- Article
- Published:
fMRIPrep: a robust preprocessing pipeline for functional MRI
- Oscar Esteban ORCID:orcid.org/0000-0001-8435-61911,
- Christopher J. Markiewicz ORCID:orcid.org/0000-0002-6533-164X1,
- Ross W. Blair1,
- Craig A. Moodie ORCID:orcid.org/0000-0003-0867-14691,
- A. Ilkay Isik ORCID:orcid.org/0000-0002-1652-92972,
- Asier Erramuzpe ORCID:orcid.org/0000-0002-9402-21843,
- James D. Kent4,
- Mathias Goncalves5,
- Elizabeth DuPre ORCID:orcid.org/0000-0003-1358-196X6,
- Madeleine Snyder7,
- Hiroyuki Oya8,
- Satrajit S. Ghosh ORCID:orcid.org/0000-0002-5312-67295,9,
- Jessey Wright1,
- Joke Durnez ORCID:orcid.org/0000-0001-9030-22021,
- Russell A. Poldrack1 na1 &
- …
- Krzysztof J. Gorgolewski ORCID:orcid.org/0000-0003-3321-75831 na1
Nature Methodsvolume 16, pages111–116 (2019)Cite this article
44kAccesses
1709Citations
82Altmetric
Abstract
Preprocessing of functional magnetic resonance imaging (fMRI) involves numerous steps to clean and standardize the data before statistical analysis. Generally, researchers create ad hoc preprocessing workflows for each dataset, building upon a large inventory of available tools. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. fMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing without manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than observed with commonly used preprocessing tools. fMRIPrep equips neuroscientists with an easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of results.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
All original data used in this work are publicly available through the OpenNeuro platform (formerly OpenfMRI). Derivatives generated with fMRIPrep in this work are available athttps://s3.amazonaws.com/fmriprep/index.html. The expert ratings collected after visual assessment of all reports are available through FigShare (https://doi.org/10.6084/m9.figshare.6196994.v3). Source data for Fig.3 are available online.
References
Poldrack, R. A. & Farah, M. J. Progress and challenges in probing the human brain.Nature526, 371–379 (2015).
Power, J. D., Plitt, M., Laumann, T. O. & Martin, A. Sources and implications of whole-brain fMRI signals in humans.Neuroimage146, 609–625 (2017).
Lindquist, M. A. The statistical analysis of fMRI data.Stat. Sci.23, 439–464 (2008).
Caballero-Gaudes, C. & Reynolds, R. C. Methods for cleaning the BOLD fMRI signal.Neuroimage154, 128–149 (2017).
Strother, S. C. Evaluating fMRI preprocessing pipelines.IEEE Eng. Med. Biol. Mag.25, 27–41 (2006).
Sladky, R. et al. Slice-timing effects and their correction in functional MRI.Neuroimage58, 588–594 (2011).
Ashburner, J. Preparing fMRI data for statistical analysis. In: M. Filippi, ed.fMRI Techniques and Protocols (pp. 151–178. Humana Press, New York, 2009).
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.Neuroimage59, 2142–2154 (2012).
Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI.Neuroimage84, 320–341 (2014).
Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.Neuroimage37, 90–101 (2007).
Pruim, R. H. R. et al. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data.Neuroimage112, 267–277 (2015).
Cox, R. W. & Hyde, J. S. Software tools for analysis and visualization of fMRI data.NMR. Biomed.10, 171–178 (1997).
Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration.Neuroimage54, 2033–2044 (2011).
Fischl, B. FreeSurfer.Neuroimage62, 774–781 (2012).
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. FSL.Neuroimage62, 782–790 (2012).
Abraham, A. et al. Machine learning for neuroimaging with scikit-learn.Front. Neuroinform.8, 14 (2014).
Friston, K. J., Ashburner, J., Kiebel, S. J., Nichols, T. E. & Penny, W. D.Statistical Parametric Mapping: The Analysis of Functional Brain Images. (Academic Press, London, 2006).
Power, J. D., Plitt, M., Kundu, P., Bandettini, P. A. & Martin, A. Temporal interpolation alters motion in fMRI scans: magnitudes and consequences for artifact detection.PLoS ONE12, e0182939 (2017).
Carp, J. The secret lives of experiments: methods reporting in the fMRI literature.Neuroimage63, 289–300 (2012).
Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python.Front. Neuroinform.5, 13 (2011).
Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments.Sci. Data3, 160044 (2016).
Esteban, O. et al. FMRIPrep: a robust preprocessing pipeline for functional MRI.Code Oceanhttps://doi.org/10.24433/CO.ed5ddfef-76a3-4996-b298-e3200f69141b (2018).
Poldrack, R. A. et al. Guidelines for reporting an fMRI study.Neuroimage40, 409–414 (2008).
Sikka, S. et al. Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC). 5th INCF Congress of Neuroinformatics, Munich, Germany, 10–12 September 2012.
Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective.Neuroimage62, 2222–2231 (2012).
Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project.Neuroimage80, 105–124 (2013).
Esteban, O. et al. MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites.PLoS ONE12, e0184661 (2017).
Calhoun, V. D. et al. The impact of T1 versus EPI spatial normalization templates for fMRI data analyses.Hum. Brain. Mapp.38, 5331–5342 (2017).
Beckmann, C. F., Jenkinson, M. & Smith, S. M. General multilevel linear modeling for group analysis in FMRI.Neuroimage20, 1052–1063 (2003).
Strother, S. C. et al. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework.Neuroimage15, 747–771 (2002).
Karaman, M., Nencka, A. S., Bruce, I. P. & Rowe, D. B. Quantification of the statistical effects of spatiotemporal processing of nontask fMRI data.Brain Connect4, 649–661 (2014).
Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank.Neuroimage166, 400–424 (2018).
Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study.Nat. Neurosci.19, 1523–1536 (2016).
Poldrack, R. A. et al. A phenome-wide examination of neural and cognitive function.Sci. Data3, 160110 (2016).
Schonberg, T. et al. Decreasing ventromedial prefrontal cortex activity during sequential risk-taking: an fMRI investigation of the balloon analog risk task.Front. Neurosci.6, 80 (2012).
Aron, A. R., Gluck, M. A. & Poldrack, R. A. Long-term test-retest reliability of functional MRI in a classification learning task.Neuroimage29, 1000–1006 (2006).
Xue, G. & Poldrack, R. A. The neural substrates of visual perceptual learning of words: implications for the visual word form area hypothesis.J. Cogn. Neurosci.19, 1643–1655 (2007).
Tom, S. M., Fox, C. R., Trepel, C. & Poldrack, R. A. The neural basis of loss aversion in decision-making under risk.Science315, 515–518 (2007).
Xue, G., Aron, A. R. & Poldrack, R. A. Common neural substrates for inhibition of spoken and manual responses.Cereb. Cortex18, 1923–1932 (2008).
Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J. & Poldrack, R. A. Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI.J. Neurosci.27, 3743–3752 (2007).
Foerde, K., Knowlton, B. J. & Poldrack, R. A. Modulation of competing memory systems by distraction.Proc. Natl Acad. Sci. USA103, 11778–11783 (2006).
Gorgolewski, K. J., Durnez, J. & Poldrack, R. A. Preprocessed Consortium for Neuropsychiatric Phenomics dataset.F1000 Res.6, 1262 (2017).
Laumann, T. O. et al.Functional system and areal organization of a highly sampled individual human brain.Neuron87, 657–670 (2015).
Alvarez, R., Jasdzewski, G. & Poldrack, R. A. Building memories in two languages: an fMRI study of episodic encoding in bilinguals. In SfN Neuroscience (Orlando, FL, US, 2002).
Poldrack, R. A. et al. Interactive memory systems in the human brain.Nature414, 546–550 (2001).
Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X. & Milham, M. P. Competition between functional brain networks mediates behavioral variability.Neuroimage39, 527–537 (2008).
Mennes, M. et al. Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity.Neuroimage50, 1690–1701 (2010).
Mennes, M. et al. Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics.Neuroimage54, 2950–2959 (2011).
Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex.Science293, 2425–2430 (2001).
Hanson, S. J., Matsuka, T. & Haxby, J. V. Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area?Neuroimage23, 156–166 (2004).
Duncan, K. J., Pattamadilok, C., Knierim, I. & Devlin, J. T. Consistency and variability in functional localisers.Neuroimage46, 1018–1026 (2009).
Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. Prefrontal-subcortical pathways mediating successful emotion regulation.Neuron59, 1037–1050 (2008).
Moran, J. M., Jolly, E. & Mitchell, J. P. Social-cognitive deficits in normal aging.J. Neurosci.32, 5553–5561 (2012).
Uncapher, M. R., Hutchinson, J. B. & Wagner, A. D. Dissociable effects of top-down and bottom-up attention during episodic encoding.J. Neurosci.31, 12613–12628 (2011).
Gorgolewski, K. J. et al. A test-retest fMRI dataset for motor, language and spatial attention functions.Gigascience2, 6 (2013).
Repovš, G. & Barch, D. M. Working memory related brain network connectivity in individuals with schizophrenia and their siblings.Front. Hum. Neurosci.6, 137 (2012).
Repovš, G., Csernansky, J. G. & Barch, D. M. Brain network connectivity in individuals with schizophrenia and their siblings.Biol. Psychiatry69, 967–973 (2011).
Walz, J. M. et al. Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem.J. Neurosci.33, 19212–19222 (2013).
Walz, J. M. et al. Simultaneous EEG-fMRI reveals a temporal cascade of task-related and default-mode activations during a simple target detection task.Neuroimage102, 229–239 (2014).
Conroy, B. R., Walz, J. M. & Sajda, P. Fast bootstrapping and permutation testing for assessing reproducibility and interpretability of multivariate fMRI decoding models.PLoS ONE8, e79271 (2013).
Walz, J. M. et al. Prestimulus EEG alpha oscillations modulate task-related fMRI BOLD responses to auditory stimuli.Neuroimage113, 153–163 (2015).
Velanova, K., Wheeler, M. E. & Luna, B. Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control.Cereb. Cortex18, 2505–2522 (2008).
Padmanabhan, A., Geier, C. F., Ordaz, S. J., Teslovich, T. & Luna, B. Developmental changes in brain function underlying the influence of reward processing on inhibitory control.Dev. Cogn. Neurosci.1, 517–529 (2011).
Geier, C. F., Terwilliger, R., Teslovich, T., Velanova, K. & Luna, B. Immaturities in reward processing and its influence on inhibitory control in adolescence.Cereb. Cortex20, 1613–1629 (2010).
Cera, N., Tartaro, A. & Sensi, S. L. Modafinil alters intrinsic functional connectivity of the right posterior insula: a pharmacological resting state fMRI study.PLoS ONE9, e107145 (2014).
Woo, C.-W., Roy, M., Buhle, J. T. & Wager, T. D. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain.PLoS Biol.13, e1002036 (2015).
Smeets, P. A. M., Kroese, F. M., Evers, C. & de Ridder, D. T. D. Allured or alarmed: counteractive control responses to food temptations in the brain.Behav. Brain. Res.248, 41–45 (2013).
Pernet, C. R. et al. The human voice areas: Spatial organization and inter-individual variability in temporal and extra-temporal cortices.Neuroimage119, 164–174 (2015).
Verstynen, T. D. The organization and dynamics of corticostriatal pathways link the medial orbitofrontal cortex to future behavioral responses.J. Neurophysiol.112, 2457–2469 (2014).
Bursley, J. K., Nestor, A., Tarr, M. J. & Creswell, J. D. Awake, offline processing during associative learning.PLoS ONE11, e0127522 (2016).
Gabitov, E., Manor, D. & Karni, A. Learning from the other limb’s experience: sharing the ‘trained’ M1 representation of the motor sequence knowledge.J. Physiol. (Lond.)594, 169–188 (2016).
Gabitov, E., Manor, D. & Karni, A. Patterns of modulation in the activity and connectivity of motor cortex during the repeated generation of movement sequences.J. Cogn. Neurosci.27, 736–751 (2015).
Gabitov, E., Manor, D. & Karni, A. Done that: short-term repetition related modulations of motor cortex activity as a stable signature for overnight motor memory consolidation.J. Cogn. Neurosci.26, 2716–2734 (2014).
Lepping, R. J., Atchley, R. A. & Savage, C. R. Development of a validated emotionally provocative musical stimulus set for research.Psychol. Music44, 1012–1028 (2016).
Park, C.-A. & Kang, C.-K. Sensing the effects of mouth breathing by using 3-tesla MRI.J. Korean Phys. Soc.70, 1070–1076 (2017).
Iannilli, E. et al. Effects of manganese exposure on olfactory functions in teenagers: a pilot study.PLoS ONE11, e0144783 (2016).
Kim, J., Wang, J., Wedell, D. H. & Shinkareva, S. V. Identifying core affect in individuals from fMRI responses to dynamic naturalistic audiovisual stimuli.PLoS ONE11, e0161589 (2016).
Tétreault, P. et al. Brain connectivity predicts placebo response across chronic pain clinical trials.PLoS Biol.14, e1002570 (2016).
Chakroff, A. et al. When minds matter for moral judgment: intent information is neurally encoded for harmful but not impure acts.Soc. Cogn. Affect. Neurosci.11, 476–484 (2016).
Koster-Hale, J., Saxe, R., Dungan, J. & Young, L. L. Decoding moral judgments from neuralrepresentations of intentions.Proc. Natl Acad. Sci. USA110, 5648–5653 (2013).
Gao, X. et al. My body looks like that girl's: body mass index modulates brain activity during body image self-reflection among young women.PLoS ONE11, e0164450 (2016).
Romaniuk, L., Pope, M., Nicol, K., Steele, D. & Hall, J. Neural correlates of fears of abandonment and rejection in borderline personality disorder.Wellcome Open Res.1, 33 (2016).
Cohen, A. D., Nencka, A. S., Lebel, R. M. & Wang, Y. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.PLoS ONE12, e0169253 (2017).
Dalenberg, J. R., Weitkamp, L., Renken, R. J., Nanetti, L. & Ter Horst, G. J. Flavor pleasantness processing in the ventral emotion network.PLoS ONE12, e0170310 (2017).
Roy, A. et al. The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury.PLoS ONE12, e0170541 (2017).
Gordon, E. M. et al. Precision functional mapping of individual human brains.Neuron95, 791–807.e7 (2017).
Veldhuizen, M. G. et al. Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward.Curr. Biol.27, 2476–2485.e6 (2017).
Greene, D. J. et al. Behavioral interventions for reducing head motion during MRI scans in children.Neuroimage171, 234–245 (2018).
Nastase, S. A. et al. Attention selectively reshapes the geometry of distributed semantic representation.Cereb. Cortex27, 4277–4291 (2017).
Kanazawa, Y. et al. Phonological memory in sign language relies on the visuomotor neural system outside the left hemisphere language network.PLoS ONE12, e0177599 (2017).
Tustison, N. J. et al. N4ITK: improved N3 bias correction.IEEE Trans. Med. Imaging29, 1310–1320 (2010).
Marcus, D. S. et al. Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults.J. Cogn. Neurosci.19, 1498–1507 (2007).
Nooner, K. B. et al. The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry.Front. Neurosci.6, 152 (2012).
Reuter, M., Rosas, H. D. & Fischl, B. Highly accurate inverse consistent registration: a robust approach.Neuroimage53, 1181–1196 (2010).
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction.Neuroimage9, 179–194 (1999).
Klein, A. et al. Mindboggling morphometry of human brains.PLoS Comput. Biol.13, e1005350 (2017).
Fonov, V., Evans, A., McKinstry, R., Almli, C. & Collins, D. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood.Neuroimage47, S102 (2009).
Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain.Med. Image. Anal.12, 26–41 (2008).
Klein, A. et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.Neuroimage46, 786–802 (2009).
Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.IEEE Trans. Med. Imaging20, 45–57 (2001).
Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images.Neuroimage17, 825–841 (2002).
Oakes, T. R. et al. Comparison of fMRI motion correction software tools.Neuroimage28, 529–543 (2005).
Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration.Neuroimage48, 63–72 (2009).
Lanczos, C. Evaluation of noisy data.Journal of the Society for Industrial and Applied Mathematics Series B: Numerical Analysis1, 76–85 (1964).
Wang, S. et al. Evaluation of field map and nonlinear registration methods for correction of susceptibility artifacts in diffusion MRI.Front. Neuroinform.11, 17 (2017).
McIntosh, S., Kamei, Y., Adams, B. & Hassan, A. E. The impact of code review coverage and code review participation on software quality: a case study of the Qt, VTK, and ITK projects. In: P. Devanbu, S. Kim, M. Pinzger eds.Proc. 11th Working Conference on Mining Software Repositories, MSR 2014 (pp. 192–201. ACM, New York, 2014).
Gorgolewski, K. J. et al. BIDS apps: improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods.PLoS Comput. Biol.13, e1005209 (2017).
Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational workflows is automated using continuous analysis.Nat. Biotechnol.35, 342–346 (2017).
Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for mobility of compute.PLoS ONE12, e0177459 (2017).
Acknowledgements
This work was supported by the Laura and John Arnold Foundation (R.A.P. and K.J.G.), the NIH (grant NBIB R01EB020740, S.S.G.), NIMH (R24MH114705 and R24MH117179, R.A.P.), and NINDS (U01NS103780, R.A.P.). J.D. has received funding from the European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement 706561. The authors thank S. Nastase and T. van Mourik for their thoughtful open reviews of a preprint version of this paper.
Author information
These authors contributed equally: Russell A. Poldrack, Krzysztof J. Gorgolewski.
Authors and Affiliations
Department of Psychology, Stanford University, Stanford, CA, USA
Oscar Esteban, Christopher J. Markiewicz, Ross W. Blair, Craig A. Moodie, Jessey Wright, Joke Durnez, Russell A. Poldrack & Krzysztof J. Gorgolewski
Max Planck Institute for Empirical Aesthetics, Hesse, Germany
A. Ilkay Isik
Computational Neuroimaging Lab, Biocruces Health Research Institute, Bilbao, Spain
Asier Erramuzpe
Neuroscience Program, University of Iowa, Iowa City, IA, USA
James D. Kent
McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
Mathias Goncalves & Satrajit S. Ghosh
Montreal Neurological Institute, McGill University, Montreal, QC, Canada
Elizabeth DuPre
Department of Psychiatry, Stanford Medical School, Stanford University, Stanford, CA, USA
Madeleine Snyder
Department of Neurosurgery, University of Iowa Health Care, Iowa City, IA, USA
Hiroyuki Oya
Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
Satrajit S. Ghosh
- Oscar Esteban
You can also search for this author inPubMed Google Scholar
- Christopher J. Markiewicz
You can also search for this author inPubMed Google Scholar
- Ross W. Blair
You can also search for this author inPubMed Google Scholar
- Craig A. Moodie
You can also search for this author inPubMed Google Scholar
- A. Ilkay Isik
You can also search for this author inPubMed Google Scholar
- Asier Erramuzpe
You can also search for this author inPubMed Google Scholar
- James D. Kent
You can also search for this author inPubMed Google Scholar
- Mathias Goncalves
You can also search for this author inPubMed Google Scholar
- Elizabeth DuPre
You can also search for this author inPubMed Google Scholar
- Madeleine Snyder
You can also search for this author inPubMed Google Scholar
- Hiroyuki Oya
You can also search for this author inPubMed Google Scholar
- Satrajit S. Ghosh
You can also search for this author inPubMed Google Scholar
- Jessey Wright
You can also search for this author inPubMed Google Scholar
- Joke Durnez
You can also search for this author inPubMed Google Scholar
- Russell A. Poldrack
You can also search for this author inPubMed Google Scholar
- Krzysztof J. Gorgolewski
You can also search for this author inPubMed Google Scholar
Contributions
O.E. contributed with conceptualization, data curation, formal analysis, investigation, methodology, software, validation, visualization, and writing (original draft, review, and editing). C.J.M. contributed with conceptualization, data curation, methodology, software, validation, and writing (review and editing). R.W.B. contributed with software, validation, and writing (review and editing). C.A.M. contributed with methodology, software, and writing (review and editing). A.I.I. contributed with software and writing (review and editing). A.E. contributed with software and writing (review and editing). J.D.K. contributed with investigation, methodology, software, visualization, and writing (review and editing). M.G. contributed with software and writing (review and editing). E.D. contributed with software and writing (review and editing). M.S. contributed with software and writing (review and editing). H.O. contributed with data acquisition and writing (review and editing). S.S.G. contributed with conceptualization, software, and writing (review and editing). J.W. contributed with conceptualization and writing (review and editing). J.D. contributed with formal analysis, investigation, methodology, software, and writing (review and editing). R.A.P. contributed with conceptualization, formal analysis, investigation, methodology, validation, supervision, resources, funding acquisition, and writing (original draft, review, and editing). K.J.G. contributed with conceptualization, data curation, formal analysis, investigation, methodology, software, validation, visualization, supervision, resources, funding acquisition, and writing (original draft, review, and editing).
Corresponding authors
Correspondence toOscar Esteban orKrzysztof J. Gorgolewski.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Text and Figures
Supplementary Notes 1–5, Supplementary Results 1 and 2, Supplementary Figures 1–6, and Supplementary Table 1
Source data
Rights and permissions
About this article
Cite this article
Esteban, O., Markiewicz, C.J., Blair, R.W.et al. fMRIPrep: a robust preprocessing pipeline for functional MRI.Nat Methods16, 111–116 (2019). https://doi.org/10.1038/s41592-018-0235-4
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative