- Perspective
- Published:
A collective AI via lifelong learning and sharing at the edge
- Andrea Soltoggio ORCID:orcid.org/0000-0002-9750-83581,
- Eseoghene Ben-Iwhiwhu ORCID:orcid.org/0000-0002-1176-866X1,
- Vladimir Braverman2,
- Eric Eaton3,
- Benjamin Epstein4,
- Yunhao Ge5,
- Lucy Halperin6,
- Jonathan How6,
- Laurent Itti5,
- Michael A. Jacobs ORCID:orcid.org/0000-0002-1125-16442,7,8,
- Pavan Kantharaju9,
- Long Le ORCID:orcid.org/0000-0002-8581-66013,
- Steven Lee10,
- Xinran Liu11,
- Sildomar T. Monteiro ORCID:orcid.org/0000-0001-7694-953610,12,
- David Musliner9,
- Saptarshi Nath ORCID:orcid.org/0009-0000-9023-53451,
- Priyadarshini Panda13,
- Christos Peridis1,
- Hamed Pirsiavash14,
- Vishwa Parekh15,
- Kaushik Roy ORCID:orcid.org/0000-0002-0735-969516,
- Shahaf Shperberg17,
- Hava T. Siegelmann ORCID:orcid.org/0000-0003-4938-872318,
- Peter Stone ORCID:orcid.org/0000-0002-6795-420X19,20,
- Kyle Vedder3,
- Jingfeng Wu ORCID:orcid.org/0009-0009-3414-448721,
- Lin Yang22,
- Guangyao Zheng2 &
- …
- Soheil Kolouri11
Nature Machine Intelligencevolume 6, pages251–264 (2024)Cite this article
5160Accesses
13Citations
1281Altmetric
Abstract
One vision of a future artificial intelligence (AI) is where many separate units can learn independently over a lifetime and share their knowledge with each other. The synergy between lifelong learning and sharing has the potential to create a society of AI systems, as each individual unit can contribute to and benefit from the collective knowledge. Essential to this vision are the abilities to learn multiple skills incrementally during a lifetime, to exchange knowledge among units via a common language, to use both local data and communication to learn, and to rely on edge devices to host the necessary decentralized computation and data. The result is a network of agents that can quickly respond to and learn new tasks, that collectively hold more knowledge than a single agent and that can extend current knowledge in more diverse ways than a single agent. Open research questions include when and what knowledge should be shared to maximize both the rate of learning and the long-term learning performance. Here we review recent machine learning advances converging towards creating a collective machine-learned intelligence. We propose that the convergence of such scientific and technological advances will lead to the emergence of new types of scalable, resilient and sustainable AI systems.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Fagan, M. Collective scientific knowledge.Philos. Compass7, 821–831 (2012).
Csibra, G. & Gergely, G. Natural pedagogy as evolutionary adaptation.Phil. Trans. R. Soc. B366, 1149–1157 (2011).
Wooldridge, M. & Jennings, N. R. Intelligent agents: theory and practice.Knowl. Eng. Rev.10, 115–152 (1995).
Ferber, J. & Weiss, G.Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence Vol. 1 (Addison-Wesley, 1999).
Stone, P. & Veloso, M. Multiagent systems: a survey from a machine learning perspective.Auton. Rob.8, 345–383 (2000).
Conitzer, V. & Oesterheld, C. Foundations of cooperative AI. InProc. AAAI Conference on Artificial Intelligence Vol. 37, 15359–15367 (AAAI, 2022).
Semsar-Kazerooni, E. & Khorasani, K. Multi-agent team cooperation: a game theory approach.Automatica45, 2205–2213 (2009).
Thrun, S. Is learning then-th thing any easier than learning the first? InAdvances in Neural Information Processing Systems Vol. 8 (1995).
Thrun, S. Lifelong learning algorithms.Learning to Learn8, 181–209 (1998).
Chen, Z. & Liu, B.Lifelong Machine Learning Vol. 1 (Springer, 2018).
Kudithipudi, D. et al. Biological underpinnings for lifelong learning machines.Nat. Mach. Intell.4, 196–210 (2022).
Mundt, M., Hong, Y., Pliushch, I. & Ramesh, V. A wholistic view of continual learning with deep neural networks: forgotten lessons and the bridge to active and open world learning.Neural Networks160, 306–336 (2023).
Khetarpal, K., Riemer, M., Rish, I. & Precup, D. Towards continual reinforcement learning: a review and perspectives.J. Artif. Intell. Res.75, 1401–1476 (2022).
Mendez, J. A., van Seijen, H. & Eaton, E. Modular lifelong reinforcement learning via neural composition. InInternational Conference on Learning Representations (2022).
Li, T., Sahu, A. K., Talwalkar, A. & Smith, V. Federated learning: challenges, methods, and future directions.IEEE Signal Process. Mag.37, 50–60 (2020).
Dorri, A., Kanhere, S. S. & Jurdak, R. Multi-agent systems: a survey.IEEE Access6, 28573–28593 (2018).
Shi, W., Cao, J., Zhang, Q., Li, Y. & Xu, L. Edge computing: vision and challenges.IEEE Internet Things J.3, 637–646 (2016).
Cai, H. et al. Enable deep learning on mobile devices: methods, systems, and applications.ACM Trans. Des. Autom. Electron. Syst.27, 20 (2022).
Shared-Experience Lifelong Learning (ShELL). Opportunity DARPA-PA-20-02-11.SAM.govhttps://sam.gov/opp/1afbf600f2e04b26941fad352c08d1f1/view (accessed 10 October 2023).
Smith, P. et al. Network resilience: a systematic approach.IEEE Commun. Mag.49, 88–97 (2011).
Zhang, J., Cheung, B., Finn, C., Levine, S. & Jayaraman, D. Cautious adaptation for reinforcement learning in safety-critical settings. InInternational Conference on Machine Learning 11055–11065 (PMLR, 2020).
McMahan, B., Moore, E., Ramage, D., Hampson, S. & Arcas, B. A. Y. Communication-efficient learning of deep networks from decentralized data. InArtificial Intelligence and Statistics 1273–1282, (PMLR, 2017).
Liu, J. et al. From distributed machine learning to federated learning: a survey.Knowl. Inf. Syst.64, 885–917 (2022).
Verbraeken, J. et al. A survey on distributed machine learning.ACM Comput. Surv.53, 30 (2020).
Henderson, P. et al. Towards the systematic reporting of the energy and carbon footprints of machine learning.J. Mach. Learn. Res.21, 10039–10081 (2020).
de Vries, A. The growing energy footprint of artificial intelligence.Joule7, 2191–2194 (2023).
Silver, D. L., Yang, Q. & Li, L. Lifelong machine learning systems: beyond learning algorithms. In2013 AAAI Spring Symposium Series (AAAI, 2013).
Hadsell, R., Rao, D., Rusu, A. A. & Pascanu, R. Embracing change: continual learning in deep neural networks.Trends Cognit. Sci.24, 1028–1040 (2020).
French, R. M. Catastrophic forgetting in connectionist networks.Trends Cognit. Sci.3, 128–135 (1999).
Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks.Proc. Natl Acad. Sci. USA114, 3521–3526 (2017).
Article ADS MathSciNet CAS PubMed PubMed Central Google Scholar
Parisi, G. I., Kemker, R., Part, J. L., Kanan, C. & Wermter, S. Continual lifelong learning with neural networks: a review.Neural Networks113, 54–71 (2018).
Lange, M. D. et al. A continual learning survey: defying forgetting in classification tasks.IEEE Trans. Pattern Anal. Mach. Intell.44, 3366–3385 (2022).
van de Ven, G. M., Tuytelaars, T. & Tolias, A. S. Three types of incremental learning.Nat. Mach. Intell.4, 1185–1197 (2022).
Soltoggio, A., Stanley, K. O. & Risi, S. Born to learn: the inspiration, progress, and future of evolved plastic artificial neural networks.Neural Networks108, 48–67 (2018).
Lifelong learning machines (L2M).DARPAhttps://www.darpa.mil/news-events/2017-03-16 (accessed 10 October 2023).
New, A., Baker, M., Nguyen, E. & Vallabha, G. Lifelong learning metrics. Preprint athttps://doi.org/10.48550/arXiv.2201.08278 (2022).
Baker, M. M. et al. A domain-agnostic approach for characterization of lifelong learning systems.Neural Networks160, 274–296 (2023).
Mendez, J. A. & Eaton, E. Lifelong learning of compositional structures. InInternational Conference on Learning Representations (2021).
Xie, A. & Finn, C. Lifelong robotic reinforcement learning by retaining experiences. InConference on Lifelong Learning Agents 838–855 (PMLR, 2022).
Ben-Iwhiwhu, E., Nath, S., Pilly, P. K., Kolouri, S. & Soltoggio, A. Lifelong reinforcement learning with modulating masks. InTransactions on Machine Learning Research (2023).
Tasse, G. N., James, S. & Rosman, B. Generalisation in lifelong reinforcement learning through logical composition. InInternational Conference on Learning Representations (2022).
Merenda, M., Porcaro, C. & Iero, D. Edge machine learning for AI-enabled IoT devices: a review.Sensors20, 2533 (2020).
Sipola, T., Alatalo, J., Kokkonen, T. & Rantonen, M. Artificial intelligence in the IoT era: a review of edge AI hardware and software. In2022 31st Conference of Open Innovations Association (FRUCT) 320–331 (IEEE, 2022).
Prabhu, A. et al. Computationally budgeted continual learning: What does matter? InProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 3698–3707 (2023).
Díaz-Rodríguez, N., Lomonaco, V., Filliat, D. & Maltoni, D. Don’t forget, there is more than forgetting: new metrics for continual learning. Preprint athttps://doi.org/10.48550/arXiv.1810.13166 (2018).
De Lange, M., van de Ven, G. & Tuytelaars, T. Continual evaluation for lifelong learning: identifying the stability gap. In11th International Conference on Learning Representationshttps://openreview.net/forum?id=Zy350cRstc6 (ICLR, 2023).
Ghunaim, Y. et al. Real-time evaluation in online continual learning: a new hope. InProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 11888–11897 (2023).
Sarker, I. H. Machine learning: algorithms, real-world applications and research directions.SN Comput. Sci.2, 160 (2021).
Tsuda, B., Tye, K. M., Siegelmann, H. T. & Sejnowski, T. J. A modeling framework for adaptive lifelong learning with transfer and savings through gating in the prefrontal cortex.Proc. Natl Acad. Sci. USA117, 29872–29882 (2020).
Kairouz, P. et al. Advances and open problems in federated learning.Found. Trends Mach. Learn.14, 1–210 (2021).
Zhu, H., Xu, J., Liu, S. & Jin, Y. Federated learning on non-IID data: a survey.Neuropcomputing465, 371–390 (2021).
Nguyen, D. C. et al. Federated learning for internet of things: a comprehensive survey.IEEE Commun. Surv. Tutorials23, 1622–1658 (2021).
Abreha, H. G., Hayajneh, M. & Serhani, M. A. Federated learning in edge computing: a systematic survey.Sensors22, 450 (2022).
Guo, Y., Lin, T. & Tang, X. Towards federated learning on time-evolving heterogeneous data. Preprint athttps://doi.org/10.48550/arXiv.2112.13246 (2021).
Criado, M. F., Casado, F. E., Iglesias, R., Regueiro, C. V. & Barro, S. Non-IID data and continual learning processes in federated learning: a long road ahead.Inf. Fusion88, 263–280 (2022).
Gao, L. et al. FedDC: federated learning with non-IID data via local drift decoupling and correction. InProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 10112–10121 (2022).
Yoon, J., Jeong, W., Lee, G., Yang, E. & Hwang, S. J. Federated continual learning with weighted inter-client transfer. InInternational Conference on Machine Learning 12073–12086 (PMLR, 2021).
Pellegrini, L., Lomonaco, V., Graffieti, G. & Maltoni, D. Continual learning at the edge: real-time training on smartphone devices. InProc. European Symposium on Artificial Neural Networkshttps://doi.org/10.14428/esann/2021.ES2021-136 (2021).
Gao, D. et al. Rethinking pruning for accelerating deep inference at the edge. InProc. 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 155–164 (2020).
Huang, W., Ye, M. & Du, B. Learn from others and be yourself in heterogeneous federated learning. InProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 10143–10153 (2022).
Sun, T., Li, D. & Wang, B. Decentralized federated averaging.IEEE Trans. Pattern Anal. Mach. Intell.45, 4289–4301 (2023).
Taylor, M. E. & Stone, P. Transfer learning for reinforcement learning domains: a survey.J. Mach. Learn. Res.10, 1633–1685 (2009).
Zamir, A. R. et al. Taskonomy: disentangling task transfer learning. InProc. IEEE Conference on Computer Vision and Pattern Recognition (2018).
Zhuang, F. et al. A comprehensive survey on transfer learning.Proc. IEEE109, 43–76 (2020).
Ding, N. et al. Parameter-efficient fine-tuning of large-scale pre-trained language models.Nat. Mach. Intell.5, 220–235 (2023).
Koohpayegani, S. A., Navaneet, K., Nooralinejad, P., Kolouri, S. & Pirsiavash, H. NOLA: networks as linear combination of low rank random basis. InInternational Conference on Learning Representations (ICLR, 2024).
Wang, M. & Deng, W. Deep visual domain adaptation: a survey.Neurocomputing312, 135–153 (2018).
Wilson, G. & Cook, D. J. A survey of unsupervised deep domain adaptation.ACM Trans. Intell. Syst. Technol.11, 51 (2020).
Farahani, A., Voghoei, S., Rasheed, K. & Arabnia, H. R. A brief review of domain adaptation. InAdvances in Data Science and Information Engineering: Proceedings from ICDATA 2020 and IKE 2020 877–894 (2021).
Kim, Y., Cho, D., Han, K., Panda, P. & Hong, S. Domain adaptation without source data.IEEE Trans. Artif. Intell.2, 508–518 (2021).
Caruana, R. Multitask learning.Mach. Learn.28, 41–75 (1997).
Luong, M.-T., Le, Q. V., Sutskever, I., Vinyals, O. & Kaiser, L. Multi-task sequence to sequence learning. Preprint athttps://doi.org/10.48550/arXiv.1511.06114 (2015).
Ruder, S. An overview of multi-task learning in deep neural networks. Preprint athttps://doi.org/10.48550/arXiv.1706.05098 (2017).
Liu, X., He, P., Chen, W. & Gao, J. Multi-task deep neural networks for natural language understanding. InProc. 57th Annual Meeting of the Association for Computational Linguistics (2019).
Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-learning in neural networks: a survey.IEEE Trans. Pattern Anal. Mach. Intell.44, 5149–5169 (2021).
Kayaalp, M., Vlaski, S. & Sayed, A. H. Dif-MAML: decentralized multi-agent meta-learning.IEEE Open J. Signal Process.3, 71–93 (2022).
Riemer, M. et al. Learning to learn without forgetting by maximizing transfer and minimizing interference. In7th International Conference on Learning Representations, ICLR 2019 (OpenReview, 2019).
Bengio, Y., Louradour, J., Collobert, R. & Weston, J. Curriculum learning. InProc. 26th Annual International Conference on Machine Learning 41–48 (2009).
Narvekar, S. et al. Curriculum learning for reinforcement learning domains: a framework and survey.J. Mach. Learn. Res.21, 7382–7431 (2020).
Wang, W., Zheng, V. W., Yu, H. & Miao, C. A survey of zero-shot learning: settings, methods, and applications.ACM Trans. Intell. Syst. Technol.10, 13 (2019).
Rostami, M., Isele, D. & Eaton, E. Using task descriptions in lifelong machine learning for improved performance and zero-shot transfer.J. Artif. Intell. Res.67, 673–704 (2020).
Chen, J. et al. Knowledge-aware zero-shot learning: survey and perspective. InProc. 30th International Joint Conference on Artificial Intelligence (IJCAI-21) (2021).
Xie, G.-S., Zhang, Z., Xiong, H., Shao, L. & Li, X. Towards zero-shot learning: a brief review and an attention-based embedding network.IEEE Trans. Circuits Syst. Video Technol.33, 1181–1197 (2022).
Cao, W. et al. A review on multimodal zero-shot learning.Wiley Interdiscip. Rev. Data Min. Knowl. Discovery13, e1488 (2023).
Jones, A. M. et al. USC-DCT: a collection of diverse classification tasks.Data8, 153 (2023).
Liu, X., Bai, Y., Lu, Y., Soltoggio, A. & Kolouri, S. Wasserstein task embedding for measuring task similarities. Preprint athttps://doi.org/10.48550/arXiv.2208.11726 (2022).
Yang, J., Zhou, K., Li, Y. & Liu, Z. Generalized out-of-distribution detection: a survey. Preprint athttps://doi.org/10.48550/arXiv.2110.11334 (2021).
Abdar, M. et al. A review of uncertainty quantification in deep learning: techniques, applications and challenges.Inf. Fusion76, 243–297 (2021).
Musliner, D. J. et al. OpenMIND: planning and adapting in domains with novelty. InProc. 9th Conference on Advances in Cognitive Systems (2021).
Rios, A. & Itti, L. Lifelong learning without a task oracle. In2020 IEEE 32nd International Conference on Tools with Artificial Intelligence 255–263 (IEEE, 2020).
Carvalho, D. V., Pereira, E. M. & Cardoso, J. S. Machine learning interpretability: a survey on methods and metrics.Electronics8, 832 (2019).
Masana, M. et al. Class-incremental learning: survey and performance evaluation on image classification.IEEE Trans. Pattern Anal. Mach. Intell.45, 5513–5533 (2022).
Isele, D. & Cosgun, A. Selective experience replay for lifelong learning. InProc. AAAI Conference on Artificial Intelligence Vol. 32 (2018).
Nath, S. et al. Sharing lifelong reinforcement learning knowledge via modulating masks. InProc. of Machine Learning Research Vol. 232 (2023).
Pimentel, M. A., Clifton, D. A., Clifton, L. & Tarassenko, L. A review of novelty detection.Signal Process.99, 215–249 (2014).
Da Silva, B. C., Basso, E. W., Bazzan, A. L. & Engel, P. M. Dealing with non-stationary environments using context detection. InProc. 23rd International Conference on Machine Learning 217–224 (2006).
Niv, Y. Learning task-state representations.Nat. Neurosci.22, 1544–1553 (2019).
Mendez, J. & Eaton, E. How to reuse and compose knowledge for a lifetime of tasks: a survey on continual learning and functional composition. InTransactions on Machine Learning Research (2023).
Hu, E. J. et al. LoRA: low-rank adaptation of large language models.International Conference on Learning Representations (ICLR) (2021).
Nooralinejad, P. et al. PRANC: pseudo random networks for compacting deep models. InProc. IEEE/CVF International Conference on Computer Vision 17021–17031 (2023).
Lester, B., Al-Rfou, R. & Constant, N. The power of scale for parameter-efficient prompt tuning. InProc. 2021 Conference on Empirical Methods in Natural Language Processing (2021).
Ge, Y. et al. Lightweight learner for shared knowledge lifelong learning. InTransactions on Machine Learning Research (2023).
Ge, Y. et al. CLR: Channel-wise lightweight reprogramming for continual learning. InProc. IEEE/CVF International Conference on Computer Vision 18798–18808 (2023).
Sarker, M. K., Zhou, L., Eberhart, A. & Hitzler, P. Neuro-symbolic artificial intelligence.AI Commun.34, 197–209 (2021).
Zoph, B. & Le, Q. Neural architecture search with reinforcement learning. InInternational Conference on Learning Representations (2017).
Ren, P. et al. A comprehensive survey of neural architecture search: challenges and solutions.ACM Comput. Surv.54, 76 (2021).
Zhang, C., Patras, P. & Haddadi, H. Deep learning in mobile and wireless networking: a survey.IEEE Commun. Surv. Tutorials21, 2224–2287 (2019).
Deng, S. et al. Edge intelligence: the confluence of edge computing and artificial intelligence.IEEE Internet Things J.7, 7457–7469 (2020).
Murshed, M. S. et al. Machine learning at the network edge: a survey.ACM Comput. Surv.54, 170 (2021).
Ajani, T. S., Imoize, A. L. & Atayero, A. A. An overview of machine learning within embedded and mobile devices–optimizations and applications.Sensors21, 4412 (2021).
Dhar, S. et al. A survey of on-device machine learning: an algorithms and learning theory perspective.ACM Trans. Internet Things2, 15 (2021).
Singh, R. & Gill, S. S. Edge AI: a survey.Internet Things Cyber-Phys. Syst.3, 71–92 (2023).
Mao, Y., You, C., Zhang, J., Huang, K. & Letaief, K. B. A survey on mobile edge computing: the communication perspective.IEEE Commun. Surv. Tutorials19, 2322–2358 (2017).
Xu, D. et al. Edge intelligence: architectures, challenges, and applications. Preprint athttps://doi.org/10.48550/arXiv.2003.12172 (2020).
Li, E., Zeng, L., Zhou, Z. & Chen, X. Edge AI: on-demand accelerating deep neural network inference via edge computing.IEEE Trans. Wireless Commun.19, 447–457 (2019).
Mehlin, V., Schacht, S. & Lanquillon, C. Towards energy-efficient deep learning: an overview of energy-efficient approaches along the deep learning lifecycle. Preprint athttps://doi.org/10.48550/arXiv.2303.01980 (2023).
Lin, J. et al. On-device training under 256kb memory. 36th Conference on Neural Information Processing Systems (NeurIPS)(2022).
Yang, Y., Li, G. & Marculescu, R. Efficient on-device training via gradient filtering. InProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 3811–3820 (2023).
Hayes, T. L. & Kanan, C. Online continual learning for embedded devices. InProc. First Conference on Lifelong Learning Agents (eds Chandar, S. et al.) 744–766 (PMLR, 2022).
Wang, Z. et al. SparCL: sparse continual learning on the edge. In36th Conference on Neural Information Processing Systems (2022).
Harun, M. Y., Gallardo, J., Hayes, T. L. & Kanan, C. How efficient are today’s continual learning algorithms? InProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 2430–2435 (2023).
Yang, J. et al. Quantization networks. InProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 7308–7316 (2019).
Cai, Z., He, X., Sun, J. & Vasconcelos, N. Deep learning with low precision by half-wave gaussian quantization. InProc. IEEE Conference on Computer Vision and Pattern Recognition 5918–5926 (2017).
Jain, A., Bhattacharya, S., Masuda, M., Sharma, V. & Wang, Y. Efficient execution of quantized deep learning models: a compiler approach. Preprint athttps://doi.org/10.48550/arXiv.2006.10226 (2020).
Goel, A., Tung, C., Lu, Y.-H. & Thiruvathukal, G. K. A survey of methods for low-power deep learning and computer vision. In2020 IEEE 6th World Forum on Internet of Things (IEEE, 2020).
Ma, X. et al. Cost-effective on-device continual learning over memory hierarchy with Miro. InProc. 29th Annual International Conference on Mobile Computing and Networking 83, 1–15 (ACM, 2023).
Kudithipudi, D. et al. Design principles for lifelong learning AI accelerators.Nat. Electron.6, 807–822 (2023).
Machupalli, R., Hossain, M. & Mandal, M. Review of ASIC accelerators for deep neural network.Microprocess. Microsyst.89, 104441 (2022).
Jouppi, P. N. et al. In-datacenter performance analysis of a tensor processing unit. InProc. 44th Annual International Symposium on Computer Architecture (2017).
Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing.Nat. Nanotechnol.15, 529–544 (2020).
Tang, K.-T. et al. Considerations of integrating computing-in-memory and processing-in-sensor into convolutional neural network accelerators for low-power edge devices. In2019 Symposium on VLSI Circuits T166–T167 (IEEE, 2019).
Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing.Nature575, 607–617 (2019).
Chakraborty, I., Jaiswal, A., Saha, A., Gupta, S. & Roy, K. Pathways to efficient neuromorphic computing with non-volatile memory technologies.Appl. Phys. Rev.7, 021308 (2020).
Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering.Neuromorph. Comput. Eng.2, 022501 (2022).
Rathi, N. et al. Exploring neuromorphic computing based on spiking neural networks: algorithms to hardware.ACM Comput. Surv.55, 243 (2023).
Zhang, W. et al. Neuro-inspired computing chips.Nat. Electron.3, 371–382 (2020).
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core.Nature589, 52–58 (2021).
Peserico, N., Shastri, B. J. & Sorger, V. J. Integrated photonic tensor processing unit for a matrix multiply: a review.J. Lightwave Technol.41, 3704–3716 (2023).
Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing.Nat. Photonics15, 102–114 (2021).
Toczé, K. & Nadjm-Tehrani, S. A taxonomy for management and optimization of multiple resources in edge computing.Wireless Commun. Mobile Comput.2018, 7476201 (2018).
Bhattacharjee, A., Venkatesha, Y., Moitra, A. & Panda, P. MIME: adapting a single neural network for multi-task inference with memory-efficient dynamic pruning. InProc. 59th ACM/IEEE Design Automation Conference 499–504 (2022).
Extreme Computing BAA.DARPAhttps://sam.gov/opp/211b1819bd5f46eba20d4a466358d8bb/view (accessed 10 October 2023).
Rostami, M., Kolouri, S., Kim, K. & Eaton, E. Multi-agent distributed lifelong learning for collective knowledge acquisition. InProc. 17th International Conference on Autonomous Agents and Multiagent Systems 2018 (2017).
Boyd, S. et al. Distributed optimization and statistical learning via the alternating direction method of multipliers.Found. Trends Mach. Learn.3, 1–122 (2011).
Mohammadi, J. & Kolouri, S. Collaborative learning through shared collective knowledge and local expertise. In2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (2019).
Wortsman, M. et al. Supermasks in superposition.Adv. Neural Inf. Process. Syst.33, 15173–15184 (2020).
Koster, N., Grothe, O. & Rettinger, A. Signing the supermask: keep, hide, invert. InInternational Conference on Learning Representationshttps://openreview.net/forum?id=e0jtGTfPihs (2022).
Wen, S., Rios, A., Ge, Y. & Itti, L. Beneficial perturbation network for designing general adaptive artificial intelligence systems.IEEE Trans. Neural Networks Learn. Syst.33, 3778–3791 (2021).
Saha, G., Garg, I. & Roy, K. Gradient projection memory for continual learning. InInternational Conference on Learning Representations (2021).
Choudhary, S., Aketi, S. A., Saha, G. & Roy, K. CoDeC: communication-efficient decentralized continual learning. Preprint athttps://doi.org/10.48550/arXiv.2303.15378 (2023).
Singh, P., Verma, V. K., Mazumder, P., Carin, L. & Rai, P. Calibrating CNNs for lifelong learning.Adv. Neural Inf. Process. Syst.33, 15579–15590 (2020).
Verma, V. K., Liang, K. J., Mehta, N., Rai, P. & Carin, L. Efficient feature transformations for discriminative and generative continual learning. InProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 13865–13875 (2021).
Ma, Z., Lu, Y., Li, W. & Cui, S. EFL: elastic federated learning on non-IID data. InConference on Lifelong Learning Agents 92–115 (PMLR, 2022).
Shenaj, D., Toldo, M., Rigon, A. & Zanuttigh, P. Asynchronous federated continual learning. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10208460 (2023).
Venkatesha, Y., Kim, Y., Park, H. & Panda, P. Divide-and-conquer the NAS puzzle in resource constrained federated learning systems.Neural Networks168, 569–579 (2023).
Usmanova, A., Portet, F., Lalanda, P. & Vega, G. A distillation-based approach integrating continual learning and federated learning for pervasive services. 3rd Workshop on Continual and Multimodal Learning for Internet of Things – Co-located with IJCAI 2021, Aug 2021, Montreal, Canadahttps://doi.org/10.48550/arXiv.2109.04197 (2021).
Wang, T., Zhu, J.-Y., Torralba, A. & Efros, A. A. Dataset distillation. Preprint athttps://doi.org/10.48550/arXiv.1811.10959 (2018).
Cazenavette, G., Wang, T., Torralba, A., Efros, A. A. & Zhu, J.-Y. Dataset distillation by matching training trajectories. InProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 4750–4759 (2022).
Baradad Jurjo, M., Wulff, J., Wang, T., Isola, P. & Torralba, A. Learning to see by looking at noise.Adv. Neural Inf. Process. Syst.34, 2556–2569 (2021).
Carta, A., Cossu, A., Lomonaco, V., Bacciu, D. & van de Weijer, J. Projected latent distillation for data-agnostic consolidation in distributed continual learning. Preprint athttps://doi.org/10.48550/arXiv.2303.15888 (2023).
Teh, Y. et al. Distral: robust multitask reinforcement learning. InAdvances in Neural Information Processing Systems Vol. 30 (2017).
Zheng, G., Jacobs, M. A., Braverman, V. & Parekh, V. S. Asynchronous decentralized federated lifelong learning for landmark localization in medical imaging. InInternational Workshop on Federated Learning for Distributed Data Mining (2023).
Zheng, G., Lai, S., Braverman, V., Jacobs, M. A. & Parekh, V. S. A framework for dynamically training and adapting deep reinforcement learning models to different, low-compute, and continuously changing radiology deployment environments. Preprint athttps://doi.org/10.48550/arXiv.2306.05310 (2023).
Zheng, G., Lai, S., Braverman, V., Jacobs, M. A. & Parekh, V. S. Multi-environment lifelong deep reinforcement learning for medical imaging. Preprint athttps://doi.org/10.48550/arXiv.2306.00188 (2023).
Zheng, G., Zhou, S., Braverman, V., Jacobs, M. A. & Parekh, V. S. Selective experience replay compression using coresets for lifelong deep reinforcement learning in medical imaging. InProc. Machine Learning Research 227, 1751–1764 (2024).
Shperberg, S. S., Liu, B. & Stone, P. Learning a shield from catastrophic action effects: never repeat the same mistake. Preprint athttps://doi.org/10.48550/arXiv.2202.09516 (2022).
Shperberg, S. S., Liu, B., Allievi, A. & Stone, P. A rule-based shield: Accumulating safety rules from catastrophic action effects. InConference on Lifelong Learning Agents 231–242 (PMLR, 2022).
Alshiekh, M. et al. Safe reinforcement learning via shielding. InProc. 32nd AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence (AAAI, 2018).
Garcıa, J. & Fernández, F. A comprehensive survey on safe reinforcement learning.J. Mach. Learn. Res.16, 1437–1480 (2015).
Jang, D., Yoo, J., Son, C. Y., Kim, D. & Kim, H. J. Multi-robot active sensing and environmental model learning with distributed gaussian process.IEEE Robot. Autom. Lett.5, 5905–5912 (2020).
Igoe, C., Ghods, R. & Schneider, J. Multi-agent active search: a reinforcement learning approach.IEEE Rob. Autom. Lett.7, 754–761 (2021).
Raja, G., Baskar, Y., Dhanasekaran, P., Nawaz, R. & Yu, K. An efficient formation control mechanism for multi-UAV navigation in remote surveillance. In2021 IEEE Globecom Workshops (IEEE, 2021).
Sitzmann, V., Martel, J., Bergman, A., Lindell, D. & Wetzstein, G. Implicit neural representations with periodic activation functions.Adv. Neural Inf. Process. Syst.33, 7462–7473 (2020).
Yu, A., Ye, V., Tancik, M. & Kanazawa, A. pixelNeRF: neural radiance fields from one or few images. InProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 4578–4587 (2021).
Zhang, K., Riegler, G., Snavely, N. & Koltun, V. NeRF++: analyzing and improving neural radiance fields. Preprint athttps://doi.org/10.48550/arXiv.2010.07492 (2020).
Bylow, E., Sturm, J., Kerl, C., Kahl, F. & Cremers, D. Real-time camera tracking and 3D reconstruction using signed distance functions.Rob. Sci. Syst.2, 2 (2013).
Park, J. J., Florence, P., Straub, J., Newcombe, R. & Lovegrove, S. DeepSDF: learning continuous signed distance functions for shape representation. InProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 165–174 (2019).
Kolouri, S., Abbasi, A., Koohpayegani, S. A., Nooralinejad, P. & Pirsiavash, H. Multi-agent lifelong implicit neural learning.IEEE Signal Process. Lett.30, 1812–1816 (2023).
Bortnik, J. & Camporeale, E. Ten ways to apply machine learning in the earth and space sciences. InAGU Fall Meeting Abstracts IN12A-06 (2021).
Zhang, Y., Bai, Y., Wang, M. & Hu, J. Cooperative adaptive cruise control with robustness against communication delay: an approach in the space domain.IEEE Trans. Intell. Transport. Syst.22, 5496–5507 (2020).
Gao, Y. & Chien, S. Review on space robotics: toward top-level science through space exploration.Sci. Rob.2, eaan5074 (2017).
Bornstein, B. J. et al. Autonomous exploration for gathering increased science.NASA Tech Briefs34(9), 10 (2010).
Swan, R. M. et al. AI4MARS: a dataset for terrain-aware autonomous driving on Mars. InProc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 1982–1991 (2021).
Bayer, T. Planning for the un-plannable: redundancy, fault protection, contingency planning and anomaly response for the mars reconnaissance oribiter mission. InAIAA SPACE 2007 Conference and Exposition 6109 (2007).
Rieke, N. et al. The future of digital health with federated learning.NPJ Dig. Med.3, 119 (2020).
Sheller, M. J. et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data.Sci. Rep.10, 12598 (2020).
Moor, M. et al. Foundation models for generalist medical artificial intelligence.Nature616, 259–265 (2023).
Bécue, A., Praça, I. & Gama, J. Artificial intelligence, cyber-threats and industry 4.0: challenges and opportunities.Artif. Intell. Rev.54, 3849–3886 (2021).
Buczak, A. L. & Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection.IEEE Commun. Surv. Tutorials18, 1153–1176 (2015).
Shaukat, K., Luo, S., Varadharajan, V., Hameed, I. A. & Xu, M. A survey on machine learning techniques for cyber security in the last decade.IEEE Access8, 222310–222354 (2020).
Berman, D. S., Buczak, A. L., Chavis, J. S. & Corbett, C. L. A survey of deep learning methods for cyber security.Information10, 122 (2019).
Kozik, R., Choras, M. & Keller, J. Balanced efficient lifelong learning (B-ELLA) for cyber attack detection.J. Univers. Comput. Sci.25, 2–15 (2019).
Bernstein, D. S., Givan, R., Immerman, N. & Zilberstein, S. The complexity of decentralized control of Markov decision processes.Math. Oper. Res.27, 819–840 (2002).
Goldman, C. V. & Zilberstein, S. Decentralized control of cooperative systems: categorization and complexity analysis.J. Artif. Intell. Res.22, 143–174 (2004).
Melo, F. S., Spaan, M. T. J. & Witwicki, S. J. InMulti-Agent Systems (eds Cossentino, M. et al.) 189–204 (Springer, 2012).
Vaswani, A. et al. Attention is all you need. InAdvances in Neural Information Processing Systems Vol. 30 (2017).
Khan, S. et al. Transformers in vision: a survey.ACM Comput. Surv.54, 200 (2022).
Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint athttps://doi.org/10.48550/arXiv.2108.07258 (2021).
Yang, S. et al. Foundation models for decision making: problems, methods, and opportunities. Preprint athttps://doi.org/10.48550/arXiv.2303.04129 (2023).
Knight, W. OpenAI’s CEO says the age of giant AI models is already over.Wiredhttps://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/ (17 April 2023).
Rahwan, I. et al. Machine behaviour.Nature568, 477–486 (2019).
Cath, C. Governing artificial intelligence: ethical, legal and technical opportunities and challenges.Phil. Trans. R. Soc. A376, 20180080 (2018).
Cao, Y. & Yang, J. Towards making systems forget with machine unlearning. In2015 IEEE Symposium on Security and Privacy 463–480 (IEEE, 2015).
Nick, B.Superintelligence: Paths, Dangers, Strategies. (Oxford Univ. Press, 2014).
Marr, B. The 15 biggest risks of artificial intelligence.Forbeshttps://www.forbes.com/sites/bernardmarr/2023/06/02/the-15-biggest-risks-of-artificial-intelligence/?sh=309f29002706 (2 June 2023).
Bengio, Y. et al. Managing AI risks in an era of rapid progress. Preprint athttps://doi.org/10.48550/arXiv.2310.17688 (2023).
Wu, C.-J. et al. Sustainable AI: environmental implications, challenges and opportunities.Proc. Mach. Learn. Syst.4, 795–813 (2022).
Acknowledgements
This material is based on work supported by DARPA under contracts HR00112190132, HR00112190133, HR00112190134, HR00112190135, HR00112190130 and HR00112190136. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA. The authors would like to thank B. Bertoldson, A. Carta, B. Clipp, N. Jennings, K. Stanley, C. Ekanadham, N. Ketz, M. Paravia, M. Petrescu, T. Senator and J. Steil for constructive discussions and comments on early versions of the manuscript.
Author information
Authors and Affiliations
Computer Science Department, Loughborough University, Loughborough, UK
Andrea Soltoggio, Eseoghene Ben-Iwhiwhu, Saptarshi Nath & Christos Peridis
Computer Science Department, Rice University, Houston, TX, USA
Vladimir Braverman, Michael A. Jacobs & Guangyao Zheng
University of Pennsylvania, Philadelphia, PA, USA
Eric Eaton, Long Le & Kyle Vedder
ECS Federal, Arlington, VA, USA
Benjamin Epstein
Thomas Lord Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
Yunhao Ge & Laurent Itti
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
Lucy Halperin & Jonathan How
Department of Diagnostic and Interventional Imaging, The University of Texas McGovern Medical School at Houston, Houston, TX, USA
Michael A. Jacobs
The Department of Radiology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
Michael A. Jacobs
Smart Information Flow Technologies, Minneapolis, MN, USA
Pavan Kantharaju & David Musliner
Aurora Flight Sciences, Cambridge, MA, USA
Steven Lee & Sildomar T. Monteiro
Department of Computer Science, Vanderbilt University, Nashville, TN, USA
Xinran Liu & Soheil Kolouri
Massachusetts Institute of Technology, Cambridge, MA, USA
Sildomar T. Monteiro
Department of Electrical Engineering, Yale University, New Haven, CT, USA
Priyadarshini Panda
Department of Computer Science, University of California, Davis, Davis, CA, USA
Hamed Pirsiavash
Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
Vishwa Parekh
Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
Kaushik Roy
Department of Software and Information System Engineering, Ben-Gurion University, Beer Sheva, Israel
Shahaf Shperberg
University of Massachusetts, Amherst, Amherst, MA, USA
Hava T. Siegelmann
Department of Computer Science, The University of Texas at Austin, Austin, TX, USA
Peter Stone
Sony AI America, Sony AI, Austin, TX, USA
Peter Stone
Simons Institute, University of California, Berkeley, Berkeley, CA, USA
Jingfeng Wu
Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
Lin Yang
- Andrea Soltoggio
You can also search for this author inPubMed Google Scholar
- Eseoghene Ben-Iwhiwhu
You can also search for this author inPubMed Google Scholar
- Vladimir Braverman
You can also search for this author inPubMed Google Scholar
- Eric Eaton
You can also search for this author inPubMed Google Scholar
- Benjamin Epstein
You can also search for this author inPubMed Google Scholar
- Yunhao Ge
You can also search for this author inPubMed Google Scholar
- Lucy Halperin
You can also search for this author inPubMed Google Scholar
- Jonathan How
You can also search for this author inPubMed Google Scholar
- Laurent Itti
You can also search for this author inPubMed Google Scholar
- Michael A. Jacobs
You can also search for this author inPubMed Google Scholar
- Pavan Kantharaju
You can also search for this author inPubMed Google Scholar
- Long Le
You can also search for this author inPubMed Google Scholar
- Steven Lee
You can also search for this author inPubMed Google Scholar
- Xinran Liu
You can also search for this author inPubMed Google Scholar
- Sildomar T. Monteiro
You can also search for this author inPubMed Google Scholar
- David Musliner
You can also search for this author inPubMed Google Scholar
- Saptarshi Nath
You can also search for this author inPubMed Google Scholar
- Priyadarshini Panda
You can also search for this author inPubMed Google Scholar
- Christos Peridis
You can also search for this author inPubMed Google Scholar
- Hamed Pirsiavash
You can also search for this author inPubMed Google Scholar
- Vishwa Parekh
You can also search for this author inPubMed Google Scholar
- Kaushik Roy
You can also search for this author inPubMed Google Scholar
- Shahaf Shperberg
You can also search for this author inPubMed Google Scholar
- Hava T. Siegelmann
You can also search for this author inPubMed Google Scholar
- Peter Stone
You can also search for this author inPubMed Google Scholar
- Kyle Vedder
You can also search for this author inPubMed Google Scholar
- Jingfeng Wu
You can also search for this author inPubMed Google Scholar
- Lin Yang
You can also search for this author inPubMed Google Scholar
- Guangyao Zheng
You can also search for this author inPubMed Google Scholar
- Soheil Kolouri
You can also search for this author inPubMed Google Scholar
Contributions
All authors contributed with insights during brainstorming, ideas and writing the paper. A.S. conceived the main idea and led the integration of all contributions.
Corresponding author
Correspondence toAndrea Soltoggio.
Ethics declarations
Competing interests
P.S. serves as the executive director of Sony AI America and receives financial compensation for this work. The terms of this arrangement have been reviewed and approved by the University of Texas at Austin in accordance with its policy on objectivity in research. All other authors declare no competing interests.
Peer review
Peer review information
Nature Machine Intelligence thanks Senen Barro, Vincenzo Lomonaco, Xiaoying Tang, Gido van de Ven and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Section 1: ShELL algorithms and their implementations. Supplementary Section 2: additional technical details are provided on application scenarios and performance metrics.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Soltoggio, A., Ben-Iwhiwhu, E., Braverman, V.et al. A collective AI via lifelong learning and sharing at the edge.Nat Mach Intell6, 251–264 (2024). https://doi.org/10.1038/s42256-024-00800-2
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
A framework reforming personalized Internet of Things by federated meta-learning
- Linlin You
- Zihan Guo
- H. Vincent Poor
Nature Communications (2025)
Materiality and risk in the age of pervasive AI sensors
- Mona Sloane
- Emanuel Moss
- Vijay Janapa Reddi
Nature Machine Intelligence (2025)