected at a freshwater hot spring in Oregon, USA. In contrast to this strain and the majority of spirochaete species described, strain HMT showed a rod-shaped morphology. Growth occurred at temperatures between 12 and 50 °C (optimum 37 °C) but the isolate was not able to grow at 60 °C. The strain fermented various sugars includingd-glucose,d-fructose, lactose and sucrose. Addition of 0.1 % (w/v) yeast extract or 0.1 % (w/v) tryptone to the culture medium was essential for growth and could not be replaced by either the vitamin solutions tested or by 0.1 % (w/v) peptone or 0.1 % (w/v) casamino acids. The DNA G+C content of the isolate was 51.5 mol%. The major fatty acids were C14 : 0, C18 : 1ω13c, C16 : 1ω9t, C16 : 1ω11c and C16 : 1ω9c. Based on the unique morphology and the phylogenetic distance from the closest cultivated relative, a novel genus and species,Rectinema cohabitans gen. nov., sp. nov., is proposed. The type strain is strain HMT (=DSM 100378T=JCM 30982T).

    • Received:
    • Accepted:
    • Published Online:
    Keyword(s):contaminated sites,enrichment culture N47,naphthaleneandnon-spiral spirochete
    © 2017 IUMS
    Loading

    Article metrics loading...

    /content/journal/ijsem/10.1099/ijsem.0.001799
    2017-05-01
    2025-03-28
    Download as PowerPoint
    Loading full text...

    Full text loading...

    /deliver/fulltext/ijsem/67/5/1288.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001799&mimeType=html&fmt=ahah

    References

    1. Canale-ParolaE. Order I: spirochaetales. InKriegNR,HoltJC. (editors)Bergey’s Manual of Systematic Bacteriology Baltimore, MD: The Williams & Wilkins Co;1984 pp.38–39
      [Google Scholar]
    2. CharonNW,GoldsteinSF. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes.Annu Rev Genet2002; 36:47–73 [View Article][PubMed]
      [Google Scholar]
    3. LiC,MotalebA,SalM,GoldsteinSF,CharonNW. Spirochete periplasmic flagella and motility.J Mol Microbiol Biotechnol2000; 2:345–354[PubMed]
      [Google Scholar]
    4. PasterBJ,Canale-ParolaE. Involvement of periplasmic fibrils in motility of spirochetes.J Bacteriol1980; 141:359–364[PubMed]
      [Google Scholar]
    5. PasterBJ,DewhirstFE. Phylogenetic foundation of spirochetes.J Mol Microbiol Biotechnol2000; 2:341–344[PubMed]
      [Google Scholar]
    6. DrögeS,FröhlichJ,RadekR,KönigH.Spirochaeta coccoides sp. nov., a novel coccoidSpirochete from the hindgut of the termiteNeotermes castaneus.Appl Environ Microbiol2006; 72:392–397 [View Article][PubMed]
      [Google Scholar]
    7. MiyazakiM,SakaiS,RitalahtiKM,SaitoY,YamanakaY et al.Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genusSphaerochaeta.Int J Syst Evol Microbiol2014; 64:4147–4154 [View Article][PubMed]
      [Google Scholar]
    8. RitalahtiKM,Justicia-LeonSD,CusickKD,Ramos-HernandezN,RubinM et al.Sphaerochaeta globosa gen. nov., sp. nov. andSphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes.Int J Syst Evol Microbiol2012; 62:210–216 [View Article][PubMed]
      [Google Scholar]
    9. Caro-QuinteroA,RitalahtiKM,CusickKD,LöfflerFE,KonstantinidisKT. The chimeric genome ofSphaerochaeta: nonspiral spirochetes that break with the prevalent dogma in spirochete biology.MBio2012; 3:e00025-12 [View Article][PubMed]
      [Google Scholar]
    10. DuhamelM,EdwardsEA. Microbial composition of chlorinated ethene-degrading cultures dominated byDehalococcoides.FEMS Microbiol Ecol2006; 58:538–549 [View Article][PubMed]
      [Google Scholar]
    11. HeJ,SungY,Krajmalnik-BrownR,RitalahtiKM,LöfflerFE. Isolation and characterization ofDehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe.Environ Microbiol2005; 7:1442–1450 [View Article][PubMed]
      [Google Scholar]
    12. RitalahtiKM,LöfflerFE. Populations implicated in anaerobic reductive dechlorination of 1,2-dichloropropane in highly enriched bacterial communities.Appl Environ Microbiol2004; 70:4088–4095 [View Article][PubMed]
      [Google Scholar]
    13. TaşN,van EekertMH,de VosWM,SmidtH. The little bacteria that can – diversity, genomics and ecophysiology of'Dehalococcoides' spp. in contaminated environments.Microb Biotechnol2010; 3:389–402 [View Article][PubMed]
      [Google Scholar]
    14. MenY,LeePK,HardingKC,Alvarez-CohenL. Characterization of four TCE-dechlorinating microbial enrichments grown with different cobalamin stress and methanogenic conditions.Appl Microbiol Biotechnol2013; 97:6439–6450 [View Article][PubMed]
      [Google Scholar]
    15. WinderlC,AnneserB,GrieblerC,MeckenstockRU,LuedersT. Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume.Appl Environ Microbiol2008; 74:792–801 [View Article][PubMed]
      [Google Scholar]
    16. ZhaoL,MaT,GaoM,GaoP,CaoM et al. Characterization of microbial diversity and community in water flooding oil reservoirs in China.World J Microbiol Biotechnol2012; 28:3039–3052 [View Article][PubMed]
      [Google Scholar]
    17. Ziv-ElM,DelgadoAG,YaoY,KangDW,NelsonKG et al. Development and characterization of DehaloR^2, a novel anaerobic microbial consortium performing rapid dechlorination of TCE to ethene.Appl Microbiol Biotechnol2011; 92:1063–1071 [View Article][PubMed]
      [Google Scholar]
    18. SelesiD,JehmlichN,von BergenM,SchmidtF,RatteiT et al. Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47.J Bacteriol2010; 192:295–306 [View Article][PubMed]
      [Google Scholar]
    19. WiddelF,KohringG-W,MayerF. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids III. Characterization of the filamentous glidingDesulfonema limicola gen. nov. sp. nov., andDesulfonema magnum sp. nov.Arch Microbiol1983; 134:286–294[CrossRef]
      [Google Scholar]
    20. WiddelF,PfennigN. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description ofDesulfobacter postgatei gen. nov., sp. nov.Arch Microbiol1981; 129:395–400[PubMed][CrossRef]
      [Google Scholar]
    21. BlighEG,DyerWJ. A rapid method of total lipid extraction and purification.Can J Biochem Physiol1959; 37:911–917 [View Article][PubMed]
      [Google Scholar]
    22. MorrisonWR,SmithLM. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride—methanol.J Lipid Res1964; 5:600–608[PubMed]
      [Google Scholar]
    23. PilloniG,von NetzerF,EngelM,LuedersT. Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP.FEMS Microbiol Ecol2011; 78:165–175 [View Article][PubMed]
      [Google Scholar]
    24. WeisburgWG,BarnsSM,PelletierDA,LaneDJ. 16S ribosomal DNA amplification for phylogenetic study.J Bacteriol1991; 173:697–703 [View Article][PubMed]
      [Google Scholar]
    25. TamuraK,StecherG,PetersonD,FilipskiA,KumarS. MEGA6: molecular evolutionary genetics analysis version 6.0.Mol Biol Evol2013; 30:2725–2729 [View Article][PubMed]
      [Google Scholar]
    26. LeschineSB,Canale-ParolaE. Rifampin as a selective agent for isolation of oral spirochetes.J Clin Microbiol1980; 12:792[PubMed]
      [Google Scholar]
    27. LeschineSB,Canale-ParolaE. Rifampin-resistant RNA polymerase in spirochetes.FEMS Microbiol Lett1986; 35:199–204 [View Article]
      [Google Scholar]
    28. StantonTB,Canale-ParolaE. Enumeration and selective isolation of rumen spirochetes.Appl Environ Microbiol1979; 38:965–973[PubMed]
      [Google Scholar]
    29. GraberJR,BreznakJA. Physiology and nutrition ofTreponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts.Appl Environ Microbiol2004; 70:1307–1314 [View Article][PubMed]
      [Google Scholar]
    30. GraberJR,LeadbetterJR,BreznakJA. Description ofTreponema azotonutricium sp. nov. andTreponema primitia sp. nov., the first spirochetes isolated from termite guts.Appl Environ Microbiol2004; 70:1315–1320 [View Article][PubMed]
      [Google Scholar]
    31. LeadbetterJR,SchmidtTM,GraberJR,BreznakJA. Acetogenesis from H2 plus CO2 by spirochetes from termite guts.Science1999; 283:686–689 [View Article][PubMed]
      [Google Scholar]
    32. BergmannF,SelesiD,WeinmaierT,TischlerP,RatteiT et al. Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducingDeltaproteobacterium N47.Environ Microbiol2011; 13:1125–1137 [View Article][PubMed]
      [Google Scholar]
    33. BergmannFD,SelesiD,MeckenstockRU. Identification of new enzymes potentially involved in anaerobic naphthalene degradation by the sulfate-reducing enrichment culture N47.Arch Microbiol2011; 193:241–250 [View Article][PubMed]
      [Google Scholar]
    34. MouttakiH,JohannesJ,MeckenstockRU. Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons.Environ Microbiol2012; 14:2770–2774 [View Article][PubMed]
      [Google Scholar]
    35. AnnweilerE,MichaelisW,MeckenstockRU. Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway.Appl Environ Microbiol2002; 68:852–858 [View Article][PubMed]
      [Google Scholar]
    36. LeeSH,ParkJH,KangHJ,LeeYH,LeeTJ et al. Distribution and abundance ofspirochaetes in full-scale anaerobic digesters.Bioresour Technol2013; 145:25–32 [View Article][PubMed]
      [Google Scholar]
    37. LeeSH,ParkJH,KimSH,YuBJ,YoonJJ et al. Evidence of syntrophic acetate oxidation byspirochaetes during anaerobic methane production.Bioresour Technol2015; 190:543–549 [View Article][PubMed]
      [Google Scholar]
    38. PohlschroederM,LeschineSB,Canale-ParolaE.Spirochaeta caldaria sp. nov., a thermophilic bacterium that enhances cellulose degradation byClostridium thermocellum.Arch Microbiol1994; 161:17–24 [View Article]
      [Google Scholar]
    39. DubininaG,GrabovichM,LeshchevaN,RaineyFA,GavrishE.Spirochaeta perfilievii sp. nov., an oxygen-tolerant, sulfide-oxidizing, sulfur- and thiosulfate-reducing spirochaete isolated from a saline spring.Int J Syst Evol Microbiol2011; 61:110–117 [View Article][PubMed]
      [Google Scholar]
    40. MotalebMA,CorumL,BonoJL,EliasAF,RosaP et al.Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions.Proc Natl Acad Sci USA2000; 97:10899–10904 [View Article][PubMed]
      [Google Scholar]
    41. HeunerK,GrosseK,SchadeR,GobelUB. A flagellar gene cluster from the oral spirochaeteTreponema maltophilum.Microbiology2000; 146:497–507 [View Article][PubMed]
      [Google Scholar]
    42. AbtB,HanC,ScheunerC,LuM,LapidusA et al. Complete genome sequence of the termite hindgut bacteriumSpirochaeta coccoides type strain (SPN1T), reclassification in the genusSphaerochaeta asSphaerochaeta coccoides comb. nov. and emendations of the familySpirochaetaceae and the genusSphaerochaeta.Stand Genomic Sci2012; 6:194–209 [View Article][PubMed]
      [Google Scholar]
    43. YarzaP,YilmazP,PruesseE,GlöcknerFO,LudwigW et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences.Nat Rev Microbiol2014; 12:635–645 [View Article][PubMed]
      [Google Scholar]
    44. AbtB,GökerM,ScheunerC,HanC,LuM et al. Genome sequence of the thermophilic fresh-water bacteriumSpirochaeta caldaria type strain (H1T), reclassification ofSpirochaeta caldaria,Spirochaeta stenostrepta, andSpirochaeta zuelzerae in the genusTreponema asTreponema caldaria comb. nov.,Treponema stenostrepta comb. nov., andTreponema zuelzerae comb. nov., and emendation of the genusTreponema.Stand Genomic Sci2013; 8:88–105 [View Article][PubMed]
      [Google Scholar]
    45. ZuelzerM. ÜberSpirochaeta plicatilis Ehrenberg und deren Verwandtschaftsbeziehungen.Arch Protistenkunde1912; 24:1–59
      [Google Scholar]
    46. MeckenstockRU,AnnweilerE,MichaelisW,RichnowHH,SchinkB. Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture.Appl Environ Microbiol2000; 66:2743–2747 [View Article][PubMed]
      [Google Scholar]
    /content/journal/ijsem/10.1099/ijsem.0.001799
    Loading
    Rectinema cohabitans gen. nov., sp. nov., a rod-shaped spirochaete isolated from an anaerobic naphthalene-degrading enrichment culture
    Int J Syst Evol Microbiol67, 1288 (2017);https://doi.org/10.1099/ijsem.0.001799
    /content/journal/ijsem/10.1099/ijsem.0.001799
    /content/journal/ijsem/10.1099/ijsem.0.001799
    Loading

    Data & Media loading...

    Supplements

    Supplementary File 1

    PDF

    Most read this month

    Article
    content/journal/ijsem
    Journal
    5
    3
    false
    en
    Loading

    Most citedMost Cited RSS feed

    We Recommend

    Access key

    • Subscribed Subscribed content
    • Open Access Open Access content
    • Free Trial Free Trial content
    • Frees Free content

    Discover publishing discounts and more

    Microbiology Society members enjoy discounted Open Access publishing in all of our titles, as well as access to a range of grants, professional development opportunities and event discounts.

    Join today.

    Fee Free Open Access Publishing via Publish and Read

    Are you eligible forfree Open Access publishing via a Publish and Read agreement inInternational Journal of Systematic and Evolutionary Microbiology, the official publication for novel microbial taxa? Check if your institution is signed uphere

    This is a required field
    Please enter a valid email address
    Approval was a Success
    Invalid data
    An Error Occurred
    Approval was partially successful, following selected items could not be processed due to error
    Microbiology Society:
    http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001799
    10.1099/ijsem.0.001799
    SEARCH_EXPAND_ITEM

    [8]ページ先頭

    ©2009-2025 Movatter.jp