Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Electrical Engineering
  • Review Article
  • Published:

Sustainable plug-in electric vehicle integration into power systems

Nature Reviews Electrical Engineeringvolume 1pages35–52 (2024)Cite this article

Subjects

Abstract

Integrating plug-in electric vehicles (PEVs) into the power and transport sectors can help to reduce global CO2 emissions. This synergy can be achieved with advances in battery technology, charging infrastructures, power grids and their interaction with the environment. In this Review, we survey the latest research trends and technologies for sustainable PEV–power system integration. We first provide the rationale behind addressing the requirements for such integration, followed by an overview of strategies for planning PEV charging infrastructures. Next, we introduce smart PEV charging and discharging technologies for cost-efficient and safe power system operations. We then discuss how PEVs can help to promote clean energy adoption and decarbonize the interconnected power and transport systems. Finally, we outline remaining challenges and provide a forward-looking road map for the sustainable integration of PEVs into power systems.

Key points

  • Coupling plug-in electric vehicles (PEVs) to the power and transport sectors is key to global decarbonization.

  • Effective synergy of power and transport systems can be achieved with advances in battery technology, charging infrastructures, power grids and their interaction with the environment.

  • Planning PEV charging infrastructures should support the active interaction of PEVs with the power grid and zero-emissions power generation.

  • Advanced optimization and control technologies are in need to fully exploit large-scale PEV flexibility in interconnected power and transport.

  • Innovative financial incentives are required to leverage the benefits of PEVs while coordinating the interests of different stakeholders.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscribe to this journal

Receive 12 digital issues and online access to articles

¥14,900 per year

only ¥1,242 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A zero-emissions interconnected power and transport system.
Fig. 2: Battery technologies for PEV integration.
Fig. 3: The role of smart PEV charging and discharging in the power system.

Similar content being viewed by others

References

  1. International Energy Agency. Global EV outlook 2023.ieahttps://www.iea.org/reports/global-ev-outlook-2023 (2023).

  2. International Energy Agency. CO2 emissions in 2022.ieahttps://www.iea.org/reports/co2-emissions-in-2022 (2023).

  3. Choma, E. F., Evans, J. S., Hammitt, J. K., Gómez-Ibáñez, J. A. & Spengler, J. D. Assessing the health impacts of electric vehicles through air pollution in the United States.Environ. Int.144, 106015 (2020).

    Article  Google Scholar 

  4. Knobloch, F. et al. Net emission reductions from electric cars and heat pumps in 59 world regions over time.Nat. Sustain.3, 437–447 (2020).This article reports a comprehensive analysis of life-cycle emissions of electric vehicles, which motivates the synergy between power and transport sectors for decarbonization.

    Article  Google Scholar 

  5. Challa, R., Kamath, D. & Anctil, A. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.J. Environ. Manage.308, 114592 (2022).

    Article  Google Scholar 

  6. Heptonstall, P. J. & Gross, R. J. K. A systematic review of the costs and impacts of integrating variable renewables into power grids.Nat. Energy6, 72–83 (2021).

    Article  Google Scholar 

  7. International Energy Agency. World energy outlook 2022.ieahttps://www.iea.org/reports/world-energy-outlook-2022 (2022).

  8. Chen, X. et al. Impacts of fleet types and charging modes for electric vehicles on emissions under different penetrations of wind power.Nat. Energy3, 413–421 (2018).

    Article  Google Scholar 

  9. Denholm, P. et al. The challenges of achieving a 100% renewable electricity system in the United States.Joule5, 1331–1352 (2021).

    Article  Google Scholar 

  10. Feng, X. et al. Thermal runaway mechanism of lithium-ion battery for electric vehicles: a review.Energy Stor. Mater.10, 246–267 (2018).

    Google Scholar 

  11. Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries.Nat. Commun.14, 420 (2023).

    Article  Google Scholar 

  12. Schmuch, R. et al. Performance and cost of materials for lithium-based rechargeable automotive batteries.Nat. Energy3, 267–278 (2018).

    Article  Google Scholar 

  13. Yang, X., Liu, T. & Wang, C. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles.Nat. Energy6, 176–185 (2021).

    Article  Google Scholar 

  14. Wang, C. et al. Lithium-ion battery structure that self-heats at low temperatures.Nature529, 515–518 (2016).This article is the first presentation of a Li-ion battery self-heating structure without external heating devices or electrolyte additives.

    Article  Google Scholar 

  15. Che, Y. et al. Health prognostics for lithium-ion batteries: mechanisms, methods, and prospects.Energy Environ. Sci.16, 338–371 (2023).

    Article  Google Scholar 

  16. Jones, P. K., Stimming, U. & Lee, A. A. Impedance-based forecasting of lithium-ion battery performance amid uneven usage.Nat. Commun.13, 4806 (2022).

    Article  Google Scholar 

  17. Han, X. et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle.eTransportation1, 100005 (2019).

    Article  Google Scholar 

  18. Xiong, R. et al. Lithium-ion battery ageing mechanisms and diagnosis method for automotive applications: recent advances and perspectives.Renew. Sust. Energ. Rev.131, 110048 (2020).

    Article  Google Scholar 

  19. Edge, J. S. et al. Lithium ion battery degradation: what you need to know.Phys. Chem. Chem. Phys.23, 8200–8221 (2021).

    Article  Google Scholar 

  20. Hu, X., Xu, L., Lin, X. & Pecht, M. Battery lifetime prognostics.Joule4, 310–346 (2020).

    Article  Google Scholar 

  21. Suri, G. & Onori, S. A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries.Energy96, 644–653 (2016).

    Article  Google Scholar 

  22. Hu, X., Che, Y., Lin, X. & Onori, S. Battery health prediction using fusion-based feature selection and machine learning.IEEE Trans. Transp. Electrif.7, 382–398 (2020).

    Article  Google Scholar 

  23. Thelen, A. et al. Integrating physics-based modeling and machine learning for degradation diagnostics of lithium-ion batteries.Energy Stor. Mater.50, 668–695 (2022).

    Google Scholar 

  24. Aykol, M. et al. Perspective-combining physics and machine learning to predict battery lifetime.J. Electrochem. Soc.168, 030525 (2021).

    Article  Google Scholar 

  25. Chen, Y. et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards.J. Energy Chem.59, 83–99 (2021).

    Article  Google Scholar 

  26. Hao, M., Li, J., Park, S., Moura, S. & Dames, C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy.Nat. Energy3, 899–906 (2018).

    Article  Google Scholar 

  27. Longchamps, R. S., Yang, X. & Wang, C. Fundamental insights into battery thermal management and safety.ACS Energy Lett.7, 1103–1111 (2022).

    Article  Google Scholar 

  28. Lai, X. et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: recent advances and perspectives.Energy Stor. Mater.35, 470–499 (2021).This article comprehensively reviews the mechanism, detection and prevention of the internal short circuit in Li-ion batteries, which provides insights for more advanced battery fault diagnosis and safer battery management systems.

    Google Scholar 

  29. Deng, J., Bae, C., Marcicki, J., Masias, A. & Miller, T. Safety modelling and testing of lithium-ion batteries in electrified vehicles.Nat. Energy3, 261–266 (2018).

    Article  Google Scholar 

  30. Finegan, D. P. et al. The application of data-driven methods and physics-based learning for improving battery safety.Joule5, 316–329 (2021).

    Article  Google Scholar 

  31. Tomaszewska, A. et al. Lithium-ion battery fast charging: a review.eTransportation1, 100011 (2019).

    Article  Google Scholar 

  32. Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials.Nat. Energy4, 540–550 (2019).

    Article  Google Scholar 

  33. Attia, P. M. et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning.Nature578, 397–402 (2020).This article develops a machine learning method to help prolong battery cycle life by combining an early-prediction model and a Bayesian optimization algorithm.

    Article  Google Scholar 

  34. Wang, C. et al. Fast charging of energy-dense lithium-ion batteries.Nature611, 485–490 (2022).

    Article  Google Scholar 

  35. Yang, X., Zhang, G., Ge, S. & Wang, C. Fast charging of lithium-ion batteries at all temperatures.Proc. Natl Acad. Sci. USA115, 7266–7271 (2018).

    Article  Google Scholar 

  36. Hu, X. et al. Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives.Prog. Energy Combust. Sci.77, 100806 (2020).

    Article  Google Scholar 

  37. Yang, X. et al. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries.Joule3, 3002–3019 (2019).

    Article  Google Scholar 

  38. Rivera, S. et al. Electric vehicle charging infrastructure: from grid to battery.IEEE Ind. Electron.15, 37–51 (2021).

    Article  Google Scholar 

  39. Schmidt, M., Staudt, P. & Weinhardt, C. Evaluating the importance and impact of user behavior on public destination charging of electric vehicles.Appl. Energy258, 114061 (2020).

    Article  Google Scholar 

  40. Miele, A., Axsen, J., Wolinetz, M., Maine, E. & Long, Z. The role of charging and refuelling infrastructure in supporting zero-emission vehicle sales.Transp. Res. D Transp. Environ.81, 102275 (2020).

    Article  Google Scholar 

  41. Hardman, S. et al. A review of consumer preferences of and interactions with electric vehicle charging infrastructure.Transp. Res. D Transp. Environ.62, 508–523 (2018).

    Article  Google Scholar 

  42. Baresch, M. & Moser, S. Allocation of e-car charging: assessing the utilization of charging infrastructures by location.Transp. Res. Part A Policy Pract.124, 388–395 (2019).

    Article  Google Scholar 

  43. International Electrotechnical Commission. IEC 61851-1: 2017 electric vehicle conductive charging system — part 1: general requirements.IEC Webstorehttps://webstore.iec.ch/publication/33644 (2017).

  44. Wang, L. et al. Grid impact of electric vehicle fast charging stations: trends, standards, issues and mitigation measures — an overview.IEEE Open J. Power Electron.2, 56–74 (2021).

    Article  Google Scholar 

  45. Zhan, W. et al. A review of siting, sizing, optimal scheduling, and cost–benefit analysis for battery swapping stations.Energy258, 124723 (2022).

    Article  Google Scholar 

  46. Dixon, J., Andersen, P. B., Bell, K. & Træholt, C. On the ease of being green: an investigation of the inconvenience of electric vehicle charging.Appl. Energy258, 114090 (2020).

    Article  Google Scholar 

  47. Cui, D. et al. Operation optimization approaches of electric vehicle battery swapping and charging station: a literature review.Energy263, 126095 (2023).

    Article  Google Scholar 

  48. Ahmad, F., Alam, M. S. & Asaad, M. Developments in xEVs charging infrastructure and energy management system for smart microgrids including xEVs.Sustain. Cities Soc.35, 552–564 (2017).

    Article  Google Scholar 

  49. Affanni, A., Bellini, A., Franceschini, G., Guglielmi, P. & Tassoni, C. Battery choice and management for new-generation electric vehicles.IEEE Trans. Ind. Electron.52, 1343–1349 (2005).

    Article  Google Scholar 

  50. Aulton New Energy Automotive Technology. About Aulton.Aultonhttps://www.aulton.com/index.php/en/list-4.html (2023).

  51. Afridi, K. The future of electric vehicle charging infrastructure.Nat. Electron.5, 62–64 (2022).This review provides an insightful discussion and analysis on the benefits of promoting dynamic wireless charging on highways.

    Article  Google Scholar 

  52. Regensburger, B. et al. in2018 IEEE Applied Power Electronics Conf. Exposition 666–671 (2018).

  53. Machura, P. & Li, Q. A critical review on wireless charging for electric vehicles.Renew. Sust. Energ. Rev.104, 209–234 (2019).

    Article  Google Scholar 

  54. Laporte, S., Coquery, G., Deniau, V., De Bernardinis, A. & Hautière, N. Dynamic wireless power transfer charging infrastructure for future EVs: from experimental track to real circulated roads demonstrations.World Electr. Veh. J.10, 84 (2019).

    Article  Google Scholar 

  55. Rim, C. T. and Mi, C. inWireless Power Transfer for Electric Vehicles and Mobile Devices Ch. 9 161–208 (Wiley, 2017).

  56. Cui, S., Yao, B., Chen, G., Zhu, C. & Yu, B. The multi-mode mobile charging service based on electric vehicle spatiotemporal distribution.Energy198, 117302 (2020).

    Article  Google Scholar 

  57. Afshar, S., Macedo, P., Mohamed, F. & Disfani, V. Mobile charging stations for electric vehicles — a review.Renew. Sust. Energ. Rev.152, 111654 (2021).

    Article  Google Scholar 

  58. Scwartz, A. Nation-E develops first mobile electric vehicle charging station.Fast Companyhttps://www.fastcompany.com/1688633/nation-e-develops-first-mobile-electric-vehicle-charging-station (2010).

  59. NIO. NIO announces power north plan and its ET7 makes auto show debut.NIOhttps://www.nio.com/news/nio-announces-power-north-plan-and-its-et7-makes-auto-show-debut (2021).

  60. Ahmad, F., Iqbal, A., Ashraf, I., Marzband, M. & Khan, I. Optimal location of electric vehicle charging station and its impact on distribution network: a review.Energy Rep.8, 2314–2333 (2022).

    Article  Google Scholar 

  61. Metais, M. O., Jouini, O., Perez, Y., Berrada, J. & Suomalainen, E. Too much or not enough? Planning electric vehicle charging infrastructure: a review of modeling options.Renew. Sust. Energ. Rev.153, 111719 (2022).

    Article  Google Scholar 

  62. Wu, H. A survey of battery swapping stations for electric vehicles: operation modes and decision scenarios.IEEE Trans. Intell. Transp. Syst.23, 10163–10185 (2021).

    Article  Google Scholar 

  63. Duan, X. et al. Planning strategy for an electric vehicle fast charging service provider in a competitive environment.IEEE Trans. Transp. Electrif.8, 3056–3067 (2022).

    Article  Google Scholar 

  64. MirHassani, S. A. & Ebrazi, R. A flexible reformulation of the refueling station location problem.Transp. Sci.47, 617–628 (2013).

    Article  Google Scholar 

  65. He, J., Yang, H., Tang, T. & Huang, H. An optimal charging station location model with the consideration of electric vehicle’s driving range.Transp. Res. Part C Emerg. Technol.86, 641–654 (2018).

    Article  Google Scholar 

  66. Shen, Z. M., Feng, B., Mao, C. & Ran, L. Optimization models for electric vehicle service operations: a literature review.Transp. Res. Part B Meth.128, 462–477 (2019).

    Article  Google Scholar 

  67. Kavianipour, M. et al. Electric vehicle fast charging infrastructure planning in urban networks considering daily travel and charging behavior.Transp. Res. D Transp. Environ.93, 102769 (2021).

    Article  Google Scholar 

  68. Li, C. et al. Data-driven planning of electric vehicle charging infrastructure: a case study of Sydney, Australia.IEEE Trans. Smart Grid12, 3289–3304 (2021).

    Article  Google Scholar 

  69. Arias, N. B., Tabares, A., Franco, J. F., Lavorato, M. & Romero, R. Robust joint expansion planning of electrical distribution systems and EV charging stations.IEEE Trans. Sust. Energy9, 884–894 (2017).

    Article  Google Scholar 

  70. Wang, X., Shahidehpour, M., Jiang, C. & Li, Z. Coordinated planning strategy for electric vehicle charging stations and coupled traffic–electric networks.IEEE Trans. Power Syst.34, 268–279 (2018).

    Article  Google Scholar 

  71. Wei, W., Wu, L., Wang, J. & Mei, S. Network equilibrium of coupled transportation and power distribution systems.IEEE Trans. Smart Grid9, 6764–6779 (2017).

    Article  Google Scholar 

  72. Ferro, G., Minciardi, R., Parodi, L. & Robba, M. Optimal planning of charging stations in coupled transportation and power networks based on user equilibrium conditions.IEEE Trans. Autom. Sci. Eng.19, 48–59 (2022).

    Article  Google Scholar 

  73. Shao, C., Qian, T., Wang, Y. & Wang, X. Coordinated planning of extreme fast charging stations and power distribution networks considering on-site storage.IEEE Trans. Intell. Transp. Syst.22, 493–504 (2020).

    Article  Google Scholar 

  74. Zheng, Y., Shao, Z., Zhang, Y. & Jian, L. A systematic methodology for mid-and-long term electric vehicle charging load forecasting: the case study of Shenzhen, China.Sustain. Cities Soc.56, 102084 (2020).

    Article  Google Scholar 

  75. Muratori, M. Impact of uncoordinated plug-in electric vehicle charging on residential power demand.Nat. Energy3, 193–201 (2018).

    Article  Google Scholar 

  76. Jenn, A. & Highleyman, J. Distribution grid impacts of electric vehicles: a California case study.Iscience25, 103686 (2022).This article presents a timely analysis in California, USA, showing that large-scale PEV integration may significantly overload the current distribution power grids.

    Article  Google Scholar 

  77. Assolami, Y. O., Gaouda, A. & El-shatshat, R. Impact on voltage quality and transformer ageing of residential prosumer ownership of plug-in electric vehicles: assessment and solutions.IEEE Trans. Transp. Electrif.8, 492–509 (2021).

    Article  Google Scholar 

  78. Shaukat, N. et al. A survey on electric vehicle transportation within smart grid system.Renew. Sust. Energ. Rev.8, 1329–1349 (2018).

    Article  Google Scholar 

  79. Lucas, A., Bonavitacola, F., Kotsakis, E. & Fulli, G. Grid harmonic impact of multiple electric vehicle fast charging.Electr. Power Syst. Res.127, 13–21 (2015).

    Article  Google Scholar 

  80. Jabalameli, N., Su, X. & Ghosh, A. Online centralized charging coordination of PEVs with decentralized Var discharging for mitigation of voltage unbalance.IEEE Power Energy Technol. Syst. J.6, 152–161 (2019).

    Article  Google Scholar 

  81. Zhao, J., Wang, Y., Song, G., Li, P., Wang, C. & Wu, J. Congestion management method of low-voltage active distribution networks based on distribution locational marginal price.IEEE Access.7, 32240–32255 (2019).

    Article  Google Scholar 

  82. Gunkel, P. A., Bergaentzlé, C., Jensen, I. G. & Scheller, F. From passive to active: flexibility from electric vehicles in the context of transmission system development.Appl. Energy277, 115526 (2020).

    Article  Google Scholar 

  83. Speidel, S. & Braunl, T. Driving and charging patterns of electric vehicles for energy usage.Renew. Sust. Energ. Rev.40, 97–110 (2014).

    Article  Google Scholar 

  84. Solanke, T. U. et al. A review of strategic charging–discharging control of grid-connected electric vehicles.J. Energy Storage28, 101193 (2020).

    Article  Google Scholar 

  85. Powell, S., Cezar, G. V., Min, L., Azevedo, I. M. L. & Rajagopal, R. Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption.Nat. Energy7, 932–945 (2022).This article reports a comprehensive analysis showing that building proper charging infrastructure and adopting smart charging control can significantly alleviate the adverse impacts of PEV charging on power grids.

    Article  Google Scholar 

  86. Venegas, F. G., Petit, M. & Perez, Y. Active integration of electric vehicles into distribution grids: barriers and frameworks for flexibility services.Renew. Sust. Energ. Rev.145, 111060 (2021).

    Article  Google Scholar 

  87. Kwon, S. Y., Park, J. Y. & Kim, Y. J. Optimal V2G and route scheduling of mobile energy storage devices using a linear transit model to reduce electricity and transportation energy losses.IEEE Trans. Ind. Appl.56, 34–47 (2020).

    Article  Google Scholar 

  88. Li, X. et al. A cost–benefit analysis of V2G electric vehicles supporting peak shaving in Shanghai.Electr. Power Syst. Res.179, 106058 (2020).

    Article  Google Scholar 

  89. Huang, L. et al. A distributed optimization model for mitigating three-phase power imbalance with electric vehicles and grid battery.Electr. Power Syst. Res.210, 108080 (2022).

    Article  Google Scholar 

  90. Luo, Q., Zhou, Y., Hou, W. & Peng, L. A hierarchical blockchain architecture based V2G market trading system.Appl. Energy307, 118167 (2022).

    Article  Google Scholar 

  91. Brown, M. A. & Soni, A. Expert perceptions of enhancing grid resilience with electric vehicles in the United States.Energy Res. Soc. Sci.57, 101241 (2019).

    Article  Google Scholar 

  92. Hussain, A. & Musilek, P. Resilience enhancement strategies for and through electric vehicles.Sustain. Cities Soc.80, 103788 (2022).This review provides a comprehensive discussion on utilizing V2G to enhance the resilience of power grids.

    Article  Google Scholar 

  93. Ewing, J. G.M. Will add backup power function to its electric vehicles.NY Timeshttps://www.nytimes.com/2023/08/08/business/energy-environment/gm-backup-electric-power.html (2023).

  94. González, L. G., Siavichay, E. & Espinoza, J. L. Impact of EV fast charging stations on the power distribution network of a Latin American intermediate city.Renew. Sust. Energ. Rev.107, 309–318 (2019).

    Article  Google Scholar 

  95. Tu, H., Feng, H., Srdic, S. & Lukic, S. Extreme fast charging of electric vehicles: a technology overview.IEEE Trans. Transp. Electrif.5, 861–878 (2019).

    Article  Google Scholar 

  96. Zhou, X., Zou, S., Wang, P. & Ma, Z. ADMM-based coordination of electric vehicles in constrained distribution networks considering fast charging and degradation.IEEE Trans. Intell. Transp. Syst.22, 565–578 (2021).

    Article  Google Scholar 

  97. Huang, Y. & Kockelman, K. M. Electric vehicle charging station locations: elastic demand, station congestion, and network equilibrium.Transp. Res. D Transp. Environ.78, 102179 (2020).

    Article  Google Scholar 

  98. Hu, J., Ye, C., Ding, Y., Tang, J. & Liu, S. A distributed MPC to exploit reactive power V2G for real-time voltage regulation in distribution networks.IEEE Trans. Smart Grid13, 576–588 (2022).

    Article  Google Scholar 

  99. Mejia-Ruiz, G. E. et al. Coordinated optimal Volt/Var control for distribution networks via D-PMUs and EV chargers by exploiting the eigensystem realization.IEEE Trans. Ind. Appl.12, 2425–2438 (2021).

    Google Scholar 

  100. Pirouzi, S., Latify, M. A. & Yousefi, G. R. Conjugate active and reactive power management in a smart distribution network through electric vehicles: a mixed integer-linear programming model.Sustain. Energy Grids Netw.22, 100344 (2020).

    Article  Google Scholar 

  101. Mazumder, M. & Debbarma, S. EV charging stations with a provision of V2G and voltage support in a distribution network.IEEE Syst. J.15, 662–671 (2021).

    Article  Google Scholar 

  102. Tarroja, B., Zhang, L., Wifvat, V., Shaffer, B. & Samuelsen, S. Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles.Energy106, 673–690 (2016).

    Article  Google Scholar 

  103. El-Taweel, N. A., Farag, H., Shaaban, M. F. & AlSharidah, M. E. Optimization model for EV charging stations with PV farm transactive energy.IEEE Trans. Ind. Inform.18, 4608–4621 (2022).

    Article  Google Scholar 

  104. Mersky, A. C. & Samaras, C. Environmental and economic trade-offs of city vehicle fleet electrification and photovoltaic installation in the US PJM interconnection.Environ. Sci. Technol.54, 380–389 (2019).

    Article  Google Scholar 

  105. Han, S., Lee, D. & Park, J. B. Optimal bidding and operation strategies for EV aggegators by regrouping aggregated EV batteries.IEEE Trans. Smart Grid11, 4928–4937 (2020).

    Article  Google Scholar 

  106. Wolinetz, M. et al. Simulating the value of electric-vehicle–grid integration using a behaviourally realistic model.Nat. Energy3, 132–139 (2018).

    Article  Google Scholar 

  107. Xu, C., Behrens, P. & Gasper, P. et al. Electric vehicle batteries alone could satisfy short-term grid storage demand by as early as 2030.Nat. Commun.14, 119 (2023).

    Article  Google Scholar 

  108. Sevdari, K., Calearo, L., Andersen, P. B. & Marinelli, M. Ancillary services and electric vehicles: an overview from charging clusters and chargers technology perspectives.Renew. Sust. Energ. Rev.167, 112666 (2022).

    Article  Google Scholar 

  109. Wang, M., Mu, Y., Shi, Q., Jia, H. & Li, F. Electric vehicle aggregator modeling and control for frequency regulation considering progressive state recovery.IEEE Trans. Smart Grid11, 4176–4189 (2020).

    Article  Google Scholar 

  110. Kong, L., Zhang, H., Li, W., Bai, H. & Dai, N. Spatial-temporal scheduling of electric bus fleet in power-transportation coupled network.IEEE Trans. Transp. Electrif.9, 2969–2982 (2023).

    Article  Google Scholar 

  111. Black, D., MacDonald, J., DeForest, N. & Gehbauer, C. Los Angeles Air Force Base vehicle-to-grid demonstration: final project report (California Energy Commission, 2018).

  112. Kaufmann, R. K., Newberry, D., Chen, X. & Gopal, S. Feedbacks among electric vehicle adoption, charging, and the cost and installation of rooftop solar photovoltaics.Nat. Energy6, 143–149 (2021).

    Article  Google Scholar 

  113. Fachrizal, R., Shepero, M., Aberg, M. & Munkhammar, J. Optimal PV–EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance.Appl. Energy307, 118139 (2022).

    Article  Google Scholar 

  114. Kuhudzai, J. R. First solar-powered battery charging & swapping hub for rural mobility launches in Kenya.CleanTechnicahttps://cleantechnica.com/2023/08/07/first-solar-powered-battery-charging-swapping-hub-for-rural-mobility-launches-in-kenya/ (2023).

  115. Kharrazi, A., Sreeram, V. & Mishra, Y. Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network — a review.Renew. Sust. Energ. Rev.120, 109643 (2020).

    Article  Google Scholar 

  116. Kikusato, H. et al. Electric vehicle charging management using auction mechanism for reducing PV curtailment in distribution systems.IEEE Trans. Sust. Energy11, 1394–1403 (2019).

    Article  Google Scholar 

  117. Wang, L., Dubey, A., Gebremedhin, A. H., Srivastava, A. K. & Schulz, N. MPC-based decentralized voltage control in power distribution systems with EV and PV coordination.IEEE Trans. Smart Grid13, 2908–2919 (2022).

    Article  Google Scholar 

  118. Saha, J., Kumar, N. & Panda, S. K. Adaptive grid-supportive control for solar-power integrated electric-vehicle fast charging station.IEEE Trans. Energy Convers.38, 2034–2044 (2023).

    Article  Google Scholar 

  119. Strunz, K., Abbasi, E. & Huu, D. N. DC microgrid for wind and solar power integration.IEEE J. Emerg. Sel. Top. Power Electron.2, 115–126 (2013).

    Article  Google Scholar 

  120. Chandra, A., Singh, G. K. & Pant, V. Protection techniques for DC microgrid — a review.Electr. Power Syst. Res.187, 106439 (2020).

    Article  Google Scholar 

  121. Safayatullah, M., Elrais, M. T., Ghosh, S., Rezaii, R. & Batarseh, I. A comprehensive review of power converter topologies and control methods for electric vehicle fast charging applications.IEEE Access 10, 40753–40793 (2022).

    Article  Google Scholar 

  122. Zeng, J., Du, X. & Yang, Z. A multiport bidirectional DC–DC converter for hybrid renewable energy system integration.IEEE Trans. Power Electron.36, 12281–12291 (2021).

    Article  Google Scholar 

  123. Xu, Q. et al. Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids.IEEE J. Emerg. Sel. Top. Power Electron.9, 1205–1221 (2020).

    Article  Google Scholar 

  124. Cao, M., Li, S., Yang, J. & Zhang, K. Mismatched disturbance compensation enhanced robust H∞ control for the DC–DC boost converter feeding constant power loads.IEEE Trans. Energy Convers.38, 1300–1310 (2023).

    Article  Google Scholar 

  125. Colmenar-Santos, A., Muñoz-Gómez, A., Rosales-Asensio, E. & López-Rey, Á. Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario.Energy183, 61–74 (2019).

    Article  Google Scholar 

  126. Csereklyei, Z., Qu, S. & Ancev, T. The effect of wind and solar power generation on wholesale electricity prices in Australia.Energy Policy131, 358–369 (2019).

    Article  Google Scholar 

  127. Zeynali, S., Nasiri, N., Marzband, M. & Ravadanegh, S. N. A hybrid robust–stochastic framework for strategic scheduling of integrated wind farm and plug-in hybrid electric vehicle fleets.Appl. Energy300, 117432 (2021).

    Article  Google Scholar 

  128. Abbasi, M. H., Taki, M., Rajabi, A., Li, L. & Zhang, J. Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: a multi-stage risk constrained approach.Appl. Energy239, 1294–1307 (2019).

    Article  Google Scholar 

  129. Koraki, D. & Strunz, K. Wind and solar power integration in electricity markets and distribution networks through service-centric virtual power plants.IEEE Trans. Power Syst.33, 473–485 (2017).

    Article  Google Scholar 

  130. Naval, N. & Yusta, J. M. Virtual power plant models and electricity markets — a review.Renew. Sust. Energ. Rev.149, 111393 (2021).

    Article  Google Scholar 

  131. Kristoff, M. M. What is the state of virtual power plants in Australia? From thin margins to a future of VPP-tailers (IEEFA, 2022).

  132. Ding, Z., Zhang, Y., Tan, W., Pan, X. & Tang, H. Pricing based charging navigation scheme for highway transportation to enhance renewable generation integration.IEEE Trans. Ind. Appl.59, 108–117 (2023).This article presents a PEV charging service pricing mechanism to help promote renewable generation adoption, which is also a great example of the power–transport synergy.

    Article  Google Scholar 

  133. Zhang, H., Hu, Z. & Song, Y. Power and transport nexus: routing electric vehicles to promote renewable power integration.IEEE Trans. Smart Grid11, 3291–3301 (2020).

    Article  Google Scholar 

  134. Qiu, K., Ribberink, H. & Entchev, E. Economic feasibility of electrified highways for heavy-duty electric trucks.Appl. Energy326, 119935 (2022).

    Article  Google Scholar 

  135. Tong, F., Jenn, A., Wolfson, D., Scown, C. D. & Auffhammer, M. Health and climate impacts from long-haul truck electrification.Environ. Sci. Technol.55, 8514–8523 (2021).

    Article  Google Scholar 

  136. Zhong, H., Li, W., Burris, M. W., Talebpour, A. & Sinha, K. C. Will autonomous vehicles change auto commuters’ value of travel time?Transp. Res. D Transp. Environ.83, 102303 (2020).

    Article  Google Scholar 

  137. Jones, E. C. & Leibowicz, B. D. Contributions of shared autonomous vehicles to climate change mitigation.Transp. Res. D Transp. Environ.72, 279–298 (2019).

    Article  Google Scholar 

  138. Ali, A. et al. Multi-objective allocation of EV charging stations and RESs in distribution systems considering advanced control schemes.IEEE Trans. Veh. Technol.72, 3146–3160 (2022).

    Article  Google Scholar 

  139. Mohammadi, F. & Rashidzadeh, R. An overview of IoT-enabled monitoring and control systems for electric vehicles.IEEE Instrum. Meas. Mag.24, 91–97 (2021).

    Article  Google Scholar 

  140. Ghorbanian, M., Dolatabadi, S. H., Masjedi, M. & Siano, P. Communication in smart grids: a comprehensive review on the existing and future communication and information infrastructures.IEEE Syst. J.13, 4001–4014 (2019).

    Article  Google Scholar 

  141. Umoren, I. A., Shakir, M. Z. & Tabassum, H. Resource efficient vehicle-to-grid (V2G) communication systems for electric vehicle enabled microgrids.IEEE Trans. Intell. Transp. Syst.22, 4171–4180 (2020).

    Article  Google Scholar 

  142. Rajasekaran, A. S., Azees, M. & Al-Turjman, F. A comprehensive survey on security issues in vehicle-to-grid networks.J. Control Decis.10, 150–159 (2023).

    Article  Google Scholar 

  143. Zheng, Y., Shao, Z., Lei, X., Shi, Y. & Jian, L. The economic analysis of electric vehicle aggregators participating in energy and regulation markets considering battery degradation.J. Energy Storage45, 103770 (2022).

    Article  Google Scholar 

  144. Wen, Y., Hu, Z., You, S. & Duan, X. Aggregate feasible region of DERs: exact formulation and approximate models.IEEE Trans. Smart Grid13, 4405–4423 (2022).

    Article  Google Scholar 

  145. Nimalsiri, N. I. et al. A survey of algorithms for distributed charging control of electric vehicles in smart grid.IEEE Trans. Intell. Transp. Syst.21, 4497–4515 (2019).

    Article  Google Scholar 

  146. Saner, C. B., Trivedi, A. & Srinivasan, D. A cooperative hierarchical multi-agent system for EV charging scheduling in presence of multiple charging stations.IEEE Trans. Smart Grid13, 2218–2233 (2022).

    Article  Google Scholar 

  147. DeForest, N., MacDonald, J. S. & Black, D. R. Day ahead optimization of an electric vehicle fleet providing ancillary services in the Los Angeles Air Force Base vehicle-to-grid demonstration.Appl. Energy210, 987–1001 (2018).

    Article  Google Scholar 

  148. Hajebrahimi, A., Kamwa, I., Abdelaziz, M. M. A. & Moeini, A. Scenario-wise distributionally robust optimization for collaborative intermittent resources and electric vehicle aggregator bidding strategy.IEEE Trans. Power Syst.35, 3706–3718 (2020).

    Article  Google Scholar 

  149. Zhou, F., Li, Y., Wang, W. & Pan, C. Integrated energy management of a smart community with electric vehicle charging using scenario based stochastic model predictive control.Energy Build.260, 111916 (2022).

    Article  Google Scholar 

  150. Luo, Y. et al. Charging scheduling strategy for different electric vehicles with optimization for convenience of drivers, performance of transport system and distribution network.Energy194, 116807 (2020).

    Article  Google Scholar 

  151. Qiu, D., Wang, Y., Hua, W. & Strbac, G. Reinforcement learning for electric vehicle applications in power systems: a critical review.Renew. Sust. Energ. Rev.173, 113052 (2023).This review discusses the application of cutting-edge AI technology (reinforcement learning) in PEV integration into power systems.

    Article  Google Scholar 

  152. Uddin, K., Dubarry, M. & Glick, M. B. The viability of vehicle-to-grid operations from a battery technology and policy perspective.Energy Policy113, 342–347 (2018).

    Article  Google Scholar 

  153. Briones, A. et al. Vehicle-to-grid (V2G) power flow regulations and building codes review by the AVTA (US Department of Energy, 2012).

  154. Pena-Bello, A. et al. Integration of prosumer peer-to-peer trading decisions into energy community modelling.Nat. Energy7, 74–82 (2022).

    Article  Google Scholar 

  155. Ting L. Charging stations out of service caused large-scale outage of taxis in Shenzhen.Shenzhen Newshttp://news.sznews.com/content/2018-05/22/content_19164366.htm (2018).

  156. Cui, Y., Hu, Z. & Duan, X. Optimal pricing of public electric vehicle charging stations considering operations of coupled transportation and power systems.IEEE Trans. Smart Grid12, 3278–3288 (2021).

    Article  Google Scholar 

  157. Dinger, A. et al. Batteries for electric cars: challenges, opportunities, and the outlook to 2020 (Boston Consulting Group, 2010).

  158. Xu, L., Deng, Z., Xie, Y., Lin, X. & Hu, X. A novel hybrid physics-based and data-driven approach for degradation trajectory prediction in Li-ion batteries.IEEE Trans. Transp. Electrif.9, 2628–2644 (2022).

    Article  Google Scholar 

  159. Jahangir, H. et al. Plug-in electric vehicle behavior modeling in energy market: a novel deep learning-based approach with clustering technique.IEEE Trans. Smart Grid11, 4738–4748 (2020).

    Article  Google Scholar 

  160. Marino, C. A. & Marufuzzaman, M. Unsupervised learning for deploying smart charging public infrastructure for electric vehicles in sprawling cities.J. Clean. Prod.266, 121926 (2020).

    Article  Google Scholar 

  161. Zhang, H., Sheppard, C. J. R., Lipman, T. E., Zeng, T. & Moura, S. J. Charging infrastructure demands of shared-use autonomous electric vehicles in urban areas.Transp. Res. D Transp. Environ.78, 102210 (2020).

    Article  Google Scholar 

  162. Fu, T., Wang, C. & Cheng, N. Deep-learning-based joint optimization of renewable energy storage and routing in vehicular energy network.IEEE Internet Things J.7, 6229–6241 (2020).

    Article  Google Scholar 

  163. Zhang, X. et al. Deep-learning-based probabilistic forecasting of electric vehicle charging load with a novel queuing model.IEEE Trans. Cybern.51, 3157–3170 (2020).

    Article  Google Scholar 

  164. Henri, G. & Lu, N. A supervised machine learning approach to control energy storage devices.IEEE Trans. Smart Grid10, 5910–5919 (2019).

    Article  Google Scholar 

  165. Lopez, K. L., Gagne, C. & Gardner, M. A. Demand-side management using deep learning for smart charging of electric vehicles.IEEE Trans. Smart Grid10, 2683–2691 (2019).

    Article  Google Scholar 

  166. Li, H., Wan, Z. & He, H. Constrained EV charging scheduling based on safe deep reinforcement learning.IEEE Trans. Smart Grid11, 2427–2439 (2020).

    Article  Google Scholar 

  167. Yan, L., Chen, X., Zhou, J., Chen, Y. & Wen, J. Deep reinforcement learning for continuous electric vehicles charging control with dynamic user behaviors.IEEE Trans. Smart Grid12, 5124–5134 (2021).

    Article  Google Scholar 

  168. Lu, Y. et al. Deep reinforcement learning-based charging pricing for autonomous mobility-on-demand system.IEEE Trans. Smart Grid13, 1412–1426 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

H.Z. discloses support for the research of this work from the National Natural Science Foundation of China (NSFC) (grant number 52007200). X.H. discloses support for the research of this work from the NSFC (grant number 52111530194) and the Basic Research Funds for Central Universities (grant number 2022CDJDX-006). Z.H. discloses support for the research of this work from the National Key Research and Development Program of China (grant number 2022YFB2403900).

Author information

Authors and Affiliations

  1. State Key Laboratory of Internet of Things for Smart City, University of Macau, Macao, China

    Hongcai Zhang

  2. Department of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, China

    Xiaosong Hu

  3. Department of Electrical Engineering, Tsinghua University, Beijing, China

    Zechun Hu

  4. Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA, USA

    Scott J. Moura

Authors
  1. Hongcai Zhang

    You can also search for this author inPubMed Google Scholar

  2. Xiaosong Hu

    You can also search for this author inPubMed Google Scholar

  3. Zechun Hu

    You can also search for this author inPubMed Google Scholar

  4. Scott J. Moura

    You can also search for this author inPubMed Google Scholar

Contributions

All authors contributed substantially to discussion of the content. H.Z., X.H. and Z.H. researched data for the article and wrote the article. S.J.M. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence toXiaosong Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Kai Strunz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Electrify America:https://www.electrifyamerica.com/renewable-energy

LFP/C1:https://www.batteryspace.com/prod-specs/6610.pdf

LFP/C2:https://voltaplex.com/lfp-prismatic-battery-31ah-144a-2-5v

LFP/C3:https://www.buya123products.com/uploads/vipcase/468623916e3ecc5b8a5f3d20825eb98d.pdf

LTO/C1:https://www.yinlong.energy/yinlong-battery

LTO/C2:https://lithium-titanatebattery.com/product/2-3v-30ah-prismatic-lto-battery-cell

LTO/C3:https://www.alibaba.com/product-detail/LTO-Prismatic-Square-Lithium-Titanate-Pouch_1600764573476.html?spm=a2700.7735675.0.0.3814sr3esr3era&s=p

NCA/C:https://www.imrbatteries.com/content/panasonic_ncr18650b-2.pdf

NMC/C1:https://www.batteryspace.com/prod-specs/11514.pdf

NMC/C2:https://pushevs.com/product/prismatic-ncm-battery-cells

NMC/C3:https://www.altertek.com/products/lithium-ion-pouch-cylindrical-cells/a123-li-ion-cells/a123-26ah-lithium-ion-nmc-pouch-cell

PJM:https://learn.pjm.com/energy-innovations/plug-in-electric

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Hu, X., Hu, Z.et al. Sustainable plug-in electric vehicle integration into power systems.Nat Rev Electr Eng1, 35–52 (2024). https://doi.org/10.1038/s44287-023-00004-7

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp