| Issue | A&A Volume446, Number1, January IV 2006 | |
|---|---|---|
| Page(s) | 267 - 277 | |
| Section | Stellar structure and evolution | |
| DOI | https://doi.org/10.1051/0004-6361:20053911 | |
| Published online | 09 January 2006 | |
Rotation- and temperature-dependence of stellar latitudinal differential rotation
A. Reiners1,2
1 Astronomy Department, 521 Campbell Hall, University of California, Berkeley, CA 94720, USA e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
2 Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany
Received: 25 July 2005
Accepted: 12 September 2005
More than 600 high resolution spectra of stars with spectral type F and later were obtained in order to search for signatures of differential rotation in line profiles. In 147 stars the rotation law could be measured, with 28 of them found to be differentially rotating. Comparison to rotation laws in stars of spectral type A reveals that differential rotation sets in at the convection boundary in the HR-diagram; no star that is significantly hotter than the convection boundary exhibits the signatures of differential rotation. Four late A-/early F-type stars close to the convection boundary and at
km s-1 show extraordinarily strong absolute shear at short rotation periods around one day. It is suggested that this is due to their small convection zone depth and that it is connected to a narrow range in surface velocity; the four stars are very similar inTeff and
. Detection frequencies of differential rotation
were analyzed in stars with varying temperature and rotation velocity. Measurable differential rotation is more frequent in late-type stars and slow rotators. The strength of absolute shear,
, and differential rotationα are examined as functions of the stellar effective temperature and rotation period. The highest values of
are found at rotation periods between two and three days. In slower rotators, the strongest absolute shear at a given rotation rate
is given approximately by
, i.e.,
const. In faster rotators, both
and
diminish less rapidly. A comparison with differential rotation measurements in stars of later spectral type shows that F-stars exhibit stronger shear than cooler stars do and the upper boundary in absolute shear
with temperature is consistent with the temperature-scaling law found in Doppler Imaging measurements.
Key words:stars: activity / stars: late-type / stars: rotation / stars: general
© ESO, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
[8]ページ先頭
