- Review Article
- Published:
Life and death of slow-moving landslides
- Pascal Lacroix ORCID:orcid.org/0000-0003-1282-95721,
- Alexander L. Handwerger ORCID:orcid.org/0000-0001-9235-38712,3 &
- Grégory Bièvre1
Nature Reviews Earth & Environmentvolume 1, pages404–419 (2020)Cite this article
3025Accesses
237Citations
13Altmetric
Abstract
In the most destructive and catastrophic landslide events, rocks, soil and fluids can travel at speeds approaching several tens of metres per second. However, many landslides, commonly referred to as slow-moving landslides, creep at rates ranging from millimetres to several metres per year and can persist for years to decades. Although slow-moving landslides rarely claim lives, they can cause major damage to infrastructure and sometimes fail catastrophically, transitioning into fast-moving landslides that can result in thousands of casualties. In addition, slow-moving landslides are highly erosive features that control the landscape morphology in many mountainous regions (such as the California Coast Ranges or the Apennines). The persistent and long-term motion of slow-moving landslides provides an exceptional opportunity to investigate landslide processes and mechanisms. In this Review, we examine the environmental conditions (such as geology, climate and tectonics) of slow-moving-landslide-prone regions, analyse the forcings (for example, precipitation and groundwater, earthquakes, river erosion, anthropogenic forcings and external material supply) that drive their motion and investigate the subsequent implications of the different forcings on landslide dynamics. We then discuss circumstances in which slow-moving landslides can accelerate rapidly, move large distances or even fail catastrophically. Finally, we provide new perspectives and challenges for future landslide research.
Key points
Slow-moving landslides occur all around the world in mechanically weak rock and soil.
The persistent and long-term motion of slow-moving landslides provides an exceptional opportunity to investigate landslide processes and mechanisms.
The landslide velocity is modulated by external forcings (such as precipitation, earthquakes, material supply and anthropogenic activity).
Slow-moving landslides can sometimes accelerate rapidly and fail catastrophically.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Froude, M. J. & Petley, D. Global fatal landslide occurrence from 2004 to 2016.Nat. Hazards Earth Syst. Sci.18, 2161–2181 (2018).
Temple, P. H. & Rapp, A. Landslides in the Mgeta area, Western Uluguru mountains, Tanzania: Geomorphological effects of sudden heavy rainfall.Geogr. Ann. Ser. A Phys. Geogr.54, 157–193 (1972).
Keefer, D. K. Landslides caused by earthquakes.Geol. Soc. Am. Bull.95, 406–421 (1984).
Palmer, J. Creeping earth could hold secret to deadly landslides.Nature548, 384–386 (2017).
Mansour, M. F., Morgenstern, N. R. & Martin, C. D. Expected damage from displacement of slow-moving slides.Landslides8, 117–131 (2011).
Reid, M. E. et al. inDebris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment Vol. 1 (eds Rickenmann, D. & Chen, C.-L.) 155–166 (Millpress, 2003).
Booth, A. M. et al. Transient reactivation of a deep-seated landslide by undrained loading captured with repeat airborne and terrestrial lidar.Geophys. Res. Lett.45, 4841–4850 (2018).
Hendron, A. J. Jr & Patton, F. D.The Vaiont Slide, a geotechnical analysis based on how geologic observations of the failure surface. Technical Report GL-85-5 (U.S. Army Corps of Engineers, 1985).
Intrieri, E. et al. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data.Landslides15, 123–133 (2018).
Handwerger, A. L., Huang, M.-H., Fielding, E. J., Booth, A. M. & Bürgmann, R. A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure.Sci. Rep.9, 1569 (2019).
Federico, A. et al. Prediction of time to slope failure: a general framework.Environ. Earth Sci.66, 245–256 (2012).
Carlà, T. et al. Perspectives on the prediction of catastrophic slope failures from satellite InSAR.Sci. Rep.9, 14137 (2019).
Lacroix, P., Bièvre, G., Pathier, E., Kniess, U. & Jongmans, D. Use of Sentinel-2 images for the detection of precursory motions before landslide failures.Remote. Sens. Environ.215, 507–516 (2018).
Desrues, M., Lacroix, P. & Brenguier, O. Satellite pre-failure detection and in situ monitoring of the landslide of the Tunnel du Chambon, French Alps.Geosciences9, 313 (2019).
Wang, F. et al. Movement of the Shuping landslide in the first four years after the initial impoundment of the Three Gorges Dam Reservoir, China.Landslides5, 321–329 (2008).
Dille, A. et al. Causes and triggers of deep-seated hillslope instability in the tropics–Insights from a 60-year record of Ikoma landslide (DR Congo).Geomorphology345, 106835 (2019).
Nappo, N., Peduto, D., Mavrouli, O., van Westen, C. J. & Gullà, G. Slow-moving landslides interacting with the road network: analysis of damage using ancillary data, in situ surveys and multi-source monitoring data.Eng. Geol.260, 105244 (2019).
Lacroix, P., Dehecq, A. & Taipe, E. Irrigation-triggered landslides in a Peruvian desert caused by modern intensive farming.Nat. Geosci.13, 56–60 (2020).
Wu, S. et al. Zonation of the landslide hazards in the forereservoir region of the Three Gorges Project on the Yangtze River.Eng. Geol.59, 51–58 (2001).
Mackey, B. H. & Roering, J. J. Sediment yield, spatial characteristics, and the long-term evolution of active earthflows determined from airborne lidar and historical aerial photographs, Eel River, California.Bulletin123, 1560–1576 (2011).
Simoni, A., Ponza, A., Picotti, V., Berti, M. & Dinelli, E. Earthflow sediment production and Holocene sediment record in a large Apennine catchment.Geomorphology188, 42–53 (2013).
Coe, J. A., McKenna, J. P., Godt, J. W. & Baum, R. L. Basal-topographic control of stationary ponds on a continuously moving landslide.Earth Surf. Process. Landf.34, 264–279 (2009).
Bontemps, N., Lacroix, P., Larose, E., Jara, J. & Taipe, E. Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state.Nat. Commun.11, 780 (2020).
Nereson, A. L. & Finnegan, N. J. Drivers of earthflow motion revealed by an 80 yr record of displacement from Oak Ridge earthflow, Diablo Range, California, USA.Bulletin131, 389–402 (2018).
Iverson, R. M. & Major, J. J. Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, northwestern California: physical interpretation of empirical relations.Geol. Soc. Am. Bull.99, 579–594 (1987).
Krzeminska, D., Bogaard, T., Malet, J.-P. & Van Beek, L. A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide.Hydrol. Earth Syst. Sci.17, 947–959 (2013).
Hungr, O., Leroueil, S. & Picarelli, L. The Varnes classification of landslide types, an update.Landslides11, 167–194 (2013).
Galloway, W. The landslide in the Rhymney valley.Nature73, 425–426 (1906).
Miller, W. J. The landslide at Point Firmin, California.Sci. Monthly32, 464–469 (1931).
Benson, W. N. Landslides and their relation to engineering in the Dunedin district, New Zealand.Econ. Geol.41, 328–347 (1946).
Crandell, D. R. Movement of the Slumgullion earthflow near Lake City, Colorado.Short Papers in the Geologic and Hydrologic Sciences B136–B139 (1961).
Schulz, W. H., McKenna, J. P., Kibler, J. D. & Biavati, G. Relations between hydrology and velocity of a continuously moving landslide — evidence of pore-pressure feedback regulating landslide motion?Landslides6, 181–190 (2009).
Schulz, W. H., Kean, J. W. & Wang, G. Landslide movement in southwest Colorado triggered by atmospheric tides.Nat. Geosci.2, 863–866 (2009).
Schulz, W. H. et al. Landslide kinematics and their potential controls from hourly to decadal timescales: Insights from integrating ground-based InSAR measurements with structural maps and long-term monitoring data.Geomorphology285, 121–136 (2017).
Schulz, W. H., Smith, J. B., Wang, G., Jiang, Y. & Roering, J. J. Clayey landslide initiation and acceleration strongly modulated by soil swelling.Geophys. Res. Lett.45, 1888–1896 (2018).
Helmstetter, A. & Garambois, S. Seismic monitoring of Séchilienne rockslide (French Alps): Analysis of seismic signals and their correlation with rainfalls.J. Geophys. Res. Earth Surf.115, F03016 (2010).
Mainsant, G. et al. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction.J. Geophys. Res. Earth Surf.117, F01030 (2012).
Travelletti, J., Sailhac, P., Malet, J.-P., Grandjean, G. & Ponton, J. Hydrological response of weathered clay-shale slopes: Water infiltration monitoring with time-lapse electrical resistivity tomography.Hydrol. Process.26, 2106–2119 (2012).
Provost, F., Hibert, C. & Malet, J.-P. Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier.Geophys. Res. Lett.44, 113–120 (2017).
Delacourt, C., Allemand, P., Casson, B. & Vadon, H. Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images.Geophys. Res. Lett.31, L15619 (2004).
Hilley, G. E., Bürgmann, R., Ferretti, A., Novali, F. & Rocca, F. Dynamics of slow-moving landslides from permanent scatterer analysis.Science304, 1952–1955 (2004).
Booth, A. M., Lamb, M. P., Avouac, J.-P. & Delacourt, C. Landslide velocity, thickness, and rheology from remote sensing: La Clapière landslide, France.Geophys. Res. Lett.40, 4299–4304 (2013).
Lacroix, P., Berthier, E. & Maquerhua, E. T. Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images.Remote. Sens. Environ.165, 148–158 (2015).
Lacroix, P., Araujo, G., Hollingsworth, J. & Taipe, E. Self entrainment motion of a slow-moving landslide inferred from Landsat-8 time-series.J. Geophys. Res. Earth Surf.124, 1201–1216 (2019).
Bennett, G. L. et al. Historic drought puts the brakes on earthflows in Northern California.Geophys. Res. Lett.43, 5725–5731 (2016).
Stumpf, A., Malet, J.-P. & Delacourt, C. Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides.Remote. Sens. Environ.189, 40–55 (2017).
Handwerger, A. L. et al. Widespread initiation, reactivation, and acceleration of landslides in the northern California Coast Ranges due to extreme rainfall.J. Geophys. Res. Earth Surf.124, 1782–1797 (2019).
Hutchinson, J. & Bhandari, R. Undrained loading, a fundamental mechanism of mudflows and other mass movements.Geotechnique21, 353–358 (1971).
Van Asch, T. W. J., Malet, J.-P. & Bogaard, T. A. The effect of groundwater fluctuations on the velocity pattern of slow-moving landslides.Nat. Hazards Earth Syst. Sci.9, 739–749 (2009).
Lacroix, P., Perfettini, H., Taipe, E. & Guillier, B. Coseismic and postseismic motion of a landslide: Observations, modeling, and analogy with tectonic faults.Geophys. Res. Lett.41, 6676–6680 (2014).
Handwerger, A. L., Rempel, A. W., Skarbek, R. M., Roering, J. J. & Hilley, G. E. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides.Proc. Natl Acad. Sci. USA113, 10281–10286 (2016).
RESIF/OMIV. French multidisciplinary observatory of versant instabilities.RESIF - Réseau Sismologique et géodésique Français (RESIF/OMIV, 2006).
Colombo, A., Lanteri, L., Ramasco, M. & Troisi, C. Systematic GIS-based landslide inventory as the first step for effective landslide-hazard management.Landslides2, 291–301 (2005).
Jaboyedoff, M. et al. inLandslides Processes — from Geomorphologic Mapping to Dynamic Modeling (eds Malet, J. P., Remaître, A. & Bogaard, T.) 131–137 (CERG Editions, 2009).
Malet, J.-P., Maquaire, O., Locat, J. & Remaître, A. Assessing debris flow hazards associated with slow moving landslides: methodology and numerical analyses.Landslides1, 83–90 (2004).
Corsini, A., Pasuto, A., Soldati, M. & Zannoni, A. Field monitoring of the Corvara landslide (Dolomites, Italy) and its relevance for hazard assessment.Geomorphology66, 149–165 (2005).
Bièvre, G. et al. Paleotopographic control of landslides in lacustrine deposits (Trièves plateau, French western Alps).Geomorphology125, 214–224 (2011).
Lebourg, T., Binet, S., Tric, E., Jomard, H. & El Bedoui, S. Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide.Terra Nova17, 399–406 (2005).
Strozzi, T. et al. Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation.J. Geophys. Res. Earth Surf.115, F01014 (2010).
Meric, O. et al. Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France.Can. Geotech. J.42, 1105–1115 (2005).
Corominas, J., Moya, J., Ledesma, A., Lloret, A. & Gili, J. A. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain).Landslides2, 83–96 (2005).
Mantovani, F., Pasuto, A., Silvano, S. & Zannoni, A. Collecting data to define future hazard scenarios of the Tessina landslide.Int. J. Appl. Earth Obs. Geoinf.2, 33–40 (2000).
Merriam, R. Portuguese bend landslide, Palos Verdes Hills, California.J. Geol.68, 140–153 (1960).
Scheingross, J. S. et al. Fault-zone controls on the spatial distribution of slow-moving landslides.Bulletin125, 473–489 (2013).
Roering, J. J. et al. Beyond the angle of repose: A review and synthesis of landslide processes in response to rapid uplift, Eel River, Northern California.Geomorphology236, 109–131 (2015).
Nereson, A. L., Davila Olivera, S. & Finnegan, N. J. Field and remote-sensing evidence for hydro-mechanical isolation of a long-lived earthflow in central California.Geophys. Res. Lett.45, 9672–9680 (2018).
Schulz, W. H. & Wang, G. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S.J. Geophys. Res. Earth Surf.119, 1617–1635 (2014).
Coe, J. A. et al. Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998–March 2002.Eng. Geol.68, 67–101 (2003).
Zhang, X., Phillips, C. & Pearce, A. Surface movement in an earthflow complex, Raukumara Peninsula, New Zealand.Geomorphology4, 261–272 (1991).
Massey, C., Petley, D., McSaveney, M. & Archibald, G. Basal sliding and plastic deformation of a slow, reactivated landslide in New Zealand.Eng. Geol.208, 11–28 (2016).
Macfarlane, D. F. Observations and predictions of the behaviour of large, slow-moving landslides in schist, Clyde Dam reservoir, New Zealand.Eng. Geol.109, 5–15 (2009).
Furuya, G., Sassa, K., Hiura, H. & Fukuoka, H. Mechanism of creep movement caused by landslide activity and underground erosion in crystalline schist, Shikoku Island, southwestern Japan.Eng. Geol.53, 311–325 (1999).
Peyret, M. et al. Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry.Eng. Geol.100, 131–141 (2008).
Iverson, R. M. A constitutive equation for mass-movement behavior.J. Geol.93, 143–160 (1985).
Malet, J.-P. & Maquaire, O. inProceedings of 1st International Conference on Fast Slope Movements (eds Malet, J.-P., Maquaire, O. & Picarelli, L.) 333–340 (Patron Editore, 2003).
Agliardi, F., Scuderi, M. M., Fusi, N. & Collettini, C. Slow-to-fast transition of giant creeping rockslides modulated by undrained loading in basal shear zones.Nat. Commun.11, 1352 (2020).
Glueer, F., Loew, S., Manconi, A. & Aaron, J. From toppling to sliding: progressive evolution of the Moosfluh Landslide, Switzerland.J. Geophys. Res. Earth Surf.124, 2899–2919 (2020).
El Bedoui, S., Guglielmi, Y., Lebourg, T. & Pérez, J.-L. Deep-seated failure propagation in a fractured rock slope over 10,000 years: the La Clapiere slope, the south-eastern French Alps.Geomorphology105, 232–238 (2009).
Le Roux, O. et al. CRE dating on the head scarp of a major landslide (Séchilienne, French Alps), age constraints on Holocene kinematics.Earth Planet. Sci. Lett.280, 236–245 (2009).
Guerriero, L. et al. Kinematic segmentation and velocity in earth flows: a consequence of complex basal-slip surfaces.Procedia Earth Planet. Sci.16, 146–155 (2016).
Zerathe, S. et al. Morphology, structure and kinematics of a rainfall controlled slow-moving Andean landslide, Peru.Earth Surf. Process. Landf.41, 1477–1493 (2016).
Bontemps, N., Lacroix, P. & Doin, M. Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru.Remote. Sens. Environ.210, 144–158 (2018).
Van Genuchten, P. M. & De Rijke, H. On pore water pressure variations causing slide velocities and accelerations observed in a seasonally active landslide.Earth Surf. Process. Landf.14, 577–586 (1989).
Handwerger, A. L., Roering, J. J. & Schmidt, D. A. Controls on the seasonal deformation of slow-moving landslides.Earth Planet. Sci. Lett.377, 239–247 (2013).
Malet, J.-P., Maquaire, O. & Calais, E. The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France).Geomorphology43, 33–54 (2002).
Li, X., Zhao, C., Hölter, R., Datcheva, M. & Alimardani Lavasan, A. Modelling of a large landslide problem under water level fluctuation — model calibration and verification.Geosciences9, 89 (2019).
Iverson, R. M. Landslide triggering by rain infiltration.Water Resour. Res.36, 1897–1910 (2000).
Aleotti, P. A warning system for rainfall-induced shallow failures.Eng. Geol.73, 247–265 (2004).
Matsuura, S., Asano, S. & Okamoto, T. Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide.Eng. Geol.101, 49–59 (2008).
Bayer, B., Simoni, A., Mulas, M., Corsini, A. & Schmidt, D. Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR.Geomorphology308, 293–306 (2018).
Osawa, H. et al. Seasonal transition of hydrological processes in a slow-moving landslide in a snowy region.Hydrol. Process.32, 2695–2707 (2018).
Zhou, C., Yin, K., Cao, Y. & Ahmed, B. Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, china.Eng. Geol.204, 108–120 (2016).
Zhang, X., Phillips, C. & Marden, M. A comparison of earthflow movement mechanisms on forested and grassed slopes, Raukumara Peninsula, North Island, New Zealand.Geomorphology6, 175–187 (1993).
Terzaghi, K.Theoretical Soil Mechanics (Wiley, 1943).
Keefer, D. K. & Johnson, A. M.Earth flows; morphology, mobilization, and movement. Professional Paper 1264 (U.S. Government Publishing Office, 1983).
Picarelli, L., Urciuoli, G., Ramondini, M. & Comegna, L. Main features of mudslides in tectonised highly fissured clay shales.Landslides2, 15–30 (2005).
Fiolleau, S. et al. Seismic characterization of a clay-block rupture in Harmalière landslide, French Western Alps.Geophys. J. Int.221, 1777–1788 (2020).
Lu, N. & Godt, J. Infinite slope stability under steady unsaturated seepage conditions.Water Resour. Res.44, W11404 (2008).
Lu, N. & Godt, J. W.Hillslope Hydrology and Stability (Cambridge Univ. Press, 2013).
Iverson, R. M. et al. Acute sensitivity of landslide rates to initial soil porosity.Science290, 513–516 (2000).
Van Asch, T. W. J., Hendriks, M. R., Hessel, R. & Rappange, F. E. Hydrological triggering conditions of landslides in varved clays in the French Alps.Eng. Geol.42, 239–251 (1996).
Van Asch, T. J. W., Buma, J. & Van Beek, L. P. H. A view on some hydrological triggering systems in landslides.Geomorphology30, 25–32 (1999).
Hu, X. et al. Mobility, thickness, and hydraulic diffusivity of the slow-moving Monroe landslide in California revealed by L-band satellite radar interferometry.J. Geophys. Res. Solid. Earth124, 7504–7518 (2019).
Bièvre, G., Jongmans, D., Winiarski, T. & Zumbo, V. Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps).Hydrol. Process.26, 2128–2142 (2012).
Krzeminska, D. M., Bogaard, T. A., van Asch, T. W. J. & van Beek, L. P. H. A conceptual model of the hydrological influence of fissures on landslide activity.Hydrol. Earth Syst. Sci.16, 1561–1576 (2012).
Bièvre, G. et al. Influence of environmental parameters on the seismic velocity changes in a clayey mudflow (Pont-Bourquin Landslide, Switzerland).Eng. Geol.245, 248–257 (2018).
Helmstetter, A. et al. Slider block friction model for landslides: Application to Vaiont and La Clapiere landslides.J. Geophys. Res. Solid Earth109, B02409 (2004).
Du, J., Yin, K. & Lacasse, S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China.Landslides10, 203–218 (2013).
Miao, H., Wang, G., Yin, K., Kamai, T. & Li, Y. Mechanism of the slow-moving landslides in Jurassic red-strata in the Three Gorges Reservoir, China.Eng. Geol.171, 59–69 (2014).
Tofani, V., Dapporto, S., Vannocci, P. & Casagli, N. Infiltration, seepage and slope instability mechanisms during the 20–21 November 2000 rainstorm in Tuscany, central Italy.Nat. Hazards Earth Syst. Sci.6, 1025–1033 (2006).
Keqiang, H., Xiangran, L., Xueqing, Y. & Dong, G. The landslides in the Three Gorges Reservoir Region, China and the effects of water storage and rain on their stability.Environ. Geol.55, 55–63 (2008).
Hu, X., Lu, Z., Pierson, T. C., Kramer, R. & George, D. L. Combining InSAR and GPS to determine transient movement and thickness of a seasonally active low-gradient translational landslide.Geophys. Res. Lett.45, 1453–1462 (2018).
Bièvre, G., Joseph, A. & Bertrand, C. Preferential water infiltration path in a slow-moving clayey earthslide evidenced by cross-correlation of hydrometeorological time series (Charlaix landslide, French Western Alps).Geofluids2018, 9593267 (2018).Special issue “The Role and Impact of Geofluids in Geohazards”.
Keefer, D. K. et al. Real-time landslide warning during heavy rainfall.Science238, 921–925 (1987).
Krøgli, I. K. et al. The Norwegian forecasting and warning service for rainfall- and snowmelt-induced landslides.Nat. Hazards Earth Syst. Sci.18, 1427–1450 (2018).
Berti, M. & Simoni, A. Observation and analysis of near-surface pore-pressure measurements in clay-shales slopes.Hydrol. Process.26, 2187–2205 (2012).
Preuth, T., Glade, T. & Demoulin, A. Stability analysis of a human-influenced landslide in eastern Belgium.Geomorphology120, 38–47 (2010).
Calabro, M. D., Schmidt, D. A. & Roering, J. J. An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry.J. Geophys. Res. Earth Surf.115, F02020 (2010).
Helle, T. E., Nordal, S., Aagaard, P. & Lied, O. K. Long-term effect of potassium chloride treatment on improving the soil behavior of highly sensitive clay — Ulvensplitten, Norway.Can. Geotech. J.53, 410–422 (2016).
Helle, T. E., Aagaard, P. & Nordal, S. In situ improvement of highly sensitive clays by potassium chloride migration.J. Geotech. Geoenviron. Eng.143, 04017074 (2018).
Bardou, E., Bowen, P., Boivin, P. & Banfill, P. Impact of small amounts of swelling clays on the physical properties of debris-flow-like granular materials. Implications for the study of alpine debris flow.Earth Surf. Process. Landf.32, 698–710 (2007).
Torrance, J. K. inLandslides: Types, Mechanisms and Modeling Ch. 8 (eds Clague, J. J. & Stead, D.) 83–94 (Cambridge Univ. Press, 2012).
Tika, T. E., Vaughan, P. & Lemos, L. Fast shearing of pre-existing shear zones in soil.Geotechnique46, 197–233 (1996).
Scaringi, G., Hu, W., Xu, Q. & Huang, R. Shear-rate-dependent behavior of clayey bimaterial interfaces at landslide stress levels.Geophys. Res. Lett.45, 766–777 (2018).
Molinari, A. & Perfettini, H. Fundamental aspects of a new micromechanical model of rate and state friction.J. Mech. Phys. Solids124, 63–82 (2019).
Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I. & Manga, M. A mechanism for sustained groundwater pressure changes induced by distant earthquakes.J. Geophys. Res. Solid Earth108, 2390 (2003).
Wang, C.-y & Chia, Y. Mechanism of water level changes during earthquakes: Near field versus intermediate field.Geophys. Res. Lett.35, L12402 (2008).
Sassa, K., Fukuoka, H., Scarascia-Mugnozza, G. & Evans, S. Earthquake-induced-landslides: distribution, motion and mechanisms.Soils Found.36, 53–64 (1996).
Wang, F., Sassa, K. & Wang, G. Mechanism of a long-runout landslide triggered by the August 1998 heavy rainfall in Fukushima Prefecture, Japan.Eng. Geol.63, 169–185 (2002).
Glueer, F., Loew, S. & Manconi, A. Paraglacial history and structure of the Moosfluh Landslide (1850–2016), Switzerland.Geomorphology355, 106677 (2020).
Carrière, S. et al. Rheological properties of clayey soils originating from flow-like landslides.Landslides15, 1615–1630 (2018).
Newmark, N. M. Effects of earthquakes on dams and embankments.Geotechnique15, 139–159 (1965).
Marc, O., Hovius, N., Meunier, P., Uchida, T. & Hayashi, S. Transient changes of landslide rates after earthquakes.Geology43, 883–886 (2015).
Durand, V. et al. On the link between external forcings and slope instabilities in the Piton de la Fournaise Summit Crater, Reunion Island.J. Geophys. Res. Earth Surf.123, 2422–2442 (2018).
Bovis, M. J. & Jones, P. Holocene history of earthflow mass movements in south-central British Columbia: the influence of hydroclimatic changes.Can. J. Earth Sci.29, 1746–1755 (1992).
Rutter, E. & Green, S. Quantifying creep behaviour of clay-bearing rocks below the critical stress state for rapid failure: Mam Tor landslide, Derbyshire, England.J. Geol. Soc.168, 359–372 (2011).
Riva, F., Agliardi, F., Amitrano, D. & Crosta, G. B. Damage-based time-dependent modeling of paraglacial to postglacial progressive failure of large rock slopes.J. Geophys. Res. Earth Surf.123, 124–141 (2018).
Moore, P. L. & Iverson, N. R. Slow episodic shear of granular materials regulated by dilatant strengthening.Geology30, 843–846 (2002).
Gabet, E. J. & Mudd, S. M. The mobilization of debris flows from shallow landslides.Geomorphology74, 207–218 (2006).
Iverson, R. M. Regulation of landslide motion by dilatancy and pore pressure feedback.J. Geophys. Res. Earth Surf.110, F02015 (2005).
Iverson, R. M. & George, D. L. Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster.Géotechnique66, 175–187 (2016).
Khaldoun, A. et al. Quick clay and landslides of clayey soils.Phys. Rev. Lett.103, 188301 (2009).
Voight, B. A method for prediction of volcanic eruptions.Nature332, 125–130 (1988).
Lacroix, P. & Amitrano, D. Long-term dynamics of rockslides and damage propagation inferred from mechanical modeling.J. Geophys. Res. Earth Surf.118, 2292–2307 (2013).
Viesca, R. C. & Rice, J. R. Nucleation of slip-weakening rupture instability in landslides by localized increase of pore pressure.J. Geophys. Res. Solid. Earth117, B03104 (2012).
Schaeffer, D. G. & Iverson, R. M. Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback.SIAM J. Appl. Math.69, 769–786 (2008).
Collins, B. D. & Reid, M. E. Enhanced landslide mobility by basal liquefaction: The 2014 State Route 530 (Oso), Washington, landslide.GSA Bulletin132, 451–476 (2020).
Chau, K. T. Onset of natural terrain landslides modelled by linear stability analysis of creeping slopes with a two-state variable friction law.Int. J. Numer. Anal. Methods Geomech.23, 1835–1855 (1999).
Dieterich, J. H. Modeling of rock friction: 1. Experimental results and constitutive equations.J. Geophys. Res. Solid Earth84, 2161–2168 (1979).
Rice, J. R. & Ruina, A. L. Stability of steady frictional slipping.J. Appl. Mech.50, 343–349 (1983).
Wang, G., Suemine, A. & Schulz, W. H. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan.Earth Surf. Process. Landf.35, 407–416 (2010).
Segall, P. & Rice, J. R. Dilatancy, compaction, and slip instability of a fluid-infiltrated fault.J. Geophys. Res. Solid Earth100, 22155–22171 (1995).
Samuelson, J., Elsworth, D. & Marone, C. Shear-induced dilatancy of fluid-saturated faults: experiment and theory.J. Geophys. Res. Solid Earth114, B12404 (2009).
Segall, P., Rubin, A. M., Bradley, A. M. & Rice, J. R. Dilatant strengthening as a mechanism for slow slip events.J. Geophys. Res. Solid. Earth115, B12305 (2010).
Fukuzono, T. A method to predict the time of slope failure caused by rainfall using the inverse number of velocity of surface displacement.Landslides22, 8–13_1 (1985).
Amitrano, D., Grasso, J. R. & Senfaute, G. Seismic precursory patterns before a cliff collapse and critical point phenomena.Geophys. Res. Lett.32, L08314 (2005).
Kilburn, C. R. & Petley, D. N. Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy.Geomorphology54, 21–32 (2003).
Crosta, G. & Agliardi, F. Failure forecast for large rock slides by surface displacement measurements.Can. Geotech. J.40, 176–191 (2003).
Rose, N. D. & Hungr, O. Forecasting potential slope failure in open pit mines–contingency planning and remediation.Int. J. Rock. Mech. Min. Sci.44, 308–320 (2007).
Segalini, A., Valletta, A. & Carri, A. Landslide time-of-failure forecast and alert threshold assessment: a generalized criterion.Eng. Geol.245, 72–80 (2018).
Poli, P. Creep and slip: Seismic precursors to the Nuugaatsiaq landslide (Greenland).Geophys. Res. Lett.44, 8832–8836 (2017).
Bell, A. F. Predictability of landslide timing from quasi-periodic precursory earthquakes.Geophys. Res. Lett.45, 1860–1869 (2018).
Fan, X. et al. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China.Landslides14, 2129–2146 (2017).
Skarbek, R. M., Rempel, A. W. & Schmidt, D. A. Geologic heterogeneity can produce aseismic slip transients.Geophys. Res. Lett.39, L21306 (2012).
Bell, A. F., Naylor, M., Heap, M. J. & Main, I. G. Forecasting volcanic eruptions and other material failure phenomena: an evaluation of the failure forecast method.Geophys. Res. Lett.38, L15304 (2011).
Lipovsky, B. P. & Dunham, E. M. Slow-slip events on the Whillans Ice Plain, Antarctica, described using rate-and-state friction as an ice stream sliding law.J. Geophys. Res. Earth Surf.122, 973–1003 (2017).
Minchew, B. M. & Meyer, C. R. Dilation of subglacial sediment governs incipient surge motion in glaciers with deformable beds.Proc. R. Soc. A Math. Phys. Eng. Sci.476, 20200033 (2020).
Gomberg, J., Bodin, P., Savage, W. & Jackson, M. E. Landslide faults and tectonic faults, analogs?: The Slumgullion earthflow, Colorado.Geology23, 41–44 (1995).
Dmitrieva, K., Hotovec-Ellis, A. J., Prejean, S. & Dunham, E. M. Frictional-faulting model for harmonic tremor before redoubt volcano eruptions.Nat. Geosci.6, 652–656 (2013).
Le Breton, M. et al. Passive radio-frequency identification ranging, a dense and weather-robust technique for landslide displacement monitoring.Eng. Geol.250, 1–10 (2019).
Madson, A., Fielding, E., Sheng, Y. & Cavanaugh, K. High-resolution spaceborne, airborne and in situ landslide kinematic measurements of the Slumgullion landslide in Southwest Colorado.Remote. Sens.11, 265 (2019).
Thomas, A. M., Spica, Z., Bodmer, M., Schulz, W. H. & Roering, J. J. Using a dense seismic array to determine structure and site effects of the two towers earthflow in northern California.Seismol. Res. Lett.91, 913–920 (2020).
Truffert, C. et al. Large 3D resistivity and IP measurement of the Séchilienne landslide using the FullWaver system.Proc. EAGE-HAGI 1st Asia Pacfic Meeting on Near Surface Geoscience and Engineering2018, 1–4 (2018).
Loke, M., Chambers, J., Rucker, D., Kuras, O. & Wilkinson, P. Recent developments in the direct-current geoelectrical imaging method.J. Appl. Geophys.95, 135–156 (2013).
Perrone, A., Lapenna, V. & Piscitelli, S. Electrical resistivity tomography technique for landslide investigation: A review.Earth Sci. Rev.135, 65–82 (2014).
Uhlemann, S. et al. Four-dimensional imaging of moisture dynamics during landslide reactivation.J. Geophys. Res. Earth Surf.122, 398–418 (2017).
Uhlemann, S. et al. Assessment of ground-based monitoring techniques applied to landslide investigations.Geomorphology253, 438–451 (2016).
Whiteley, J. S., Chambers, J. E., Uhlemann, S., Wilkinson, P. B. & Kendall, J. M. Geophysical monitoring of moisture-induced landslides: a review.Rev. Geophys.57, 106–145 (2019).
Gariano, S. L. & Guzzetti, F. Landslides in a changing climate.Earth Sci. Rev.162, 227–252 (2016).
Carlà, T., Farina, P., Intrieri, E., Ketizmen, H. & Casagli, N. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine.Eng. Geol.235, 39–52 (2018).
Dong, J. et al. Measuring precursory movements of the recent Xinmo landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 datasets.Landslides15, 135–144 (2018).
Roberts, N. J. et al. Changes in ground deformation prior to and following a large urban landslide in La Paz, Bolivia, revealed by advanced InSAR.Nat. Hazards Earth Syst. Sci.19, 679–696 (2019).
Walter, T. R. et al. Complex hazard cascade culminating in the Anak Krakatau sector collapse.Nat. Commun.10, 4339 (2019).
Crosta, G. B. & Agliardi, F. How to obtain alert velocity thresholds for large rockslides.Phys. Chem. Earth Parts A/B/C27, 1557–1565 (2002).
Bennett, G. L., Miller, S. R., Roering, J. J. & Schmidt, D. A. Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple junction.Geology44, 363–366 (2016).
Handwerger, A. L., Roering, J. J., Schmidt, D. A. & Rempel, A. W. Kinematics of earthflows in the Northern California Coast Ranges using satellite interferometry.Geomorphology246, 321–333 (2015).
Dini, B., Manconi, A. & Loew, S. Investigation of slope instabilities in NW Bhutan as derived from systematic DInSAR analyses.Eng. Geol.259, 105111 (2019).
Strozzi, T. et al. Satellite SAR interferometry for the improved assessment of the state of activity of landslides: A case study from the Cordilleras of Peru.Remote. Sens. Environ.217, 111–125 (2018).
Pham, M. Q., Lacroix, P. & Doin, M. P. Sparsity optimization method for slow-moving landslides detection in satellite image time-series.IEEE Trans. Geosci. Remote Sens.57, 2133–2144 (2018).
Roering, J. J., Stimely, L. L., Mackey, B. H. & Schmidt, D. A. Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport.Geophys. Res. Lett.36, L19402 (2009).
Kelsey, H. M. Earthflows in Franciscan melange, Van Duzen River basin, California.Geology6, 361–364 (1978).
Finnegan, N. J. et al. River channel width controls blocking by slow-moving landslides in California’s Franciscan mélange.Earth Surf. Dyn.7, 879–894 (2019).
Delbridge, B. G., Bürgmann, R., Fielding, E., Hensley, S. & Schulz, W. H. Three-dimensional surface deformation derived from airborne interferometric UAVSAR: application to the Slumgullion Landslide.J. Geophys. Res. Solid Earth121, 3951–3977 (2016).
Stumpf, A., Malet, J. P., Allemand, P. & Ulrich, P. Surface reconstruction and landslide displacement measurements with Pléiades satellite images.ISPRS J. Photogramm. Remote Sens.95, 1–12 (2014).
Schlögel, R. et al. Multi-temporal X-band radar interferometry using corner reflectors: Application and validation at the Corvara Landslide (Dolomites, Italy).Remote Sens.9, 739 (2017).
Chambers, J. et al. Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK.Geomorphology125, 472–484 (2011).
Petley, D., Mantovani, F., Bulmer, M. & Zannoni, A. The use of surface monitoring data for the interpretation of landslide movement patterns.Geomorphology66, 133–147 (2005).
Massey, C. I., Petley, D. N. & McSaveney, M. Patterns of movement in reactivated landslides.Eng. Geol.159, 1–19 (2013).
Baum, R. L., Messerich, J. & Fleming, R. W. Surface deformation as a guide to kinematics and three-dimensional shape of slow-moving, clay-rich landslides, Honolulu, Hawaii.Environ. Eng. Geosci.4, 283–306 (1998).
O’Brien, G. A., Cox, S. C. & Townend, J. Spatially and temporally systematic hydrologic changes within large geoengineered landslides, Cromwell Gorge, New Zealand, induced by multiple regional earthquakes.J. Geophys. Res. Solid Earth121, 8750–8773 (2016).
Casson, B., Delacourt, C., Baratoux, D. & Allemand, P. Seventeen years of the “La Clapiere” landslide evolution analysed from ortho-rectified aerial photographs.Eng. Geol.68, 123–139 (2003).
Warrick, J. A., Ritchie, A. C., Schmidt, K. M., Reid, M. E. & Logan, J. Characterizing the catastrophic 2017 Mud Creek landslide, California, using repeat structure-from-motion (SfM) photogrammetry.Landslides16, 1201–1219 (2019).
Sassa, K. The movement and the mechanism of a crystalline schist landslide “Zentoku” in Japan.Proc. Interpraevent 19801, 85–106 (1980).
Oppikofer, T., Jaboyedoff, M., Blikra, L., Derron, M.-H. & Metzger, R. Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning.Nat. Hazards Earth Syst. Sci.9, 1003–1019 (2009).
Grøneng, G., Christiansen, H. H., Nilsen, B. & Blikra, L. H. Meteorological effects on seasonal displacements of the Åknes rockslide, western Norway.Landslides8, 1–15 (2011).
Ganerød, G. V. et al. Geological model of the Åknes rockslide, western Norway.Eng. Geol.102, 1–18 (2008).
Kos, A. et al. Contemporary glacier retreat triggers a rapid landslide response, Great Aletsch Glacier, Switzerland.Geophys. Res. Lett.43, 12,466–12,474 (2016).
Cappa, F., Guglielmi, Y., Viseur, S. & Garambois, S. Deep fluids can facilitate rupture of slow-moving giant landslides as a result of stress transfer and frictional weakening.Geophys. Res. Lett.41, 61–66 (2014).
Lacroix, P. & Helmstetter, A. Location of seismic signals associated with microearthquakes and rockfalls on the Séchilienne landslide, French Alps.Bull. Seismol. Soc. Am.101, 341–353 (2011).
Marone, C. Laboratory-derived friction laws and their application to seismic faulting.Annu. Rev. Earth Planet Sci.26, 643–696 (1998).
Acknowledgements
Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). P.L. and G.B. are part of LabEx OSUG@2020 (ANR10 LABX56).
Author information
Authors and Affiliations
Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, France
Pascal Lacroix & Grégory Bièvre
Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
Alexander L. Handwerger
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Alexander L. Handwerger
- Pascal Lacroix
You can also search for this author inPubMed Google Scholar
- Alexander L. Handwerger
You can also search for this author inPubMed Google Scholar
- Grégory Bièvre
You can also search for this author inPubMed Google Scholar
Contributions
All authors contributed to all aspects of the article.
Corresponding author
Correspondence toPascal Lacroix.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Earth & Environment thanks E. Intrieri, X. Hu and F. Zhang for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
USGS-USA:https://www.usgs.gov/natural-hazards/landslide-hazards/monitoring
Rights and permissions
About this article
Cite this article
Lacroix, P., Handwerger, A.L. & Bièvre, G. Life and death of slow-moving landslides.Nat Rev Earth Environ1, 404–419 (2020). https://doi.org/10.1038/s43017-020-0072-8
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
A new framework for landslide susceptibility mapping in contiguous impoverished areas using machine learning and catastrophe theory
- Wei Zhou
- Yingzhi Zhou
- Xiaofei Sun
Scientific Reports (2025)
Characterisation of precursory seismic activity towards early warning of landslides via semi-supervised learning
- David Murray
- Lina Stankovic
- Jonathan Chambers
Scientific Reports (2025)
Sliding and healing of frictional interfaces that appear stationary
- Krittanon Sirorattanakul
- Stacy Larochelle
- Ares J. Rosakis
Nature (2025)
Key factors in the reactivation of thick loess mudstone ancient landslides—a case study of the Gaojiawan landslide, China
- Qingyu Xie
- Qiangbing Huang
- Xiaosen Kang
Environmental Earth Sciences (2025)
Shear strain prediction of reservoir landslide based on FBG monitoring and bagging-MLP algorithm
- Jia Wang
- Hong–hu Zhu
- Hua–fu Pei
Bulletin of Engineering Geology and the Environment (2025)