Movatterモバイル変換


[0]ホーム

URL:


Skip to Main Content
AIP Publishing Logo
header search
    AIP Publishing Logo
    Journal of Mathematical Physics
    Skip Nav Destination
    Article navigation
    Research Article|February 01 1985

    An infinite hierarchy of conservation laws and nonlinear superposition principles for self‐dual Einstein spaces

    Charles P. Boyer;
    Charles P. Boyer
    Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mex́ico20, D. F., Mexico
    Search for other works by this author on:
    Jerzy F. Plebański
    Jerzy F. Plebański
    Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico 20, D. F., Mexico and Centro de Investigación y Estudios Avanzados del IPN, México D. F. 14, Ap. Post. 14‐740, Mexico
    Search for other works by this author on:
    Crossmark: Check for Updates
    Charles P. Boyer
    Jerzy F. Plebański
    Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mex́ico20, D. F., Mexico
    J. Math. Phys. 26, 229–234 (1985)
    Article history
    Received:
    February 06 1984
    Accepted:
    June 28 1984
    Citation

    Charles P. Boyer,Jerzy F. Plebański; An infinite hierarchy of conservation laws and nonlinear superposition principles for self‐dual Einstein spaces.J. Math. Phys. 1 February 1985; 26 (2): 229–234.https://doi.org/10.1063/1.526652

    Download citation file:

    toolbar search
    toolbar search

      Self‐dual Einstein spaces are shown to admit an infinite hierarchy of conservation laws, and this hierarchy is then used to derive a formal version of Penrose’s twistor construction. The set of formal holomorphic bundles of fiber dimension 2 over the Riemann sphereP1 is shown to form a formal infinite group which is used to derive nonlinear superposition principles. As an example of our methods a new self‐dual Einstein space is obtained as the result of a ‘‘collision’’ of complexpp‐waves ‘‘traveling in opposite directions.’’

      REFERENCES

      1.
      C. P.
      Boyer
      and
      J. F.
      Plebański
      ,
      J. Math. Phys.
      18
      ,
      1022
      (
      1977
      ).
      2.
      R.
      Penrose
      ,
      Gen. Relativ. Gravit.
      7
      ,
      31
      (
      1976
      ).
      3.
      V.
      Arnold
      ,
      Ann. Inst. Fourier Grenoble
      16
      ,
      319
      (
      1966
      ).
      4.
      J. F.
      Plebański
      ,
      J. Math. Phys.
      16
      ,
      2395
      (
      1975
      ).
      5.
      By a conservation law we mean any equation written in the form of a divergence,qAQABl⋯Bk = 0.
      6.
      EquivalentlyB = −ΩB gives rise to a potentialΘ̃.
      7.
      C. P. Boyer, J. D. Finley, III, and J. F. Plebañski, inGeneral Relativity and Gravitation, edited by A. Held (Plenum, New York, 1980), Vol. 2, pp. 241–281.
      8.
      What follows can readily be generalized to local product structures, see C. P. Boyer, “The Geometry of Complex Self‐dual Einstein Spaces,” inNonlinear Phenomena, edited byLecture Notes in Physics 189, edited by K. B. Wolf (Springer, New York, 1983).
      9.
      In the real Euclidean situationM is a Kähler manifold and all of our results will hold if we interpretM2 as the complex structure onM and2 as the complex conjugate structure. In this case the coordinates are taken asA = q̃A.
      10.
      K. Yano and S. Ishihara,Tangent and Cotangent Bundles (Marcel Dekker, New York, 1973).
      11.
      For basic notions of finite‐dimensional symplectic geometry, see V. Guillemin and S. Sternberg,Geometric Asymptotics, Mathematical Surveys 14 (A.M.S., Providence, RI, 1977). In the formal infinite‐dimensional case treated here maximal isotropic submanifolds are not necessarily Lagrangian. The maximal isotropic submanifolds arising from our theorem have four complex dimensions, whereas Lagrangian submanifolds are infinite dimensional.
      12.
      R. O. Wells,Complex Geometry in Mathematical Physics (Les Presses de l’Universite de Montreal, Montreal, 1982).
      13.
      It is more common to useO(1) to denote the sheaf of germs of holomorphic sections of the hyperplane bundle, so we make no distinction between line bundles and their sheaf of sectionsO(n).
      14.
      W. D.
      Curtis
      ,
      D. E.
      Lerner
      , and
      F. R.
      Miller
      ,
      J. Math. Phys.
      19
      ,
      2024
      (
      1978
      ).
      15.
      R. S.
      Ward
      ,
      Proc. R. Soc. London Ser. A
      363
      ,
      289
      (
      1978
      ).
      16.
      J. R.
      Porter
      ,
      Gen. Relativ. Gravit.
      14
      ,
      1023
      (
      1982
      ).
      This content is only available via PDF.
      © 1985 American Institute of Physics.
      1985
      American Institute of Physics
      You do not currently have access to this content.
      Pay-Per-View Access
      $40.00

      Sign In

      You could not be signed in. Please check your credentials and make sure you have an active account and try again.
      86Views
      63Web of Science
      55Crossref
      • Online ISSN 1089-7658
      • Print ISSN 0022-2488
      • © Copyright AIP Publishing LLC
      Close Modal
      Close Modal
      This Feature Is Available To Subscribers Only

      Sign In orCreate an Account

      Close Modal
      Close Modal

      [8]ページ先頭

      ©2009-2025 Movatter.jp