Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Machine Intelligence
  • Article
  • Published:

Construction of a 3D whole organism spatial atlas by joint modelling of multiple slices with deep neural networks

Nature Machine Intelligencevolume 5pages1200–1213 (2023)Cite this article

Subjects

Apreprint version of the article is available at bioRxiv.

Abstract

Spatial transcriptomics (ST) technologies are revolutionizing the way to explore the spatial architecture of tissues. Currently, ST data analysis is often restricted to a single two-dimensional (2D) tissue slice, limiting our capacity to understand biological processes that take place in 3D space. Here we present STitch3D, a unified framework that integrates multiple ST slices to reconstruct 3D cellular structures. By jointly modelling multiple slices and integrating them with single-cell RNA-sequencing data, STitch3D simultaneously identifies 3D spatial regions with coherent gene-expression levels and reveals 3D cell-type distributions. STitch3D distinguishes biological variation among slices from batch effects, and effectively borrows information across slices to assemble powerful 3D models. Through comprehensive experiments, we demonstrate STitch3D’s performance in building comprehensive 3D architectures, which allow 3D analysis in the entire tissue region or even the whole organism. The outputs of STitch3D can be used for multiple downstream tasks, enabling a comprehensive understanding of biological systems.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

¥14,900 per year

only ¥1,242 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of STitch3D.
Fig. 2: Benchmarking of STitch3D and other state-of-the-art methods.
Fig. 3: 3D reconstruction of the adult mouse brain.
Fig. 4: 3D reconstruction of the developing human heart.
Fig. 5: Application of STitch3D to the breast cancer data.
Fig. 6: STitch3D constructed the 3D atlas of theDrosophila embryo.

Similar content being viewed by others

Data availability

All data used in this work are publicly available through online sources: human dorsolateral prefrontal cortex dataset profiled by Visium platform6 (http://spatial.libd.org/spatialLIBD/); human dorsolateral prefrontal cortex dataset profiled by 10x Genomics Chromium platform23 (GSE144136); mouse cortex dataset profiled by seqFISH+ (ref.25) (https://github.com/CaiGroup/seqFISH-PLUS); mouse primary visual cortex dataset profiled by SMART-seq26 (https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-v1-and-alm-smart-seq); mouse visual cortex dataset profiled by STARmap27 (https://kangaroo-goby.squarespace.com/data); mouse hypothalamic preoptic dataset profiled by MERFISH28 (Dryad); mouse hypothalamic preoptic dataset profiled by Illumina NextSeq 500 (ref.28) (GSE113576); mouse whole brain dataset profiled by ST platform5 (GSE147747); mouse brain dataset profiled by 10x Genomics Chromium platform16 (E-MTAB-11115); human embryonic heart dataset profiled by ST platform7 (https://data.mendeley.com/datasets/dgnysc3zn5/1); human embryonic heart dataset profiled by 10x Genomics Chromium platform7 (https://data.mendeley.com/datasets/mbvhhf8m62/2); murine lymph node spatial dataset profiled by Visium platform and scRNA-seq dataset profiled by 10x Genomics Chromium platform18 (GSE173778); mouse skin sections profiled by Visium platform34 (GSE178758); mouse skin dataset profiled by 10x Genomics Chromium platform35 (GSE142471); HER2-positive breast tumour dataset profiled by ST platform36 (https://doi.org/10.5281/zenodo.4751624); HER2-positive breast tumour dataset profiled by 10x Genomics Chromium platform37 (GSE176078);Drosophila embryo dataset profiled by Stereo-seq8 (https://db.cngb.org/stomics/datasets/STDS0000060);Drosophila embryo dataset profiled by sci-RNA-seq39 (GSE190149); mouse olfactory bulb dataset profiled by Visium platform (https://www.10xgenomics.com/resources/datasets/adult-mouse-olfactory-bulb-1-standard-1); mouse olfactory bulb scRNA-seq dataset profiled by 10x Genomics Chromium platform61 (GSE121891); mouse primary cortex 3D dataset profiled by STARmap27 (https://kangaroo-goby.squarespace.com/data).Source data are provided with this paper.

Code availability

STitch3D software is available athttps://github.com/YangLabHKUST/STitch3D. All codes are deposited in the Zenodo repository62.

References

  1. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics.Science353, 78–82 (2016).

    Article  Google Scholar 

  2. Burgess, D. J. Spatial transcriptomics coming of age.Nat. Rev. Genet.20, 317–317 (2019).

    Article  Google Scholar 

  3. Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease.Cell182, 976–991 (2020).

    Article  Google Scholar 

  4. Moses, L. & Pachter, L. Museum of spatial transcriptomics.Nat. Methods19, 534–546 (2022).

    Article  Google Scholar 

  5. Ortiz, C. et al. Molecular atlas of the adult mouse brain.Sci. Adv.6, eabb3446 (2020).

    Article  Google Scholar 

  6. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex.Nat. Neurosci.24, 425–436 (2021).

    Article  Google Scholar 

  7. Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart.Cell179, 1647–1660 (2019).

    Article  Google Scholar 

  8. Wang, M. et al. High-resolution 3D spatiotemporal transcriptomic maps of developingDrosophila embryos and larvae.Dev. Cell57, 1271–1283 (2022).

    Article  Google Scholar 

  9. Briscoe, J. & Small, S. Morphogen rules: design principles of gradient-mediated embryo patterning.Development142, 3996–4009 (2015).

    Article  Google Scholar 

  10. Lin, Y. & Yang, J. Y. 3D reconstruction of spatial expression.Nat. Methods19, 526–527 (2022).

    Article  Google Scholar 

  11. Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics.Nat. Rev. Genet.22, 627–644 (2021).

    Article  Google Scholar 

  12. Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace.Nat. Biotechnol.39, 1375–1384 (2021).

    Article  Google Scholar 

  13. Hu, J. et al. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network.Nat. Methods18, 1342–1351 (2021).

    Article  Google Scholar 

  14. Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder.Nat. Commun.13, 1739 (2022).

    Article  Google Scholar 

  15. Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics.Nat. Biotechnol.40, 517–526 (2022).

    Article  Google Scholar 

  16. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics.Nat. Biotechnol.40, 661–671 (2022).

    Article  Google Scholar 

  17. Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram.Nat. Methods18, 1352–1362 (2021).

    Article  Google Scholar 

  18. Lopez, R. et al. DestVI identifies continuums of cell types in spatial transcriptomics data.Nat. Biotechnol.40, 1360–1369 (2022).

    Article  Google Scholar 

  19. Ma, Y. & Zhou, X. Spatially informed cell-type deconvolution for spatial transcriptomics.Nat. Biotechnol.40, 1349–1359 (2022).

    Article  Google Scholar 

  20. Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells.Genome Biol.20, 59 (2019).

    Article  Google Scholar 

  21. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching.Nat. Methods13, 845–848 (2016).

    Article  Google Scholar 

  22. Gilmore, E. C. & Herrup, K. Cortical development: layers of complexity.Curr. Biol.7, R231–R234 (1997).

    Article  Google Scholar 

  23. Nagy, C. et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons.Nat. Neurosci.23, 771–781 (2020).

    Article  Google Scholar 

  24. Li, B. et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution.Nat. Methods19, 662–670 (2022).

    Article  Google Scholar 

  25. Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+.Nature568, 235–239 (2019).

    Article  Google Scholar 

  26. Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas.Nature563, 72–78 (2018).

    Article  Google Scholar 

  27. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states.Science361, eaat5691 (2018).

    Article  Google Scholar 

  28. Moffitt, J. R. et al. Molecular, spatial and functional single-cell profiling of the hypothalamic preoptic region.Science362, eaau5324 (2018).

    Article  Google Scholar 

  29. Oh, S. W. et al. A mesoscale connectome of the mouse brain.Nature508, 207–214 (2014).

    Article  Google Scholar 

  30. Wang, Y. et al. Sprod for de-noising spatially resolved transcriptomics data based on position and image information.Nat. Methods19, 950–958 (2022).

    Article  Google Scholar 

  31. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain.Nature445, 168–176 (2007).

    Article  Google Scholar 

  32. Fang, Z., Liu, X. & Peltz, G. GSEApy: a comprehensive package for performing gene set enrichment analysis in Python.Bioinformatics39, btac757 (2022).

    Article  Google Scholar 

  33. Evans, S. M., Yelon, D., Conlon, F. L. & Kirby, M. L. Myocardial lineage development.Circ. Res.107, 1428–1444 (2010).

    Article  Google Scholar 

  34. Foster, D. S. et al. Integrated spatial multiomics reveals fibroblast fate during tissue repair.Proc. Natl Acad. Sci. USA118, e2110025118 (2021).

    Article  Google Scholar 

  35. Haensel, D. et al. Defining epidermal basal cell states during skin homeostasis and wound healing using single-cell transcriptomics.Cell Rep.30, 3932–3947 (2020).

    Article  Google Scholar 

  36. Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions.Nat. Commun.12, 6012 (2021).

    Article  Google Scholar 

  37. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers.Nat. Genet.53, 1334–1347 (2021).

    Article  Google Scholar 

  38. Xu, D. et al. Endoplasmic reticulum stress targeted therapy for breast cancer.Cell Commun. Signal.20, 174 (2022).

    Article  Google Scholar 

  39. Calderon, D. et al. The continuum ofDrosophila embryonic development at single-cell resolution.Science377, eabn5800 (2022).

    Article  Google Scholar 

  40. Tomancak, P. et al. Systematic determination of patterns of gene expression duringDrosophila embryogenesis.Genome Biol.3, 1–14 (2002).

    Article  Google Scholar 

  41. Tomancak, P. et al. Global analysis of patterns of gene expression duringDrosophila embryogenesis.Genome Biol.8, 1–24 (2007).

    Article  Google Scholar 

  42. Gramates, L. S. et al. FlyBase: a guided tour of highlighted features.Genetics220, iyac035 (2022).

    Article  Google Scholar 

  43. Page, D. T. Inductive patterning of the embryonic brain inDrosophila.Development129, 2121–2128 (2002).

    Article  Google Scholar 

  44. Crews, S. T. Drosophila embryonic CNS development: neurogenesis, gliogenesis, cell fate and differentiation.Genetics213, 1111–1144 (2019).

    Article  Google Scholar 

  45. Hartenstein, V.Atlas of Drosophila Development (Cold Spring Harbor Laboratory Press, 1993).

  46. Andrew, D. J., Henderson, K. D. & Seshaiah, P. Salivary gland development inDrosophila melanogaster.Mech. Dev.92, 5–17 (2000).

    Article  Google Scholar 

  47. Maruyama, R. & Andrew, D. J.Drosophila as a model for epithelial tube formation.Dev. Dyn.241, 119–135 (2012).

    Article  Google Scholar 

  48. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis.Genome Biol.19, 15 (2018).

    Article  Google Scholar 

  49. Lécuyer, E. et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function.Cell131, 174–187 (2007).

    Article  Google Scholar 

  50. Wilk, R., Hu, J., Blotsky, D. & Krause, H. M. Diverse and pervasive subcellular distributions for both coding and long noncoding RNAs.Genes Dev.30, 594–609 (2016).

    Article  Google Scholar 

  51. Stuart, T. et al. Comprehensive integration of single-cell data.Cell177, 1888–1902 (2019).

    Article  Google Scholar 

  52. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony.Nat. Methods16, 1289–1296 (2019).

    Article  Google Scholar 

  53. Zhao, J. et al. Adversarial domain translation networks for integrating large-scale atlas-level single-cell datasets.Nat. Comput. Sci.2, 317–330 (2022).

    Article  Google Scholar 

  54. Ming, J. et al. FIRM: flexible integration of single-cell RNA-sequencing data for large-scale multi-tissue cell atlas datasets.Brief. Bioinform.23, bbac167 (2022).

    Article  Google Scholar 

  55. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics.Nat. Rev. Genet.24, 494–515 (2023).

    Article  Google Scholar 

  56. Arun, K. S., Huang, T. S. & Blostein, S. D. Least-squares fitting of two 3-D point sets.IEEE Trans. Pattern Anal. Mach. Intell.PAMI-9, 698–700 (1987).

    Article  Google Scholar 

  57. Zeira, R., Land, M., Strzalkowski, A. & Raphael, B. J. Alignment and integration of spatial transcriptomics data.Nat. Methods19, 567–575 (2022).

    Article  Google Scholar 

  58. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks.J. Stat. Mech. Theory Exp.2008, P10008 (2008).

    Article MATH  Google Scholar 

  59. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. InProc. 3rd International Conference on Learning Representations (ICLR) (ICLR, 2015).

  60. Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity.IEEE Trans. Image Process.13, 600–612 (2004).

    Article  Google Scholar 

  61. Tepe, B. et al. Single-cell RNA-seq of mouse olfactory bulb reveals cellular heterogeneity and activity-dependent molecular census of adult-born neurons.Cell Rep.25, 2689–2703 (2018).

    Article  Google Scholar 

  62. Wang, G. et al. STitch3D.Zenodohttps://doi.org/10.5281/zenodo.8311065 (2023).

  63. McInnes, L., Healy, J., Saul, N. & Grossberger, L. UMAP: Uniform Manifold Approximation and Projection.J. Open Source Softw.3, 861 (2018).

    Article  Google Scholar 

  64. Fürth, D. et al. An interactive framework for whole-brain maps at cellular resolution.Nat. Neurosci.21, 139–149 (2018).

    Article  Google Scholar 

  65. de Bakker, B. S. et al. An interactive three-dimensional digital atlas and quantitative database of human development.Science354, aag0053 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the following grants: Hong Kong Research Grant Council grants nos. 16301419, 16308120, 16307221 and 16307322, Hong Kong University of Science and Technology Startup Grants R9405 and Z0428 from the Big Data Institute, Guangdong-Hong Kong-Macao Joint Laboratory grant no. 2020B1212030001 and the RGC Collaborative Research Fund grant no. C6021-19EF to C.Y.; Hong Kong Research Grant Council grant no. 16209820, Lo Ka Chung Foundation through the Hong Kong Epigenomics Project, Chau Hoi Shuen Foundation, the SpatioTemporal Omics Consortium (STOC) and the STOmics Grant Program to A.R.W.; Hong Kong Research Grant Council grant no. 16103620, the Shenzhen Science and Technology Innovation Commission JCYJ20180223181229868 and JCYJ20200109140201722 to Y.Y.

Author information

Author notes
  1. These authors contributed equally: Gefei Wang, Jia Zhao.

Authors and Affiliations

  1. Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China

    Gefei Wang, Jia Zhao, Yang Wang & Can Yang

  2. Shenzhen PKU-HKUST Medical Center, Shenzhen, China

    Yan Yan

  3. Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China

    Yan Yan & Angela Ruohao Wu

  4. Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, The Hong Kong University of Science and Technology, Hong Kong SAR, China

    Yang Wang & Can Yang

  5. Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China

    Angela Ruohao Wu

  6. State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China

    Angela Ruohao Wu

  7. Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China

    Angela Ruohao Wu

Authors
  1. Gefei Wang

    You can also search for this author inPubMed Google Scholar

  2. Jia Zhao

    You can also search for this author inPubMed Google Scholar

  3. Yan Yan

    You can also search for this author inPubMed Google Scholar

  4. Yang Wang

    You can also search for this author inPubMed Google Scholar

  5. Angela Ruohao Wu

    You can also search for this author inPubMed Google Scholar

  6. Can Yang

    You can also search for this author inPubMed Google Scholar

Contributions

G.W., J.Z., A.R.W. and C.Y. conceived the idea. G.W. and J.Z. developed the method. A.R.W. and C.Y. supervised the project. G.W., J.Z., Y.Y., A.R.W. and C.Y. designed the experiments, performed the analyses and wrote the paper. Y.W. provided critical feedback during the study and helped revise the manuscript.

Corresponding authors

Correspondence toAngela Ruohao Wu orCan Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Machine Intelligence thanks Mengjie Chen, Miguel Esteban and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Mirko Pieropan, in collaboration with theNature Machine Intelligence team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–9, Figs. 1–61 and Tables 1 and 2.

Source data

Source Data Fig. 2

Source Data for Fig. 2.

Source Data Fig. 3

Source Data for Fig. 3.

Source Data Fig. 4

Source Data for Fig. 4.

Source Data Fig. 5

Source Data for Fig. 5.

Source Data Fig. 6

Source Data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhao, J., Yan, Y.et al. Construction of a 3D whole organism spatial atlas by joint modelling of multiple slices with deep neural networks.Nat Mach Intell5, 1200–1213 (2023). https://doi.org/10.1038/s42256-023-00734-1

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp