3483Accesses
55Altmetric
6Mentions
Abstract
Adequate nutrition supports the development of healthy honey bee colonies. We give an overview of the nutritional demands of honey bee workers at three levels: (1) colony nutrition with the possibility of supplementation of carbohydrates and proteins; (2) adult nutrition and (3) larval nutrition. Larvae are especially dependant on protein and brood production is strongly affected by shortages of this nutrient. The number of larvae reared may be reduced to maintain the quality of remaining offspring. The quality of developing workers also suffers under conditions of larval starvation, leading to slightly affected workers. Larval starvation, alone or in combination with other stressors, can weaken colonies. The potential of different diets to meet nutritional requirements or to improve survival or brood production is outlined. We discuss nutrition-related risks to honey bee colonies such as starvation, monocultures, genetically modified crops and pesticides in pollen and nectar.
Zusammenfassung
Eine ausgewogene Ernährung mit ausreichend Proteinen, Kohlenhydraten, Fetten, Vitaminen und Mineralstoffen ist notwendig für das Überleben eines Bienenvolkes, die Entwicklung der Arbeiterinnen und die Aufzucht von Brut. Im Superorganismus Honigbiene sind diese drei Ebenen der Ernährung eng miteinander verknüpft (Abb. 1), und Defizite in einer dieser Ebenen wirken sich negativ auf die anderen aus.
Für das Überleben des Volkes sind vor allem Kohlenhydrate notwendig. Eine Arbeiterin benötigt pro Tag etwa 4 mg verwertbaren Zucker. Allerdings sind nicht alle Zucker verwertbar, einige sind für Bienen giftig. Ebenfalls giftig ist Hydroxymethylfurfural (HMF) das sich bei thermischer Zersetzung und langer Lagerung aus Zuckern bildet. Der HMF Gehalt erhältlicher Maissirupe liegt zwischen 3,1 und 28,7 ppm, kann aber durch Lagerung bei zu hohen Temperaturen drastisch ansteigen und die Mortalität von Bienen erhöhen.
Pollen ist die natürliche Proteinquelle von Bienen. Daraus bilden Ammenbienen ein proteinreiches Futter für die Brut. Ist nicht genügend Pollen vorhanden, reduziert das Bienenvolk die Zahl der produzierten Larven durch Kannibalismus. Ein Mangel von Protein in der Larval-oder Adultnahrung führt zur reduzierten Entwicklung der Brutfutterdrüsen und Ovarien sowie einer kürzeren Lebensdauer. Proteinmangel während der Larvalernährung führt darüber hinaus zu beeinträchtigter Thoraxentwicklung, Flugleistung und Verhaltensänderungen. Bei Pollenmangel können dem Bienenvolk andere Proteinquellen angeboten werden, Tabelle I zeigt die pro Tag konsumierten Mengen unterschiedlicher Diäten, deren Bestandteile, Proteingehalt und die Größe der untersuchten Einheit. Ein Proteingehalt zwischen 23 und 30 % hat sich als zur Brutaufzucht geeignet erwiesen. Unseren Berechnungen zufolge erhält ein Volk mit jedem konsumierten Gramm etwa die Menge Protein die 4 Larven bis zur Verdeckelung benötigen.
Pollen liefert ebenfalls Fette, die vor allem in der Larvalentwicklung benötigt werden. Honigbienen können Sterole nicht selbst herstellen, und verfüttern überwiegend 24-Methylen-Cholesterin an die Brut. Das tun sie, unter Verwendung von Körperreserven auch dann, wenn kein Cholesterin in der Nahrung vorhanden ist.
Arbeiterinnen (oder symbiontische Mikroorganismen) sind in der Lage Vitamin C zu synthetisieren. Pyridoxin, ein Vitamin aus dem B-Komplex, ist hingegen notwendig für erfolgreiche Brutaufzucht. Obwohl fettlösliche Vitamine nicht essentiell für die Honigbiene sind, steigert ihre Anwesenheit in der Diät die Menge an produzierter Brut.
Neben dem Verhungern oder der erwähnten Mangelernährung stellen einseitige Ernährung durch Monokulturen, genetisch modifizierte Pflanzen oder vom Menschen oder der Pflanze produzierte Giftstoffe die mit der Nahrung eingetragen werden Gefahren für die Honigbiene dar.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others

You are what you eat: relative importance of diet, gut microbiota and nestmates for honey bee,Apis mellifera, worker health
References
Alaux C., Ducloz F., Crauser D., Le Conte Y. (2010) Diet effects on honeybee immunocompetence, Biol. Lett., DOI:10.1098/rsbl.2009.0986.
Alqarni A.S. (2006) Influence of some protein diets on the longevity and some physiological conditions of honeybeeApis mellifera L. workers, J. Biol. Sci. 6, 734–737.
Amdam G.V., Omholt S.W. (2002) The regulatory anatomy of honeybee lifespan, J. Theor. Biol. 216, 209–228.
Amdam G.V., Omholt S.W. (2003) The hive bee to forager transition in honeybee colonies: the double repressor hypothesis, J. Theor. Biol. 223, 451–464.
Amdam G.V., Hartfelder K., Norberg K., Hagen A., Omholt S.W. (2004) Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J. Econ. Entomol. 97, 741–747.
Amdam G.V., Norberg K., Hagen A., Omholt S.W. (2003) Social exploitation of vitellogenin, Proc. Natl. Acad. Sci. 100, 1799–1802.
Anderson L.M., Dietz A. (1976) Pyridoxine requirement of the honey bee (Apis mellifera) for brood rearing, Apidologie 7, 67–84.
Aupinel P., Fortini D., Dufour H., Tasei J.N., Michaud B., Odoux J.F., Pham-Delègue M.H. (2005) Improvement of artificial feeding in a standard in vitro method for rearingApis mellifera larvae, Bull. Insect 58, 107–111.
Avni D., Dag A., Shafir S. (2009) The effect of surface area of pollen patties fed to honey bee (Apis mellifera) colonies on their consumption, brood production and honey yields, J. Apic. Res. 48, 23–28.
Babendreier D., Kalberer N., Romeis J., Fluri P., Bigler F. (2004) Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants, Apidologie 35, 293–300.
Barker R.J. (1977) Some carbohydrates found in pollen and pollen substitutes are toxic to honey bees, J. Nutr. 107, 1859–1862.
Barker R.J. (1990) Poisoning by plants, in: Morse R.A., Nowogrodzki R. (Eds.), Honey bee pests, predators, and diseases, Cornell University Press, Ithaca, N.Y. and London, pp. 306–328.
Barker R.J., Lehner Y. (1974) Acceptance and sustenance value of naturally occurring sugars fed to newly emerged adult workers of honey bees (Apis mellifera L.), J. Exp. Zool. 187, 277–285.
Barker R.J., Lehner Y. (1976) Galactose a sugar toxic to honey bees found in exudate of tulip flowers, Apidologie 7, 109–112.
Barker R.J., Lehner Y. (1978) Laboratory comparison of high fructose corn syrup, grape syrup, honey, and sucrose syrup as maintenance food for caged honey bees, Apidologie 9, 111–116.
Brodschneider R., Moosbeckhofer R., Crailsheim K. (2010) Surveys as a tool to record winter losses of honey bee colonies — a 2-year case study in Austria and South Tyrol, Tyrol, J. Apic. Res. 49, 23–30.
Brodschneider R., Hrassnigg N., Vollmann J., Petz M., Riessberger-Gallé U., Crailsheim K. (2007) Liquid nutrition within a honeybee colony — who feeds? Apidologie 38, 492.
Brodschneider R., Haidmayer C., Riessberger-Gallé U., Crailsheim K. (2009a) Protein uptake in honeybee colonies supplemented with two protein diets simultaneously, Apidologie 40, 662.
Brodschneider R., Riessberger-Gallé U., Crailsheim K. (2009b) Flight performance of artificially reared honeybees (Apis mellifera), Apidologie 40, 441–449.
Brodschneider R., Steiner D., Moder A., Vollmann J., Riessberger-Gallé U., Crailsheim K. (2009c) Synthetic larval diet produces lighter and smaller honeybees (Apis mellifera), Apidologie 40, 663–664.
Campana B.J., Moeller F.E. (1977) Honey bees: preference for and nutritive value of pollen from five plant sources, J. Econ. Entomol. 70, 39–41.
Cantrill R.C., Hepburn H.R., Warner S.J. (1981) Changes in lipid composition during sealed brood development of African worker honeybees, Comp. Biochem. Physiol. B 68, 351–353.
Crailsheim K. (1986) Dependence of protein metabolism on age and season in the honeybee (Apis mellifica carnica Pollm), J. Insect Physiol. 32, 629–634.
Crailsheim K. (1990) The protein balance of the honey bee worker, Apidologie 21, 417–429.
Crailsheim K. (1991) Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies, J. Comp. Physiol. B 161, 55–60.
Crailsheim K. (1998) Trophallactic interactions in the adult honeybee (Apis mellifera L.), Apidologie 29, 97–112.
Crailsheim K., Schneider L.H.W., Hrassnigg N., Bühlmann G., Brosch U., Gmeinbauer R., Schöffmann B. (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function, J. Insect Physiol. 38, 409–419.
Cremonez T.M., de Jong D., Bitondi M.M.G. (1998) Quantification of hemolymph proteins as a fast method for testing protein diets for honey bees (Hymenoptera: Apidae), J. Econ. Entomol. 91, 1284–1289.
Daly H.V., Danka R.G., Hoelmer K., Rinderer T.E., Buco S.M. (1995) Honey bee morphometrics: linearity of variables with respect to body size and classification tested with European worker bees reared by varying ratios of nurse bees, J. Apic. Res. 34, 129–145.
DeGrandi-Hoffman G., Hagler J. (2000) The flow of incoming nectar through a honey bee (Apis mellifera L.) colony as revealed by a protein marker, Insectes Soc. 47, 302–306.
DeGrandi-Hoffman G., Wardell G., Ahumada-Secura F., Rinderer T.E., Danka R., Pettis J. (2008) Comparisons of pollen substitute diets for honeybees: consumption rates by colonies and effects on brood and adult populations, J. Apic. Res. 47, 265–270.
De Groot A.P. (1953) Protein and amino acid requirements of the honeybee (Apis mellifica L.), Physiol. Comp. Oecol. 3, 197–285.
De Jong D., da Silva E.J., Kevan P.G., Atkinson J.L. (2009) Pollen substitutes increase honey bee haemolymph protein levels as much as or more than does pollen, J. Apic. Res. 48, 34–37.
Decourtye A., Mader E., Desneux N. (2010) Landscape scale enhancement of floral resources for honey bees in agro-ecosystems, Apidologie 41, 264–277.
Dietz A., Stevenson H.R. (1980) Influence of long term storage on the nutritional value of frozen pollen for brood rearing of honey bees, Apidologie 11, 143–151.
Dimou M., Thrasyvoulou A. (2009) Pollen analysis of honeybee rectum as a method to record the bee pollen flora of an area, Apidologie 40, 124–133.
Doner L.W. (1977) The sugars of honey — a review, J. Sci. Food Agric. 28, 443–456.
Doull K.M. (1980a) Relationships between consumption of a pollen supplement, honey production, and broodrearing in colonies of honeybeesApis mellifera L. I, Apidologie 11, 361–365.
Doull K.M. (1980b) Relationships between consumption of a pollen supplement, honey production and broodrearing in colonies of honeybeesApis mellifera L. II, Apidologie 11, 367–374.
Dustmann J.H., von der Ohe W. (1988) Einfluß von Kälteeinbrüchen auf die Frühjahrsentwinklung von Bienenvölkern (Apis mellifera L), Apidologie 19, 245–254.
Eischen F.A., Rothenbuhler W.C., Kulincevic J.M. (1982) Length of life and dry weight of worker honeybees reared in colonies with different worker-larva ratios, J. Apic. Res. 21, 19–25.
Ellis A.M., Hayes G.W. Jr (2009) An evaluation of fresh versus fermented diets for honey bees (Apis mellifera), J. Apic. Res. 48, 215–216.
Free J.B. (1965) The behaviour of honeybee foragers when their colonies are fed sugar syrup, J. Apic. Res. 4, 85–88.
Forsgren E., Vásquez A., Olofsson T.C., Fries I. (2010) Novel lactic acid bacteria inhibitingPaenibacillus larvae in honey bee larvae, Apidologie 41, 99–108.
Gilliam M. (1997) Identification and roles of non-pathogenic microflora associated with honey bees, FEMS Microbiol. Lett. 155, 1–10.
Girolami V., Mazzon L., Squartini A., Mori N., Marzaro M., Di Bernardo A., Greatti M., Giorio C., Tapparo A. (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees, J. Econ. Entomol. 102, 1808–1815.
Hagedorn H.H., Moeller F.E. (1968) Effect of the age of pollen used in pollen supplements on their nutritive value for the honeybee. I. Effect on thoracic weight, development of hypopharyngeal glands, and brood rearing, J. Apic. Res. 7, 89–95.
Haydak M.H. (1935) Brood rearing by honeybees confined to a pure carbohydrate diet, J. Econ. Entomol. 28, 657–660.
Haydak M.H. (1970) Honey bee nutrition, Ann. Rev. Entomol. 15, 143–156.
Herbert E.W. (1980) Effect of diet on the rate of brood rearing by naturally and instrumentally inseminated queens, Apidologie 11, 57–62.
Herbert E.W., Shimanuki H. (1977) Brood-rearing capability of caged honeybees fed synthetic diets, J. Apic. Res. 15, 150–153.
Herbert E.W., Shimanuki H. (1978a) Chemical composition and nutritive value of bee-collected and bee-stored pollen, Apidologie 9, 33–40.
Herbert E.W., Shimanuki H. (1978b) Mineral requirements for brood-rearing by honey bees fed a synthetic diet, J. Apic. Res. 17, 118–122.
Herbert E.W., Shimanuki H. (1978c) Effect of fat soluble vitamins on the brood rearing capabilities of honey bees fed a synthetic diet, Ann. Entomol. Soc. Am. 71, 689–691.
Herbert E.W., Shimanuki H. (1982) Effect of population density and available diet on the rate of brood rearing by honey bees offered a pollen substitute, Apidologie 13, 21–28.
Herbert E.W., Bickley W.E., Shimanuki H. (1970) The brood-rearing capability of caged honey bees fed dandelion and mixed pollen diets, J. Econ. Entomol. 63, 215–218.
Herbert E.W., Shimanuki H. Caron D. (1977) Optimum protein levels required by honey bees (Hymenoptera, Apidae) to initiate and maintain brood rearing, Apidologie 8, 141–146.
Herbert E.W., Shimanuki H., Shasha B.S. (1980a) Brood rearing and food consumption by honeybee colonies fed pollen substitutes supplemented with starch encapsulated pollen extracts, J. Apic. Res. 19, 115–118.
Herbert E.W. Jr., Svoboda J.A., Thompson M.J., Shimanuki H. (1980b) Sterol utilization in honey bees fed a synthetic diet: Effects on brood rearing, J. Insect Physiol. 26, 287–289.
Herbert E.W., Sylvester H.A., Vandenberg J.D., Shimanuki H. (1988) Influence of nutritional stress and the age of adults on the morphometrics of honey bees (Apis mellifera L.), Apidologie 19, 221–230. 26, 287–289.
Herbert E.W., Vanderslice J.T., Higgs D.J. (1985) Effect of dietary vitamin C levels on the rate of brood production of freeflying and confined colonies of honey bees, Apidologie 16, 385–394.
Hersch M.I., Crewe R.M., Hepburn H.R., Thompson P.R., Savage N. (1978) Sequential development of glycolytic competence in muscles of worker honeybees, Comp. Biochem. Physiol. B 61, 427–431.
Hoover S.E., Higo H.A., Winston M.L. (2006) Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition, J. Comp. Physiol. B 176, 55–63.
Hopkins C.Y., Jevans A.W., Boch R. (1969) Occurence of octadeca-trans-2, cis-9, cis-12-trienoic acid in pollen attractive to the honey bee, Can. J. Biochem. Cell Biol. 47, 433–436.
Hrassnigg N., Crailsheim K. (2005) Differences in drone and worker physiology in honeybees (Apis mellifera L.), Apidologie 36, 255–277.
Hrassnigg N., Brodschneider R., Fleischmann P.H., Crailsheim K. (2005) Unlike nectar foragers, honeybee drones (Apis mellifera) are not able to utilize starch as fuel for flight, Apidologie 36, 547–557.
Imdorf A., Rickli M., Kilchenmann V., Bogdanov S., Wille H. (1998) Nitrogen and mineral constituents of honey bee worker brood during pollen shortage, Apidologie 29, 315–325.
Jachimowicz T., El Sherbiny G. (1975) Zur Problematik der Verwendung von Invertzucker für die Bienenfütterung (Problems of invert sugar as food for honeybees), Apidologie 6, 121–143.
Jay S.C. (1964) Starvation studies of larval honey bees, Can. J. Zool. 42, 455–462.
Johnson R.M., Ellis M.D., Mullin C.A., Frazier M. (2010) Pesticides and honey bee toxicity — U.S.A., Apidologie, 41, 312–331.
Kralj J., Brockmann A., Fuchs S., Tautz, J. (2007) The parasitic miteVarroa destructor affects non-associative learning in honey bee foragers,Apis mellifera L., J. Comp. Physiol. A 193, 363–370.
Kunert K., Crailsheim K. (1988) Seasonal changes in carbohydrate, lipid and protein content in emerging worker honeybees and their mortality, J. Apic. Res. 27, 13–21.
LeBlanc B.W., Eggleston G., Sammataro D., Cornett C., Dufault R., Deeby T., Cyr E.S.T. (2009) Formation of hydroxymethylfurfural in domestic high-fructose corn syrup and its toxicity to the honey bee (Apis mellifera), J. Agric. Food Chem. 57, 7369–7376.
Loper G.M., Berdel R.L. (1980a) A nutritional bioassay of honeybee brood-rearing potential, Apidologie 11, 181–189.
Loper G.M., Berdel R.L. (1980b) The effects of nine pollen diets on broodrearing of honeybees, Apidologie 11, 351–359.
Malone L.A., Pham-Delègue M.-H. (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.), Apidologie 32, 287–304.
Malone L.A., Todd J.H., Burgess E.P.J., Christeller J.T. (2004) Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor, Apidologie 35, 655–664.
Manning R., Rutkay A., Eaton L., Dell B. (2007) Lipid-enhanced pollen and lipid-reduced flour diets and their effect on the longevity of honey bees (Apis mellifera L.), Aust. J. Entomol. 46, 251–257.
Mattila H.R., Otis G.W. (2006a) Influence of pollen diet in spring on development of honey bee (Hymenoptera: Apidae) colonies, J. Econ. Entomol. 99, 604–613.
Mattila H.R., Otis G.W. (2006b) The effects of pollen availability during larval development on the behaviour and physiology of spring-reared honey bee, Apidologie 37, 533–546.
Maurizio A. (1954) Pollenernährung und Lebensvorgänge bei der Honigbiene (Apis mellifica L.), Landwirtsch. Jahrb. Schweiz 62, 115–182.
Mayack C., Naug D. (2009) Energetic stress in the honeybeeApis mellifera fromNosema ceranae infection, J. Invertebr. Pathol. 100, 185–188.
McLellan A.R. (1977) Honeybee colony weight as an index of honey production and nectar flow: A critical evaluation, J. Appl. Ecol. 14, 401–408.
Moritz B., Crailsheim K. (1987) Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.), J. Insect Physiol. 33, 923–931.
Naug D. (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses, Biol. Conserv. 142, 2369–2372.
Naug D., Gibbs A. (2009) Behavioral changes mediated by hunger in honeybees infected withNosema ceranae, Apidologie 40, 595–599.
Neupane K.R., Thapa R.B. (2005) Alternative to offseason sugar supplement feeding of honeybees, J. Inst. Agric. Anim. Sci. 26, 77–81.
Nicolson S.W. (2009) Water homeostasis in bees, with the emphasis on sociality, J. Exp. Biol. 212, 429–434.
Nicolson S.W., Human H. (2008) Bees get a head start on honey production, Biol. Lett. 4, 299–301.
Oldroyd B.P. (2007) What’s killing American honey bees? PLoS Biol. 5, e168.
Pankiw T., Sagili R.R., Metz B.N. (2008) Brood pheromone effects on colony protein supplement consumption and growth in the honey bee (Hymenoptera: Apidae) in a subtropical winter climate, J. Econ. Entomol. 101, 1749–1755.
Pernal S.F., Currie R.W. (2000) Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.), Apidologie 31, 387–409.
Ramirez-Romero R., Desneux N., Decourtye A., Chaffiol A., Pham-Delègue M.H. (2008) Does Cry1Ab protein affect learning performances of the honey beeApis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol. Environ. Saf. 70, 327–333.
Randolt K., Gimple O., Geissendörfer J., Reinders J., Prusko C., Mueller M.J., Albert S., Tautz J., Beier H. (2008) Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults, Arch. Insect Biochem. Physiol. 69, 155–167.
Rembold H., Lackner B. (1981) Rearing of honeybee larvae in vitro: Effect of yeast extract on queen differentiation, J. Apic. Res. 20, 165–171.
Rortais A., Arnold G., Halm M.-P., Touffet-Briens F. (2005) Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees, Apidologie 36, 71–83.
Roulston T.H., Cane J.H. (2000) Pollen nutritional content and digestibility for animals, Plant Syst. Evol. 222, 187–209.
Roulston T.H., Cane J.H., Buchmann S.L. (2000) What governs protein content of pollen: pollinator preferences, pollen—pistil interactions, or phylogeny? Ecol. Monogr. 70, 617–643.
Schmickl T., Crailsheim K. (2001) Cannibalism and early capping: strategies of honeybee colonies in times of experimental pollen shortages, J. Comp. Physiol. A 187, 541–547.
Schmickl T., Crailsheim K. (2002) How honeybees (Apis mellifera L.) change their broodcare behavior in response to non-foraging conditions and poor pollen conditions, Behav. Ecol. Sociobiol. 51, 415–425.
Schmickl T., Crailsheim K. (2004) Inner nest homeostasis in a changing environment with special emphasis on honey bee brood nursing and pollen supply, Apidologie 35, 249–263.
Schmidt J.O. (1984) Feeding preference ofApis mellifera L. (Hymenoptera: Apidae): individual versus mixed pollen species, J. Kans. Entomol. Soc. 57, 323–327.
Schmidt J.O., Buchmann S.L. (1985) Pollen digestion and nitrogen-utilization byApis mellifera L. (Hymenoptera, Apidae), Comp. Biochem. Physiol. A 82, 499–503.
Schmidt J.O., Hanna A. (2006) Chemical nature of phagostimulants in pollen attractive to honeybees, J. Insect Physiol. 19, 521–532.
Schmidt J.O., Thoenes S.C., Levin M.D. (1987) Survival of honey bees,Apis mellifera (Hymenoptera: Apidae), fed various pollen sources, J. Econ. Entomol. 80, 176–183.
Schmidt L.S., Schmidt J.O., Rao H., Wang W., Xu L. (1995) Feeding preference of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen, J. Econ. Entomol. 88, 1591–1595.
Schulz D.J., Huang Z.-Y., Robinson G.E. (1998) Effect of colony food shortage on the behavioral development of the honey bee,Apis mellifera, Behav. Ecol. Sociobiol. 42, 295–303.
Seeley T.D. (1989) The honey bee colony as a superorganism, Am. Sci. 77, 546–553.
Seeley T.D., Visscher P.K. (1985) Survival of honeybees in cold climates: the critical timing of colony growth and reproduction, Ecol. Entomol. 10, 81–88.
Severson D.W., Erickson E.H. (1984) Honey bee (Hymenoptera: Apidae) colony performance in relation to supplemental carbohydrates, J. Econ. Entomol. 77, 1473–1478.
Singh R.P., Singh P.N. (1996) Amino acid and lipid spectra of larvae of honey bee (Apis cerana Fabr) feeding on mustard pollen, Apidologie, 27, 21–28.
Somerville D.C., Nicol H.I. (2006) Crude protein and amino acid composition of honey bee-collected pollen pellets from south-east Australia and a note on laboratory disparity, Aust. J. Exp. Agr. 46, 141–149.
Standifer L.N., Moeller F.E., Kauffeld N.M., Herbert E.W., Shimanuki, H. (1977) Supplemental feeding of honey bee colonies, USDA Agr. Inform. Bull. No. 413, 8 p.
Staudenmayer T. (1939) Die Giftigkeit der Mannose für Bienen und andere Insekten, J. Comp. Physiol. A 26, 644–668.
Svoboda J.A., Herbert, E.W., Thompson M.J. Feldlaufer M.F. (1986) Selective sterol transfer in the honey bee: Its significance and relationship to other hymenoptera, Lipids 21, 97–101.
Svoboda J.A., Thompson M.J., Herbert E.W., Shortino T.J., Szczepanik-Vanleeuwen P.A. (1982) Utilization and metabolism of dietary sterols in the honey bee and the yellow fever mosquito, Lipids 17, 220–225.
Szymas B., Jedruszuk A. (2003) The influence of different diets on haemocytes of adult worker honey bees,Apis mellifera, Apidologie 34, 97–102.
Tautz J., Maier S., Groh C., Rössler W., Brockmann A. (2003) Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development, Proc. Natl. Acad. Sci. 100, 7343–7347.
Toth A.L., Robinson G.E. (2005) Worker nutrition and division of labour in honeybees, Anim. Behav. 69, 427–435.
Toth A.L., Kantarovich S., Meisel A.F., Robinson G.E. (2005) Nutritional status influences socially regulated foraging ontogeny in honey bees, J. Exp. Biol. 208, 4641–4649.
van der Steen J. (2007) Effect of a home-made pollen substitute on honey bee colony development, J. Apic. Res. 46, 114–119.
vanEngelsdorp D., Evans J.D., Saegermann C., Mullin C., Haubrugge E., Nguyen B.K., Frazier M., Frazier J., Cox-Foster D., Chen Y., Underwood R., Tarpy D.R., Pettis J.S. (2009) Colony Collapse Disorder: a descriptive study, PLoS ONE 4, e6481.
vanEngelsdorp D., Hayes J., Underwood R.M., Pettis J.S. (2010) A survey of honey bee colony losses in the United States, fall 2008 to spring 2009, J. Apic. Res. 49, 7–14.
Vásquez A., Olofsson T.C. (2009) The lactic acid bacteria involved in the production of bee pollen and bee bread, J. Apic. Res. 48, 189–195.
Wille H., Wille M., Kilchenmann V., Imdorf A., Bühlmann G. (1985) Pollenernte und Massenwechsel von dreiApis mellifera-Völkern auf demselben Bienenstand in zwei aufeinanderfolgenden Jahren, Rev. Suisse Zool. 92, 897–914.
Author information
Authors and Affiliations
Department of Zoology, Karl-Franzens-University Graz, Universitätsplatz 2, 8010, Graz, Austria
Robert Brodschneider & Karl Crailsheim
- Robert Brodschneider
You can also search for this author inPubMed Google Scholar
- Karl Crailsheim
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toRobert Brodschneider.
Additional information
Manuscript editor: Yves Le Conte
Rights and permissions
About this article
Cite this article
Brodschneider, R., Crailsheim, K. Nutrition and health in honey bees.Apidologie41, 278–294 (2010). https://doi.org/10.1051/apido/2010012
Received:
Revised:
Accepted:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative