Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Cell Death & Differentiation
  • Review
  • Published:

The NF-κB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease

Cell Death & Differentiationvolume 13pages712–729 (2006)Cite this article

Abstract

NF-κB/Rel transcription factors have recently emerged as crucial regulators of cell survival. Activation of NF-κB antagonizes programmed cell death (PCD) induced by tumor necrosis factor-receptors (TNF-Rs) and several other triggers. This prosurvival activity of NF-κB participates in a wide range of biological processes, including immunity, lymphopoiesis and development. It is also crucial for pathogenesis of various cancers, chronic inflammation and certain hereditary disorders. This participation of NF-κB in survival signaling often involves an antagonism of PCD triggered by TNF-R-family receptors, and is mediated through a suppression of the formation of reactive oxygen species (ROS) and a control of sustained activation of the Jun-N-terminal kinase (JNK) cascade. Effectors of this antagonistic activity of NF-κB on this ROS/JNK pathway have been recently identified. Indeed, further delineating the mechanisms by which NF-κB promotes cell survival might hold the key to developing new highly effective therapies for treatment of widespread human diseases.

Similar content being viewed by others

ArticleOpen access25 June 2025

Log in or create a free account to read this content

Gain free access to this article, as well as selected content from this journal and more onnature.com

or

Abbreviations

PCD:

programmed cell death

NF-κB:

nuclear factor-κB

TNF-α:

tumor necrosis factor-α

TNF-Rs:

tumor necrosis factor-receptors

ROS:

reactive oxygen species

JNK:

Jun-N-terminal kinase

DRs:

death receptors

MAPK:

mitogen-activated protein kinase

IKK:

IκB kinase

LPS:

lipopolysaccharide

TRADD:

TNFR1-associated death-domain protein

TRAF:

TNF-R-associated factor

RIP:

receptor-interacting protein

FADD:

Fas-associated death domain

MAPK:

mitogen-activated protein kinase

MAP2K:

MAPK kinase

MAP3K:

MAPK kinase kinase

MKP:

MAP kinase phosphatase

Gadd45:

growth arrest and DNA damage-inducing 45 protein

Mn-SOD:

manganese-dependent superoxide dismutase

FHC:

ferritin heavy chain

XIAP:

X chromosome-linked inhibitor of apoptosis

MEFs:

murine embryonic fibroblasts

Con A:

concavalin A

BHA:

butylated hydroxylanisole

NAC:

N-acetyl cystein

PDTC:

pyrrolidine dithiocarbamate

MM:

multiple myeloma

HL:

Hodgkin's lymphoma

DLBCL:

diffuse large B-cell lymphoma

CML:

chronic myelogenous leukemia

ALL:

acute lymphoblastic leukemia

IBD:

inflammatory bowel disease

RA:

rheumatoid arthritis

References

  1. Sen R and Baltimore D (1986) Inducibility ofκ immunoglobulin enhancer-binding protein NF-κB by a post-translational mechanism.Cell47: 921–928

    CAS PubMed  Google Scholar 

  2. Karin M, Yamamoto Y and Wang QM (2004) The IKK NF-κB system: a treasure trove for drug development.Nat. Rev. Drug Discov.1: 17–26

    Google Scholar 

  3. Kucharczak J, Simmons MJ, Fan Y and Gelinas C (2003) To be, or not to be: NF-κB is the answer – role of Rel/NF-κB in the regulation of apoptosis.Oncogene56: 8961–8982

    Google Scholar 

  4. Li Q, Withoff S and Verma IM (2005) Inflammation-associated cancer: NF-κB is the lynchpin.Trends Immunol.26: 318–325

    PubMed  Google Scholar 

  5. Greten FR and Karin M (2004) The IKK/NF-κB activation pathway – a target for prevention and treatment of cancer.Cancer Lett.206: 193–199

    CAS PubMed  Google Scholar 

  6. Kumar A, Takada Y, Boriek AM and Aggarwal BB (2004) Nuclear factor-κB: its role in health and disease.J. Mol. Med.82: 434–448

    CAS PubMed  Google Scholar 

  7. Shoelson SE, Lee J and Yuan M (2003) Inflammation and the IKKβ/IκB/NF-κB axis in obesity- and diet-induced insulin resistance.Int. J. Obes. Relat. Metab. Disord.3: S49–S52

    Google Scholar 

  8. Dandona P, Aljada A, Chaudhuri A, Mohanty P and Garg R (2005) Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation.Circulation111: 1448–1454

    PubMed  Google Scholar 

  9. Nichols TC (2004) NF-κB and reperfusion injury.Drug News Perspect.17: 99–104

    CAS PubMed  Google Scholar 

  10. Weil R and Israel A (2004) T-cell-receptor- and B-cell-receptor-mediated activation of NF-κB in lymphocytes.Curr. Opin. Immunol.16: 374–381

    CAS PubMed  Google Scholar 

  11. Bonizzi G and Karin M (2004) The two NF-κB activation pathways and their role in innate and adaptive immunity.Trends Immunol.25: 280–288

    CAS PubMed  Google Scholar 

  12. Hayden MS and Ghosh S (2004) Signaling to NF-κB.Genes Dev.18: 2195–2224

    CAS PubMed  Google Scholar 

  13. Siebenlist U, Brown K and Claudio E (2005) Control of lymphocyte development by NF-κB.Nat. Rev. Immunol.5: 435–445

    CAS PubMed  Google Scholar 

  14. Chen LF and Greene WC (2004) Shaping the nuclear action of NF-κB.Nat Rev. Mol. Cell Biol.5: 392–401

    CAS PubMed  Google Scholar 

  15. Orange JS, Levy O and Geha RS (2005) Human disease resulting from gene mutations that interfere with appropriate NF-κB activation.Immunol. Rev.203: 21–37

    CAS PubMed  Google Scholar 

  16. Luo JL, Kamata H and Karin M (2005) IKK/NF-κB signaling: balancing life and death – a new approach to cancer therapy.J. Clin. Invest.115: 2625–2632

    CAS PubMed PubMed Central  Google Scholar 

  17. Bubici C, Papa S, Pham CG, Zazzeroni F and Franzoso G (2004) NF-κB and JNK: an intricate affair.Cell Cycle3: 1524–1529

    CAS PubMed  Google Scholar 

  18. Chen ZJ (2005) Ubiquitin signalling in the NF-κB pathway.Nat. Cell Biol.7: 758–765

    CAS PubMed PubMed Central  Google Scholar 

  19. Li Q and Verma IM (2002) NF-κB regulation in the immune system.Nat. Rev. Immunol.2: 725–734

    CAS PubMed  Google Scholar 

  20. Silverman N and Maniatis T (2001) NF-κB signaling pathways in mammalian and insect innate immunity.Genes Dev.18: 2321–2342

    Google Scholar 

  21. Mackay F and Browning JL (2002) BAFF: a fundamental survival factor for B cells.Nat. Rev. Immunol.2: 465–475

    CAS PubMed  Google Scholar 

  22. Voll RE, Jimi E, Phillips RJ, Barber DF, Rincon M, Hayday AC, Flavell RA and Ghosh S (2000) NF-κB activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development.Immunity13: 677–689

    CAS PubMed  Google Scholar 

  23. Beg AA, Sha WC, Bronson RT, Ghosh S and Baltimore D (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB.Nature376: 167–170

    CAS PubMed  Google Scholar 

  24. Li Q, Van Antwerp D, Mercurio F, Lee KF and Verma IM (1999) Severe liver degeneration in mice lacking the IκB kinase 2 gene.Science284: 321–325

    CAS PubMed  Google Scholar 

  25. Rudolph D, Yeh WC, Wakeham A, Rudolph B, Nallainathan D, Potter J, Elia AJ and Mak TW (2000) Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice.Genes Dev.14: 854–862

    CAS PubMed PubMed Central  Google Scholar 

  26. Alcamo E, Mizgerd JP, Horwitz BH, Bronson R, Beg AA, Scott M, Doerschuk CM, Hynes RO and Baltimore D (2001) Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-κB in leukocyte recruitment.J. Immunol.167: 1592–1600

    CAS PubMed  Google Scholar 

  27. Doi TS, Marino MW, Takahashi T, Yoshida T, Sakakura T, Old LJ and Obata Y (1999) Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality.Proc. Natl. Acad. Sci. USA96: 2994–2999

    CAS PubMed PubMed Central  Google Scholar 

  28. Maeda S, Chang L, Li ZW, Luo JL, Leffert H and Karin M (2003) IKKβ is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFα.Immunity19: 725–737

    CAS PubMed  Google Scholar 

  29. Chaisson ML, Brooling JT, Ladiges W, Tsai S and Fausto N (2002) Hepatocyte-specific inhibition of NF-κB leads to apoptosis after TNF treatment, but not after partial hepatectomy.J. Clin. Invest.110: 193–202

    CAS PubMed PubMed Central  Google Scholar 

  30. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword.Nat. Rev. Immunol.3: 745–756

    CAS PubMed  Google Scholar 

  31. Bharti AC and Aggarwal BB (2004) Ranking the role of RANK ligand in apoptosis.Apoptosis9: 677–690

    CAS PubMed  Google Scholar 

  32. Nakashima T, Wada T and Penninger JM (2003) RANKL and RANK as novel therapeutic targets for arthritis.Curr. Opin. Rheumatol.15: 280–287

    CAS PubMed  Google Scholar 

  33. Mattson MP and Camandola S (2001) NF-κB in neuronal plasticity and neurodegenerative disorders.J. Clin. Invest.107: 247–254

    CAS PubMed PubMed Central  Google Scholar 

  34. Bell S, Degitz K, Quirling M, Jilg N, Page S and Brand K (2003) Involvement of NF-κB signalling in skin physiology and disease.Cell Signal.15: 1–7

    CAS PubMed  Google Scholar 

  35. Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB.J. Clin. Invest.107: 241–246

    CAS PubMed PubMed Central  Google Scholar 

  36. Gilmore TD (2003) The Re1/NF-κB/IκB signal transduction pathway and cancer.Cancer Treat. Res.115: 241–265

    CAS PubMed  Google Scholar 

  37. Shishodia S and Aggarwal BB (2004) NF-κB: a friend or a foe in cancer?Biochem. Pharmacol.68: 1071–1081

    CAS PubMed  Google Scholar 

  38. Karin M and Greten FR (2005) NF-κB: linking inflammation and immunity to cancer development and progression.Nat. Rev. Immunol.5: 749–759

    CAS PubMed  Google Scholar 

  39. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF and Karin M (2004) IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer.Cell118: 285–296

    CAS PubMed  Google Scholar 

  40. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E and Ben-Neriah Y (2004) NF-κB functions as a tumour promoter in inflammation-associated cancer.Nature431: 461–466

    CAS PubMed  Google Scholar 

  41. Luo JL, Maeda S, Hsu LC, Yagita H and Karin M (2004) Inhibition of NF-κB in cancer cells converts inflammation-induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression.Cancer Cell6: 297–305

    CAS PubMed  Google Scholar 

  42. Isaacson PG and Du MQ (2004) MALT lymphoma: from morphology to molecules.Nat. Rev. Cancer4: 644–653

    CAS PubMed  Google Scholar 

  43. Ravi R and Bedi A (2004) NF-κB in cancer: a friend turned foe.Drug Resist. Update7: 53–67

    CAS  Google Scholar 

  44. Orlowski RZ and Baldwin Jr AS (2002) NF-κB as a therapeutic target in cancer.Trends Mol. Med.8: 385–389

    CAS PubMed  Google Scholar 

  45. Liu H and Pope RM (2003) The role of apoptosis in rheumatoid arthritis.Curr. Opin. Pharmacol.3: 317–322

    PubMed  Google Scholar 

  46. Smahi A, Courtois G, Rabia SH, Doffinger R, Bodemer C, Munnich A, Casanova JL and Israel A (2002) The NF-κB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes.Hum. Mol. Genet.11: 2371–2375

    CAS PubMed  Google Scholar 

  47. Aradhya S and Nelson DL (2001) NF-κB signaling and human disease.Curr. Opin. Genet. Dev.11: 300–306

    CAS PubMed  Google Scholar 

  48. Wajant H, Pfizenmaier K and Scheurich P (2003) Tumor necrosis factor signaling.Cell Death Differ.10: 45–65

    CAS PubMed  Google Scholar 

  49. Papa S, Zazzeroni F, Pham CG, Bubici C and Franzoso G (2004) Linking JNK signaling to NF-κB: a key to survival.J. Cell Sci.117: 5197–5208

    CAS PubMed  Google Scholar 

  50. Micheau O and Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes.Cell114: 181–190

    CAS PubMed  Google Scholar 

  51. Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D, Mentlein R, Kabelitz D and Schutze S (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles.Immunity21: 415–428

    CAS PubMed  Google Scholar 

  52. Jaattela M and Tschopp J (2003) Caspase-independent cell death in T lymphocytes.Nat. Immunol.4: 416–423

    PubMed  Google Scholar 

  53. Edinger AL and Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy.Curr. Opin. Cell Biol.16: 663–669

    CAS PubMed  Google Scholar 

  54. Leist M and Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms.Nat. Rev. Mol. Cell. Biol.2: 589–598

    CAS PubMed  Google Scholar 

  55. Danial NN and Korsmeyer SJ (2004) Cell death: critical control points.Cell116: 205–219

    CAS PubMed  Google Scholar 

  56. Abraham MC and Shaham S (2004) Death without caspases, caspases without death.Trends Cell Biol.14: 184–193

    CAS PubMed  Google Scholar 

  57. Launay S, Hermine O, Fontenay M, Kroemer G, Solary E and Garrido C (2005) Vital functions for lethal caspases.Oncogene24: 5137–5148

    CAS PubMed  Google Scholar 

  58. Kroemer G and Martin SJ (2005) Caspase-independent cell death.Nat. Med.11: 725–730

    PubMed  Google Scholar 

  59. Liu N, Raja SM, Zazzeroni F, Metkar SS, Shah R, Zhang M, Wang Y, Bromme D, Russin WA, Lee JC, Peter ME, Froelich CJ, Franzoso G and Ashton Rickardt PG (2003) NF-κB protects from the lysosomal pathway of cell death.EMBO J.22: 5313–5322

    CAS PubMed PubMed Central  Google Scholar 

  60. De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R and Franzoso G (2001) Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling.Nature414: 308–313

    CAS PubMed  Google Scholar 

  61. Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M and Lin A (2001) Inhibition of JNK activation through NF-κB target genes.Nature414: 313–317

    CAS PubMed  Google Scholar 

  62. Javelaud D and Besancon F (2001) NF-κB activation results in rapid inactivation of JNK in TNFα-treated Ewing sarcoma cells: a mechanism for the anti-apoptotic effect of NF-κB.Oncogene32: 4365–4372

    Google Scholar 

  63. Karin M and Gallagher E (2005) From JNK to pay dirt: Jun kinases, their biochemistry, physiology and clinical importance.IUBMB Life57: 283–295

    CAS PubMed  Google Scholar 

  64. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases.Cell103: 239–252

    CAS PubMed  Google Scholar 

  65. Chang L and Karin M (2001) Mammalian MAP kinase signalling cascades.Nature410: 37–40

    CAS PubMed  Google Scholar 

  66. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA and Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochromec-mediated death pathway.Science288: 870–874

    CAS PubMed  Google Scholar 

  67. Dong C, Davis RJ and Flavell RA (2002) MAP kinases in the immune response.Annu. Rev. Immunol.20: 55–72

    CAS PubMed  Google Scholar 

  68. Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P and Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking thejnk3 gene.Nature389: 865–870

    CAS PubMed  Google Scholar 

  69. Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ and Flavell RA (1998) Defective T cell differentiation in the absence of JNK1.Science282: 2092–2095

    CAS PubMed  Google Scholar 

  70. Sasaki T, Wada T, Kishimoto H, Irie-Sasaki J, Matsumoto G, Goto T, Yao Z, Wakeham A, Mak TW, Suzuki A, Cho SK, Zuniga-Pflucker JC, Oliveira-dos-Santos AJ, Katada T, Nishina H and Penninger JM (2001) The stress kinase mitogen-activated protein kinase kinase (MKK)7 is a negative regulator of antigen receptor and growth factor receptor-induced proliferation in hematopoietic cells.J. Exp. Med.194: 757–768

    CAS PubMed PubMed Central  Google Scholar 

  71. Liu ZG, Hsu H, Goeddel DV and Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death.Cell87: 565–576

    CAS PubMed  Google Scholar 

  72. Natoli G, Costanzo A, Ianni A, Templeton DJ, Woodgett JR, Balsano C and Levrero M (1997) Activation of SAPK/JNK by TNF receptor 1 through a noncytotoxic TRAF2-dependent pathway.Science275: 200–203

    CAS PubMed  Google Scholar 

  73. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kyriakis JM, Haimovitz-Friedman A, Fuks Z and Kolesnick RN (1996) Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis.Nature380: 75–79

    CAS PubMed  Google Scholar 

  74. Lei K, Nimnual A, Zong WX, Kennedy NJ, Flavell RA, Thompson CB, Bar-Sagi D and Davis RJ (2002) The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase.Mol. Cell. Biol.22: 4929–4942

    CAS PubMed PubMed Central  Google Scholar 

  75. Ventura JJ, Cogswell P, Flavell RA, Baldwin Jr AS and Davis RJ (2004) JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species.Genes Dev.18: 2905–2915

    CAS PubMed PubMed Central  Google Scholar 

  76. Kamata H, Honda S, Maeda S, Chang L, Hirata H and Karin M (2005) Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases.Cell120: 649–661

    CAS PubMed  Google Scholar 

  77. Deng Y, Ren X, Yang L, Lin Y and Wu X (2003) A JNK-dependent pathway is required for TNFα-induced apoptosis.Cell115: 61–70

    CAS PubMed  Google Scholar 

  78. Maeda S, Chang L, Li ZW, Luo JL, Leffert H and Karin M (2003) IKKβ is required for prevention of apoptosis mediated by cell-bound but not by circulating TNFα.Immunity19: 725–737

    CAS PubMed  Google Scholar 

  79. Park JM, Brady H, Ruocco MG, Sun H, Williams D, Lee SJ, Kato Jr T, Richards N, Chan K, Mercurio F, Karin M and Wasserman SA (2004) Targeting of TAK1 by the NF-κB protein Relish regulates the JNK-mediated immune response inDrosophila.Genes Dev.18: 584–594

    CAS PubMed PubMed Central  Google Scholar 

  80. Hoffmann JA and Reichhart JM (2002)Drosophila innate immunity: an evolutionary perspective.Nat. Immunol.3: 121–126

    CAS PubMed  Google Scholar 

  81. Boutros M, Agaisse H and Perrimon N (2002) Sequential activation of signaling pathways during innate immune responses inDrosophila.Dev. Cell3: 711–722

    CAS PubMed  Google Scholar 

  82. Igaki T, Kanda H, Yamamoto-Goto Y, Kanuka H, Kuranaga E, Aigaki T and Miura M (2002) Eiger a TNF superfamily ligand that triggers theDrosophila JNK pathway.EMBO J.21: 3009–3018

    CAS PubMed PubMed Central  Google Scholar 

  83. Moreno E, Yan M and Basler K (2002) Evolution of TNF signaling mechanisms: JNK-dependent apoptosis triggered by Eiger, theDrosophila homolog of the TNF superfamily.Curr. Biol.12: 1263–1268

    CAS PubMed  Google Scholar 

  84. Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao JH, Yagita H, Okumura K, Doi T and Nakano H (2003) NF-κB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death.EMBO J.22: 3898–3909

    CAS PubMed PubMed Central  Google Scholar 

  85. Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, De Smaele E, Cong R, Beaumont C, Torti FM, Torti SV and Franzoso G (2004) Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species.Cell119: 529–542

    CAS PubMed  Google Scholar 

  86. Matsuzawa A and Ichijo H (2005) Stress-responsive protein kinases in redox-regulated apoptosis signaling.Antioxid. Redox Signal.7: 472–481

    CAS PubMed  Google Scholar 

  87. Curtin JF, Donovan M and Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis.J. Immunol. Methods265: 49–72

    CAS PubMed  Google Scholar 

  88. Schoonbroodt S and Piette J (2000) Oxidative stress interference with the NF-κB activation pathways.Biochem. Pharmacol.60: 1075–1083

    CAS PubMed  Google Scholar 

  89. Garg AK and Aggarwal BB (2002) Reactive oxygen intermediates in TNF signaling.Mol. Immunol.39: 509–517

    CAS PubMed  Google Scholar 

  90. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K, Minowa O, Miyazono K, Noda T and Ichijo H (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis.EMBO Rep.2: 222–228

    CAS PubMed PubMed Central  Google Scholar 

  91. Li JM, Mullen AM, Yun S, Wientjes F, Brouns GY, Thrasher AJ and Shah AM. (2002) Essential role of the NADPH oxidase subunit p47(phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-α.Circ. Res.90: 143–150

    CAS PubMed  Google Scholar 

  92. Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS, Tran JH, Nedospasov SA and Liu ZG (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation.J. Biol. Chem.279: 10822–10828

    CAS PubMed  Google Scholar 

  93. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B and Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule.Nat. Immunol.1: 489–495

    CAS PubMed  Google Scholar 

  94. Liu CY, Takemasa A, Liles WC, Goodman RB, Jonas M, Rosen H, Chi E, Winn RK, Harlan JM and Chuang PI (2003) Broad-spectrum caspase inhibition paradoxically augments cell death in TNFα -stimulated neutrophils.Blood101: 295–304

    CAS PubMed  Google Scholar 

  95. Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W, Fiers W and Vandenabeele P (1998) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways.J. Exp. Med.188: 919–930

    CAS PubMed PubMed Central  Google Scholar 

  96. Zong WX, Ditsworth D, Bauer DE, Wang ZQ and Thompson CB (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death.Genes Dev.18: 1272–1282

    CAS PubMed PubMed Central  Google Scholar 

  97. Hammerman PS, Fox CJ and Thompson CB (2004) Beginnings of a signal-transduction pathway for bioenergetic control of cell survival.Trends Biochem. Sci.29: 586–592

    CAS PubMed  Google Scholar 

  98. Hettmann T, DiDonato J, Karin M and Leiden JM (1999) An essential role for NF-κB in promoting double positive thymocyte apoptosis.J. Exp. Med.189: 145–158

    CAS PubMed PubMed Central  Google Scholar 

  99. Bian X, McAllister-Lucas LM, Shao F, Schumacher KR, Feng Z, Porter AG, Castle VP and Opipari Jr AW (2001) NF-κB activation mediates doxorubicin-induced cell death in N-type neuroblastoma cells.J. Biol. Chem.276: 48921–48929

    CAS PubMed  Google Scholar 

  100. Ivanov VN and Ronai Z (2000) p38 protects human melanoma cells from UV-induced apoptosis through down-regulation of NF-κB activity and Fas expression.Oncogene19: 3003–3012

    CAS PubMed  Google Scholar 

  101. Campbell KJ, Rocha S and Perkins ND (2004) Active repression of antiapoptotic gene expression by RelA(p65) NF-κB.Mol. Cell13: 853–865

    CAS PubMed  Google Scholar 

  102. Tergaonkar V, Pando M, Vafa O, Wahl G and Verma I (2002) p53 stabilization is decreased upon NF-κB activation: a role for NF-κB in acquisition of resistance to chemotherapy.Cancer Cell1: 493–503

    CAS PubMed  Google Scholar 

  103. Lamb JA, Ventura JJ, Hess P, Flavell RA and Davis RJ (2003) JunD mediates survival signaling by the JNK signal transduction pathway.Mol. Cell11: 1479–1489

    CAS PubMed  Google Scholar 

  104. Reuther-Madrid JY, Kashatus D, Chen S, Li X, Westwick J, Davis RJ, Earp HS, Wang C-Y and Baldwin Jr AS (2002) The p65/RelA subunit of NF-κB suppresses the sustained, antiapoptotic activity of Jun kinase induced by tumor necrosis factor.Mol. Cell. Biol.22: 8175–8183

    CAS PubMed PubMed Central  Google Scholar 

  105. Zhang JY, Green CL, Tao S and Khavari PA (2004) NF-κB RelA opposes epidermal proliferation driven by TNFR1 and JNK.Genes Dev.18: 17–22

    PubMed PubMed Central  Google Scholar 

  106. Liebermann DA and Hoffman B (2002) Myeloid differentiation (MyD) primary response genes in hematopoiesis.Oncogene21: 3391–3402

    CAS PubMed  Google Scholar 

  107. Papa S, Zazzeroni F, Bubici C, Jayawardena S, Alvarez K, Matsuda S, Nguyen DU, Pham CG, Nelsbach AH, Melis T, De Smaele E, Tang WJ, D'Adamio L and Franzoso G (2004) Gadd45β mediates the NF-κB suppression of JNK signalling by targeting MKK7/JNKK2.Nat. Cell Biol.2: 146–153

    Google Scholar 

  108. Tournier C, Dong C, Turner TK, Jones SN, Flavell RA and Davis RJ (2001) MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines.Genes Dev.15: 1419–1426

    CAS PubMed PubMed Central  Google Scholar 

  109. Takekawa M and Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAP3K.Cell95: 521–530

    CAS PubMed  Google Scholar 

  110. Amanullah A, Azam N, Balliet A, Hollander C, Hoffman B, Fornace A and Liebermann D (2003) Cell signalling: cell survival and a Gadd45-factor deficiency.Nature424: 741

    CAS PubMed  Google Scholar 

  111. Zazzeroni F, Papa S, De Smaele E and Franzoso G (2003) Cell signalling: cell survival and a Gadd45-factor deficiency.Nature424: 742

    CAS  Google Scholar 

  112. Ijiri K, Zerbini LF, Peng H, Correa RG, Lu B, Walsh N, Zhao Y, Taniguchi N, Huang XL, Otu H, Wang H, Fei Wang J, Komiya S, Ducy P, Rahman MU, Flavell RA, Libermann TA and Goldring MB (2005) A novel role for Gadd45β as a mediator of MMP-13 gene expression during chondrocyte terminal differentiation.J. Biol. Chem.280: 38544–38555

    CAS PubMed  Google Scholar 

  113. Gupta M, Gupta SK, Balliet AG, Hollander MC, Fornace AJ, Hoffman B and Liebermann DA (2005) Hematopoietic cells from Gadd45α- and Gadd45β-deficient mice are sensitized to genotoxic-stress-induced apoptosis.Oncogene24: 7170–7179

    CAS PubMed  Google Scholar 

  114. Lu B, Ferrandino AF and Flavell RA (2004) Gadd45β is important for perpetuating cognate and inflammatory signals in T cells.Nat. Immunol.5: 38–44

    CAS PubMed  Google Scholar 

  115. Chi H, Lu B, Takekawa M, Davis RJ and Flavell RA (2004) GADD45β/GADD45γ and MEKK4 comprise a genetic pathway mediating STAT4-independent IFNγ production in T cells.EMBO J.23: 1576–1586

    CAS PubMed PubMed Central  Google Scholar 

  116. Salvesen GS and Duckett CS (2002) IAP proteins: blocking the road to death's door.Nat. Rev. Mol. Cell. Biol.3: 401–410

    CAS PubMed  Google Scholar 

  117. Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR and Lipp J (1998) Nuclear factor (NF)-κB-regulated X-chromosome-linked IAP gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis.J. Exp. Med.188: 211–216

    CAS PubMed PubMed Central  Google Scholar 

  118. Conte D, Liston P, Wong JV, Wight KE and Korneluk RG (2001) Thymocyte-targeted overexpression of xiap transgene disrupts T lymphoid apoptosis and maturation.Proc. Natl. Acad. Sci. USA98: 5049–5054

    CAS PubMed PubMed Central  Google Scholar 

  119. Sanna MG, da Silva Correia J, Ducrey O, Lee J, Nomoto K, Schrantz N, Deveraux QL and Ulevitch RJ (2002) IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition.Mol. Cell. Biol.22: 1754–1766

    CAS PubMed PubMed Central  Google Scholar 

  120. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP and Ma A (2000) Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice.Science289: 2350–2354

    CAS PubMed PubMed Central  Google Scholar 

  121. Boone DL, Lee EG, Libby S, Gibson PJ, Chien M, Chan F, Madonia M, Burkett PR and Ma A (2002) Recent advances in understanding NF-κB regulation.Inflamm. Bowel Dis.8: 201–212

    PubMed  Google Scholar 

  122. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV and Dixit VM (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling.Nature430: 694–699

    CAS PubMed  Google Scholar 

  123. He KL and Ting AT (2002) A20 inhibits tumor necrosis factor (TNF)α-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells.Mol. Cell. Biol.22: 6034–6045

    CAS PubMed PubMed Central  Google Scholar 

  124. Torti FM and Torti SV (2002) Regulation of ferritin genes and protein.Blood99: 3505–3516

    CAS PubMed  Google Scholar 

  125. Arosio P and Levi S (2002) Ferritin, iron homeostasis, and oxidative damage.Free Radic. Biol. Med.33: 457–463

    CAS PubMed  Google Scholar 

  126. Vulcano M, Meiss RP and Isturiz MA (2000) Deferoxamine reduces tissue injury and lethality in LPS-treated mice.Int. J. Immunopharmacol.2: 635–644

    Google Scholar 

  127. Xie C, Zhang N, Zhou H, Li J, Li Q, Zarubin T, Lin SC and Han J (2005) Distinct roles of basal steady-state and induced H-ferritin in tumor necrosis factor-induced death in L929 cells.Mol. Cell. Biol.25: 6673–6681

    CAS PubMed PubMed Central  Google Scholar 

  128. Hentze MW, Muckenthaler MU and Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism.Cell117: 285–297

    CAS PubMed  Google Scholar 

  129. Benhar M, Engelberg D and Levitzki A (2002) ROS, stress-activated kinases and stress signaling in cancer.EMBO Rep.3: 420–425

    CAS PubMed PubMed Central  Google Scholar 

  130. Kakhlon O, Gruenbaum Y and Cabantchik ZI (2001) Repression of ferritin expression increases the labile iron pool, oxidative stress, and short-term growth of human erythroleukemia cells.Blood97: 2863–2871

    CAS PubMed  Google Scholar 

  131. Russo J, Yang X, Hu YF, Bove BA, Huang Y, Silva ID, Tahin Q, Wu Y, Higgy N, Zekri A and Russo IH (1998) Biological and molecular basis of human breast cancer.Front. Biosci.3: D944–D960

    CAS PubMed  Google Scholar 

  132. Delhalle S, Deregowski V, Benoit V, Merville MP and Bours V (2002) NF-κB-dependent MnSOD expression protects adenocarcinoma cells from TNFα-induced apoptosis.Oncogene21: 3917–3924

    CAS PubMed  Google Scholar 

  133. Bernard D, Quatannens B, Begue A, Vandenbunder B and Abbadie C (2001) Antiproliferative and antiapoptotic effects of crel may occur within the same cells via the up-regulation of manganese superoxide dismutase.Cancer Res.61: 2656–2664

    CAS PubMed  Google Scholar 

  134. Huang P, Feng L, Oldham EA, Keating MJ and Plunkett W (2000) Superoxide dismutase as a target for the selective killing of cancer cells.Nature407: 390–395

    CAS PubMed  Google Scholar 

  135. Sasazuki T, Okazaki T, Tada K, Sakon-Komazawa S, Katano M, Tanaka M, Yagita H, Okumura K, Tominaga N, Hayashizaki Y, Okazaki Y and Nakano H (2004) Genome wide analysis of TNF-inducible genes reveals that antioxidant enzymes are induced by TNF and responsible for elimination of ROS.Mol. Immunol.41: 547–551

    CAS PubMed  Google Scholar 

  136. Maeda S, Kamata H, Luo JL, Leffert H and Karin M (2005) IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis.Cell121: 977–990

    CAS PubMed  Google Scholar 

  137. Yamada Y, Kirillova I, Peschon JJ and Fausto N. (1997) Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor.Proc. Natl. Acad. Sci. USA94: 1441–1446

    CAS PubMed PubMed Central  Google Scholar 

  138. Schwabe RF, Bradham CA, Uehara T, Hatano E, Bennett BL, Schoonhoven R and Brenner DA (2003) c-Jun-N-terminal kinase drives cyclin D1 expression and proliferation during liver regeneration.Hepatology37: 824–832

    CAS PubMed  Google Scholar 

  139. Kennedy NJ and Davis RJ (2003) Role of JNK in tumor development.Cell Cycle2: 199–201

    CAS PubMed  Google Scholar 

  140. Lafarge S, Sylvain V, Ferrara M and Bignon YJ (2001) Inhibition of BRCA1 leads to increased chemoresistance to microtubule-interfering agents, an effect that involves the JNK pathway.Oncogene20: 6597–6606

    CAS PubMed  Google Scholar 

  141. Frelin C, Imbert V, Griessinger E, Peyron AC, Rochet N, Philip P, Dageville C, Sirvent A, Hummelsberger M, Berard E, Dreano M, Sirvent N and Peyron JF (2005) Targeting NF-κB activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells.Blood105: 804–811

    CAS PubMed  Google Scholar 

  142. Ziegelbauer K, Gantner F, Lukacs NW, Berlin A, Fuchikami K, Niki T, Sakai K, Inbe H, Takeshita K, Ishimori M, Komura H, Murata T, Lowinger T and Bacon KB (2005) A selective novel low-molecular-weight inhibitor of IκB kinase-beta (IKKβ) prevents pulmonary inflammation and shows broad anti-inflammatory activity.Br. J. Pharmacol.145: 178–192

    CAS PubMed PubMed Central  Google Scholar 

  143. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, Marinkovich MP, Tao S, Lin Q, Kubo Y and Khavari PA (2003) NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia.Nature421: 639–643

    CAS PubMed  Google Scholar 

  144. van Hogerlinden M, Auer G and Toftgard R (2002) Inhibition of Rel/nuclear factor-κB signaling in skin results in defective DNA damage-induced cell cycle arrest and H-ras- and p53-independent tumor development.Oncogene21: 4969–4977

    CAS PubMed  Google Scholar 

Download references

Acknowledgements

We thank L Sherman for helping with manuscript preparation. This research was supported in part by NIH grants R01-CA84040 and R01-CA098583.

Author information

Author notes
  1. F Zazzeroni

    Present address: Department of Experimental Medicine, The University of L'Aquila, Via Vetoio-Coppito 2, 67100, L'Aquila, Italy

Authors and Affiliations

  1. The Ben May Institute for Cancer Research, The University of Chicago, IL, Chicago, USA

    S Papa, C Bubici, F Zazzeroni, C G Pham, C Kuntzen, J R Knabb, K Dean & G Franzoso

Corresponding author

Correspondence toG Franzoso.

Additional information

Edited by G Kroemer

Rights and permissions

About this article

Cite this article

Papa, S., Bubici, C., Zazzeroni, F.et al. The NF-κB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease.Cell Death Differ13, 712–729 (2006). https://doi.org/10.1038/sj.cdd.4401865

Download citation

Keywords

This article is cited by

Search

Advanced search

Quick links


[8]ページ先頭

©2009-2025 Movatter.jp