Movatterモバイル変換


[0]ホーム

URL:


Skip to Main Content
AIP Publishing Logo
header search
    AIP Publishing Logo
    The Journal of Chemical Physics
    Skip Nav Destination
    Article navigation
    Research Article|October 01 2012

    Sequence-dependent thermodynamics of a coarse-grained DNA model

    Petr Šulc;
    Petr Šulc
    1Rudolf Peierls Centre for Theoretical Physics,
    University of Oxford
    , 1 Keble Road, Oxford, OX1 3NP,
    United Kingdom
    Search for other works by this author on:
    Flavio Romano;
    Flavio Romano
    2Physical and Theoretical Chemistry Laboratory, Department of Chemistry,
    University of Oxford
    , South Parks Road, Oxford, OX1 3QZ,
    United Kingdom
    Search for other works by this author on:
    Thomas E. Ouldridge;
    Thomas E. Ouldridge
    1Rudolf Peierls Centre for Theoretical Physics,
    University of Oxford
    , 1 Keble Road, Oxford, OX1 3NP,
    United Kingdom
    Search for other works by this author on:
    Lorenzo Rovigatti;
    Lorenzo Rovigatti
    3Dipartimento di Fisica,
    Sapienza–Università di Roma
    , Piazzale A. Moro 5, 00185 Roma,
    Italy
    Search for other works by this author on:
    Jonathan P. K. Doye;
    Jonathan P. K. Doye
    2Physical and Theoretical Chemistry Laboratory, Department of Chemistry,
    University of Oxford
    , South Parks Road, Oxford, OX1 3QZ,
    United Kingdom
    Search for other works by this author on:
    Ard A. Louis
    Ard A. Louis
    1Rudolf Peierls Centre for Theoretical Physics,
    University of Oxford
    , 1 Keble Road, Oxford, OX1 3NP,
    United Kingdom
    Search for other works by this author on:
    Crossmark: Check for Updates
    J. Chem. Phys. 137, 135101 (2012)
    Article history
    Received:
    July 15 2012
    Accepted:
    August 28 2012
    Citation

    Petr Šulc,Flavio Romano,Thomas E. Ouldridge,Lorenzo Rovigatti,Jonathan P. K. Doye,Ard A. Louis; Sequence-dependent thermodynamics of a coarse-grained DNA model.J. Chem. Phys. 7 October 2012; 137 (13): 135101.https://doi.org/10.1063/1.4754132

    Download citation file:

    toolbar search
    toolbar search

      We introduce a sequence-dependent parametrization for a coarse-grained DNA model[T. E. Ouldridge, A. A. Louis, and J. P. K. Doye,J. Chem. Phys.134,085101 (2011)] https://doi.org/10.1063/1.3552946 originally designed to reproduce the properties of DNA molecules with average sequences. The new parametrization introduces sequence-dependent stacking and base-pairing interaction strengths chosen to reproduce the melting temperatures of short duplexes. By developing a histogram reweighting technique, we are able to fit our parameters to the melting temperatures of thousands of sequences. To demonstrate the flexibility of the model, we study the effects of sequence on: (a) the heterogeneous stacking transition of single strands, (b) the tendency of a duplex to fray at its melting point, (c) the effects of stacking strength in the loop on the melting temperature of hairpins, (d) the force-extension properties of single strands, and (e) the structure of a kissing-loop complex. Where possible, we compare our results with experimental data and find a good agreement. A simulation code called oxDNA, implementing our model, is available as a free software.

      REFERENCES

      1.
      W.
      Saenger
      ,
      Principles of Nucleic Acid Structure
      (
      Springer-Verlag
      ,
      New York
      ,
      1984
      ).
      3.
      J.
      Bath
      ,
      S. J.
      Green
      , and
      A. J.
      Turberfield
      ,
      Angew. Chem., Int. Ed.
      117
      ,
      4432
      (
      2005
      ).
      4.
      J.
      Bath
      ,
      S. J.
      Green
      ,
      K. E.
      Allan
      , and
      A. J.
      Turberfield
      ,
      Small
      5
      ,
      1513
      (
      2009
      ).
      5.
      E.
      Winfree
      ,
      F. R.
      Liu
      ,
      L. A.
      Wenzler
      , and
      N. C.
      Seeman
      ,
      Nature (London)
      394
      ,
      539
      (
      1998
      ).
      6.
      P. W. K.
      Rothemund
      ,
      Nature (London)
      440
      ,
      297
      (
      2006
      ).
      7.
      J.
      Šponer
      ,
      K. E.
      Riley
      , and
      P.
      Hobza
      ,
      Phys. Chem. Chem. Phys.
      10
      ,
      2595
      (
      2008
      ).
      8.
      A.
      Pérez
      ,
      A.
      Noy
      ,
      F.
      Lankaš
      ,
      F. J.
      Luque
      , and
      M.
      Orozco
      ,
      Nucleic Acids Res.
      32
      ,
      6144
      (
      2004
      ).
      9.
      P.
      Hobza
      and
      J.
      Šponer
      ,
      Chem. Rev.
      99
      ,
      3247
      (
      1999
      ).
      10.
      J.
      Šponer
       et al.,
      Chem.- Eur. J.
      12
      ,
      2854
      (
      2006
      ).
      11.
      D.
      Svozil
      ,
      P.
      Hobza
      , and
      J.
      Šponer
      ,
      J. Phys. Chem. B
      114
      ,
      1191
      (
      2010
      ).
      12.
      J.
      Šponer
      ,
      P.
      Jurečka
      , and
      P.
      Hobza
      ,
      J. Am. Chem. Soc.
      126
      ,
      10142
      (
      2004
      ).
      13.
      W. D.
      Cornell
       et al.,
      J. Am. Chem. Soc.
      117
      ,
      5179
      (
      1995
      ).
      14.
      B. R.
      Brooks
       et al.,
      J. Comput. Chem.
      4
      ,
      187
      (
      1983
      ).
      15.
      A.
      Pérez
      ,
      F. J.
      Luque
      , and
      M.
      Orozco
      ,
      Acc. Chem. Res.
      45
      ,
      196
      (
      2012
      ).
      16.
      E. J.
      Sambriski
      ,
      D. C.
      Schwartz
      , and
      J. J.
      de Pablo
      ,
      Biophys. J.
      96
      ,
      1675
      (
      2009
      ).
      17.
      J. C.
      Araque
      ,
      A. Z.
      Panagiotopoulos
      , and
      M. A.
      Robert
      ,
      J. Chem. Phys.
      134
      ,
      165103
      (
      2011
      ).
      18.
      M. C.
      Linak
      ,
      R.
      Tourdot
      , and
      K. D.
      Dorfman
      ,
      J. Chem. Phys.
      135
      ,
      205102
      (
      2011
      ).
      19.
      K.
      Drukker
      ,
      G.
      Wu
      , and
      G. C.
      Schatz
      ,
      J. Chem. Phys.
      114
      ,
      579
      (
      2001
      ).
      20.
      M.
      Sales-Pardo
      ,
      R.
      Guimera
      ,
      A. A.
      Moreira
      ,
      J.
      Widom
      , and
      L.
      Amaral
      ,
      Phys. Rev. E
      71
      ,
      051902
      (
      2005
      ).
      21.
      M.
      Kenward
      and
      K. D.
      Dorfman
      ,
      J. Chem. Phys.
      130
      ,
      095101
      (
      2009
      ).
      22.
      T. E.
      Ouldridge
      ,
      I. G.
      Johnston
      ,
      A. A.
      Louis
      , and
      J. P. K.
      Doye
      ,
      J. Chem. Phys.
      130
      ,
      065101
      (
      2009
      ).
      23.
      T. A.
      Knotts
       IV
      ,
      N.
      Rathore
      ,
      D. C.
      Schwartz
      , and
      J. J.
      de Pablo
      ,
      J. Chem. Phys.
      126
      ,
      084901
      (
      2007
      ).
      24.
      A.-M.
      Florescu
      and
      M.
      Joyeux
      ,
      J. Chem. Phys.
      135
      ,
      085105
      (
      2011
      ).
      25.
      A.
      Morriss-Andrews
      ,
      J.
      Rottler
      , and
      S. S.
      Plotkin
      ,
      J. Chem. Phys.
      132
      ,
      035105
      (
      2010
      ).
      26.
      A. V.
      Savin
      ,
      M. A.
      Mazo
      ,
      I. P.
      Kikot
      ,
      L. I.
      Manevitch
      , and
      A. V.
      Onufriev
      ,
      Phys. Rev. B
      83
      ,
      245406
      (
      2011
      ).
      27.
      P. D.
      Dans
      ,
      A.
      Zeida
      ,
      M. R.
      Machado
      , and
      S.
      Pantano
      ,
      J. Chem. Theory Comput.
      6
      ,
      1711
      (
      2010
      ).
      28.
      A.
      Savelyev
      and
      G. A.
      Papoian
      ,
      Biophys. J.
      96
      ,
      4044
      (
      2009
      ).
      29.
      N. B.
      Becker
      and
      R.
      Everaers
      ,
      Phys. Rev. E
      76
      ,
      021923
      (
      2007
      ).
      30.
      F.
      Lankaš
      ,
      Innovations in Biomolecular Modeling and Simulations
      ,
      RSC Biomolecular Sciences Vol. 2
      (
      The Royal Society of Chemistry
      ,
      2012
      ).
      31.
      T.
      Dauxois
      ,
      M.
      Peyrard
      , and
      A. R.
      Bishop
      ,
      Phys. Rev. E
      47
      ,
      684
      (
      1993
      ).
      32.
      C.
      Nisoli
      and
      A. R.
      Bishop
      ,
      Phys. Rev. Lett.
      107
      ,
      068102
      (
      2011
      ).
      33.
      S.
      Cocco
      and
      R.
      Monasson
      ,
      Phys. Rev. Lett.
      83
      ,
      5178
      (
      1999
      ).
      34.
      T. E.
      Ouldridge
      ,
      A. A.
      Louis
      , and
      J. P. K.
      Doye
      ,
      Phys. Rev. Lett.
      104
      ,
      178101
      (
      2010
      ).
      35.
      T. E.
      Ouldridge
      ,
      A. A.
      Louis
      , and
      J. P. K.
      Doye
      ,
      J. Chem. Phys.
      134
      ,
      085101
      (
      2011
      ).
      36.
      T. E.
      Ouldridge
      , “
      Coarse-grained modelling of DNA and DNA nanotechnology
      ,” D.Phil. dissertation (
      University of Oxford
      ,
      2011
      ), available athttp://tinyurl.com/7ycbx7c.
      37.
      F.
      Romano
      ,
      A.
      Hudson
      ,
      J. P. K.
      Doye
      ,
      T. E.
      Ouldridge
      , and
      A. A.
      Louis
      ,
      J. Chem. Phys.
      136
      ,
      215102
      (
      2012
      ).
      38.
      C.
      De Michele
      ,
      L.
      Rovigatti
      ,
      T.
      Bellini
      , and
      F.
      Sciortino
      ,
      Soft Matter
      8
      ,
      8388
      (
      2012
      ).
      39.
      C.
      Matek
      ,
      T. E.
      Ouldridge
      ,
      A.
      Levy
      ,
      J. P. K.
      Doye
      , and
      A. A.
      Louis
      , “
      DNA Cruciform Arms Nucleate through a Correlated but Asynchronous Cooperative Mechanism
      ,”
      J. Phys. Chem. B
      (to be published).
      40.
      C.
      Calladine
      and
      H.
      Drew
      ,
      Understanding DNA: The Molecule and How It Works
      (
      Academic
      ,
      1997
      ).
      41.
      W. K.
      Olson
      ,
      A. A.
      Gorin
      ,
      X.-J.
      Lu
      ,
      L. M.
      Hock
      , and
      V. B.
      Zhurkin
      ,
      Proc. Natl. Acad. Sci. U.S.A.
      95
      ,
      11163
      (
      1998
      ).
      42.
      S.
      Geggier
      and
      A.
      Vologodskii
      ,
      Proc. Natl. Acad. Sci. U.S.A.
      107
      ,
      15421
      (
      2010
      ).
      43.
      B.
      Basham
      ,
      G. P.
      Schroth
      , and
      P. S.
      Ho
      ,
      Proc. Natl. Acad. Sci. U.S.A.
      92
      ,
      6464
      (
      1995
      ).
      44.
      We use poly-dC,dA,dT, and dG notation for DNA sequences with repeated nucleotide content to distinguish them from RNA sequences, which are referred to with rC, rA, rU, and rG.
      45.
      B.
      Alberts
       et al.,
      Molecular Biology of the Cell
      ,4th ed. (
      Garland Science
      ,
      2002
      ).
      46.
      V.
      Ortiz
      and
      J. J.
      de Pablo
      ,
      Phys. Rev. Lett.
      106
      ,
      238107
      (
      2011
      ).
      47.
      J.
      SantaLucia
       Jr.
      ,
      Proc. Natl. Acad. Sci. U.S.A.
      17
      ,
      1460
      (
      1998
      ).
      48.
      J.
      SantaLucia
       Jr.
      and
      D.
      Hicks
      ,
      Annu. Rev. Biophys. Biomol. Struct.
      33
      ,
      415
      (
      2004
      ).
      49.
      J. N.
      Zadeh
       et al.,
      J. Comput. Chem.
      32
      ,
      170
      (
      2011
      ).
      50.
      N. R.
      Markham
      and
      M.
      Zuker
      ,
      Methods Mol. Bio.
      453
      ,
      3
      (
      2008
      ).
      51.
      N. R.
      Markham
      and
      M.
      Zuker
      ,
      Nucleic Acids Res.
      33
      ,
      W577
      (
      2005
      ).
      53.
      B. H.
      Zimm
      ,
      J. Chem. Phys.
      33
      ,
      1349
      (
      1960
      ).
      54.
      D.
      Poland
      and
      H. A.
      Scheraga
      ,
      J. Chem. Phys.
      45
      ,
      1464
      (
      1966
      ).
      55.
      D.
      Poland
      and
      H. A.
      Scheraga
      ,
      Theory of Helix-Coil Transitions in Biopolymers: Statistical Mechanical Theory of Order-disorder Transitions in Biological Macromolecules
      (
      Academic
      ,
      New York
      ,
      1970
      ).
      56.
      D.
      Jost
      and
      R.
      Everaers
      ,
      Biophys. J.
      96
      ,
      1056
      (
      2009
      ).
      57.
      A.
      Krueger
      ,
      E.
      Protozanova
      , and
      M. D.
      Frank-Kamenetskii
      ,
      Biophys. J.
      90
      ,
      3091
      (
      2006
      ).
      58.
      T.
      Ambjörnsson
      ,
      S. K.
      Banik
      ,
      O.
      Krichevsky
      , and
      R.
      Metzler
      ,
      Phys. Rev. Lett.
      97
      ,
      128105
      (
      2006
      ).
      59.
      T.
      Ambjörnsson
      ,
      S. K.
      Banik
      ,
      O.
      Krichevsky
      , and
      R.
      Metzler
      ,
      Biophys. J.
      92
      ,
      2674
      (
      2007
      ).
      60.
      J. M.
      Huguet
       et al.,
      Proc. Natl. Acad. Sci. U.S.A.
      107
      ,
      15431
      (
      2010
      ).
      61.
      T. E.
      Ouldridge
      ,
      A. A.
      Louis
      , and
      J. P. K.
      Doye
      ,
      J. Phys.: Condens. Matter
      22
      ,
      104102
      (
      2010
      ).
      62.
      A. M.
      Ferrenberg
      and
      R. H.
      Swendsen
      ,
      Phys. Rev. Lett.
      61
      ,
      2635
      (
      1988
      ).
      63.
      D.
      Landau
      and
      K.
      Binder
      ,
      A Guide to Monte Carlo Simulations in Statistical Physics
      (
      Cambridge University Press
      ,
      New York, NY
      ,
      2005
      ).
      64.
      G.
      Torrie
      and
      J. P.
      Valleau
      ,
      J. Comp. Phys.
      23
      ,
      187
      (
      1977
      ).
      65.
      W.-S.
      Chen
       et al.,
      Phys. Rev. Lett.
      105
      ,
      218104
      (
      2010
      ).
      66.
      S.
      Whitelam
      ,
      E. H.
      Feng
      ,
      M. F.
      Hagan
      , and
      P. L.
      Geissler
      ,
      Soft Matter
      5
      ,
      1521
      (
      2009
      ).
      67.
      D.
      Frenkel
      and
      B.
      Smit
      ,
      Understanding Molecular Simulation: From Algorithms to Applications
      ,1st ed. (
      Academic
      ,
      Orlando, FL
      ,
      1996
      ).
      68.
      J.
      Russo
      ,
      P.
      Tartaglia
      , and
      F.
      Sciortino
      ,
      J. Chem. Phys.
      131
      ,
      014504
      (
      2009
      ).
      69.
      J.
      Holbrook
      ,
      M.
      Capp
      ,
      R.
      Saecker
      , and
      M.
      Record
      ,
      Biochemistry
      38
      ,
      8409
      (
      1999
      ).
      70.
      S.
      Nonin
      ,
      J.-L.
      Leroy
      , and
      M.
      Gueron
      ,
      Biochemistry
      34
      ,
      10652
      (
      1995
      ).
      71.
      D. Y.
      Zhang
      and
      E.
      Winfree
      ,
      J. Am. Chem. Soc.
      131
      ,
      17303
      (
      2009
      ).
      72.
      N. L.
      Goddard
      ,
      G.
      Bonnet
      ,
      O.
      Krichevsky
      , and
      A.
      Libchaber
      ,
      Phys. Rev. Lett.
      85
      ,
      2400
      (
      2000
      ).
      73.
      Y.
      Seol
      ,
      G. M.
      Skinner
      ,
      K.
      Visscher
      ,
      A.
      Buhot
      , and
      A.
      Halperin
      ,
      Phys. Rev. Lett.
      98
      ,
      158103
      (
      2007
      ).
      74.
      Y.
      Seol
      ,
      G. M.
      Skinner
      , and
      K.
      Visscher
      ,
      Phys. Rev. Lett.
      93
      ,
      118102
      (
      2004
      ).
      75.
      G.
      Mishra
      ,
      D.
      Giri
      , and
      S.
      Kumar
      ,
      Phys. Rev. E
      79
      ,
      031930
      (
      2009
      ).
      76.
      M.-N.
      Dessinges
       et al.,
      Phys. Rev. Lett.
      89
      ,
      248102
      (
      2002
      ).
      77.
      S. B.
      Smith
      ,
      Y.
      Cui
      , and
      C.
      Bustamante
      ,
      Science
      271
      ,
      795
      (
      1996
      ).
      78.
      Y.
      Zhang
      ,
      H.
      Zhou
      , and
      Z.-C.
      Ou-Yang
      ,
      Biophys. J.
      81
      ,
      1133
      (
      2001
      ).
      79.
      A.
      Montanari
      and
      M.
      Mézard
      ,
      Phys. Rev. Lett.
      86
      ,
      2178
      (
      2001
      ).
      80.
      J.
      Bois
       et al.,
      Nucleic Acids Res.
      33
      ,
      4090
      (
      2005
      ).
      81.
      R. M.
      Dirks
      and
      N. A.
      Pierce
      ,
      Proc. Natl. Acad. Sci. U.S.A.
      101
      ,
      15275
      (
      2004
      ).
      82.
      S.
      Venkataraman
      ,
      R. M.
      Dirks
      ,
      P. W. K.
      Rothemund
      ,
      E.
      Winfree
      , and
      N. A.
      Pierce
      ,
      Nat. Nanotechnol.
      2
      ,
      490
      (
      2007
      ).
      83.
      S. J.
      Green
      ,
      J.
      Bath
      , and
      A. J.
      Turberfield
      ,
      Phys. Rev. Lett.
      101
      ,
      238101
      (
      2008
      ).
      84.
      P.
      Yin
      ,
      H. M.
      Choi
      ,
      C. R.
      Calvert
      , and
      N. A.
      Pierce
      ,
      Nature (London)
      451
      ,
      318
      (
      2008
      ).
      85.
      R. A.
      Muscat
      ,
      J.
      Bath
      , and
      A. J.
      Turberfield
      ,
      Nano Lett.
      11
      ,
      982
      (
      2011
      ).
      86.
      S. J.
      Green
      ,
      D.
      Lubrich
      , and
      A. J.
      Turberfield
      ,
      Biophys. J.
      91
      ,
      2966
      (
      2006
      ).
      87.
      B. M.
      Mladek
      ,
      J.
      Fornleitner
      ,
      F. J.
      Martinez-Veracoechea
      ,
      A.
      Dawid
      , and
      D.
      Frenkel
      ,
      Phys. Rev. Lett.
      108
      ,
      268301
      (
      2012
      ).
      © 2012 American Institute of Physics.
      2012
      American Institute of Physics
      You do not currently have access to this content.
      Pay-Per-View Access
      $40.00

      Sign In

      You could not be signed in. Please check your credentials and make sure you have an active account and try again.
      2,699Views
      254Web of Science
      288Crossref
      • Online ISSN 1089-7690
      • Print ISSN 0021-9606
      • © Copyright AIP Publishing LLC
      Close Modal
      Close Modal
      This Feature Is Available To Subscribers Only

      Sign In orCreate an Account

      Close Modal
      Close Modal

      [8]ページ先頭

      ©2009-2025 Movatter.jp