Movatterモバイル変換


[0]ホーム

URL:


Skip to Main Content
AIP Publishing Logo
header search
    AIP Publishing Logo
    Journal of Mathematical Physics
    Skip Nav Destination
    Article navigation
    Research Article|July 01 1989

    An infinite number of hidden variables in hyper‐Kähler metrics

    K. Takasaki
    K. Takasaki
    Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa, Sakyo‐ku, Kyoto‐shi 606, Japan
    Search for other works by this author on:
    Crossmark: Check for Updates
    K. Takasaki
    Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa, Sakyo‐ku, Kyoto‐shi 606, Japan
    J. Math. Phys. 30, 1515–1521 (1989)
    Article history
    Received:
    September 13 1988
    Accepted:
    February 22 1989
    Citation

    K. Takasaki; An infinite number of hidden variables in hyper‐Kähler metrics.J. Math. Phys. 1 July 1989; 30 (7): 1515–1521.https://doi.org/10.1063/1.528283

    Download citation file:

    toolbar search
    toolbar search

      Three types of hidden variables, both independent and dependent, are shown to underlie the hyper‐Kähler geometry in a complexified setting. The variables satisfy an infinite set of differential equations (‘‘hierarchy’’), just as in the case of most nonlinear integrable systems. The notion of the Plebanski key functions [J. Math. Phys.16, 2395 (1975)] is extended to this hierarchy to give an analog of the notion of the ‘‘τ function.’’ Two examples of special solutions, which are reminiscent of several solution techniques in the theory of nonlinear integrable systems, are presented for illustration.

      REFERENCES

      1.
      C. S.
      Gardner
      ,
      J. M.
      Greene
      ,
      M. D.
      Kruskal
      , and
      R. M.
      Miura
      ,
      Phys. Rev. Lett.
      19
      ,
      1095
      (
      1967
      ).
      2.
      P. D.
      Lax
      ,
      Commun. Pure. Appl. Math.
      21
      ,
      467
      (
      1968
      ).
      3.
      R. Hirota, inBäcklund Transformations, the Inverse Scattering Method, Solitons, and Their Applications, edited by R. Miura, Lecture Notes in Mathematics 515 (Springer, New York, 1976).
      4.
      M. Sato and Y. Sato, inProceedings of the U.S.—Japan Seminar on Nonlinear Partical Differential Equations in Applied Science, Tokyo, 1982, edited by P. D. Lax, H. Fujita, and G. Strang (North‐Holland, Amsterdam and Kinokuniya, Tokyo, 1982).
      5.
      E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, inNonlinear Integrable Systems—Classical Theory and Quantum Theory, Kyoto, 1981, edited by M. Jimbo and T. Miwa (World Scientific, Singapore, 1983).
      6.
      J. F.
      Plebanski
      ,
      J. Math. Phys.
      16
      ,
      2395
      (
      1975
      ).
      7.
      C. P.
      Boyer
      and
      J. F.
      Plebanski
      ,
      J. Math. Phys.
      26
      ,
      229
      (
      1985
      ).
      8.
      S. G.
      Gindikin
      ,
      Funct. Anal. Appl.
      20
      ,
      238
      (
      1986
      ).
      9.
      R.
      Penrose
      ,
      Gen. Rel. Grav.
      7
      ,
      31
      (
      1976
      ).
      10.
      N. J.
      Hitchin
      ,
      A.
      Kahlhede
      ,
      U.
      Lindström
      , and
      M.
      Roček
      ,
      Commun. Math. Phys.
      108
      ,
      535
      (
      1987
      ).
      11.
      C.
      LeBrun
      ,
      Trans. AMS
      278
      ,
      209
      (
      1983
      ).
      12.
      K.
      Takasaki
      ,
      Publ. RIMS Kyoto Univ.
      22
      ,
      949
      (
      1986
      ).
      13.
      M. F.
      Atiyah
      and
      R. S.
      Ward
      ,
      Commun. Math. Phys.
      55
      ,
      117
      (
      1977
      ).
      14.
      E. T.
      Corrigan
      ,
      D. B.
      Fairlie
      ,
      R. G.
      Yates
      , and
      P.
      Goddard
      ,
      Commun. Math. Phys.
      58
      ,
      223
      (
      1978
      ).
      15.
      K.
      Ueno
      and
      Y.
      Nakakmura
      ,
      Publ. RIMS Kyoto Univ.
      19
      ,
      943
      (
      1983
      ).
      16.
      R. S. Ward, inComplex Manifold Technique in Theoretical Physics, edited by D. E. Lerner and P. D. Sommers (Pitman, London, 1978).
      17.
      J.
      Harnad
      ,
      Y.
      Saint‐Aubin
      , and
      S.
      Shnider
      ,
      Commun. Math. Phys.
      93
      ,
      33
      (
      1984
      ).
      18.
      L.
      Alvarez‐Gaumé
      and
      D. Z.
      Freedman
      ,
      Commun. Math. Phys.
      80
      ,
      443
      (
      1981
      ).
      This content is only available via PDF.
      © 1989 American Institute of Physics.
      1989
      American Institute of Physics
      You do not currently have access to this content.
      Pay-Per-View Access
      $40.00

      Sign In

      You could not be signed in. Please check your credentials and make sure you have an active account and try again.
      48Views
      35Web of Science
      31Crossref
      • Online ISSN 1089-7658
      • Print ISSN 0022-2488
      • © Copyright AIP Publishing LLC
      Close Modal
      Close Modal
      This Feature Is Available To Subscribers Only

      Sign In orCreate an Account

      Close Modal
      Close Modal

      [8]ページ先頭

      ©2009-2025 Movatter.jp