Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Methods
  • Article
  • Published:

fMRIPrep: a robust preprocessing pipeline for functional MRI

Nature Methodsvolume 16pages111–116 (2019)Cite this article

Subjects

Abstract

Preprocessing of functional magnetic resonance imaging (fMRI) involves numerous steps to clean and standardize the data before statistical analysis. Generally, researchers create ad hoc preprocessing workflows for each dataset, building upon a large inventory of available tools. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep, an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. fMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing without manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than observed with commonly used preprocessing tools. fMRIPrep equips neuroscientists with an easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of results.

This is a preview of subscription content,access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: fMRIPrep is an fMRI preprocessing tool that adapts to the input dataset.
Fig. 2: Integration of visual assessment into the software testing framework effectively increases the quality of results.
Fig. 3: fMRIPrep affords researchers finer control over the smoothness of their analysis.
Fig. 4: Activation count maps from fMRIPrep are better aligned with the underlying anatomy than those from FEAT.

Similar content being viewed by others

Data availability

All original data used in this work are publicly available through the OpenNeuro platform (formerly OpenfMRI). Derivatives generated with fMRIPrep in this work are available athttps://s3.amazonaws.com/fmriprep/index.html. The expert ratings collected after visual assessment of all reports are available through FigShare (https://doi.org/10.6084/m9.figshare.6196994.v3). Source data for Fig.3 are available online.

References

  1. Poldrack, R. A. & Farah, M. J. Progress and challenges in probing the human brain.Nature526, 371–379 (2015).

    Article CAS PubMed  Google Scholar 

  2. Power, J. D., Plitt, M., Laumann, T. O. & Martin, A. Sources and implications of whole-brain fMRI signals in humans.Neuroimage146, 609–625 (2017).

    Article PubMed  Google Scholar 

  3. Lindquist, M. A. The statistical analysis of fMRI data.Stat. Sci.23, 439–464 (2008).

    Article  Google Scholar 

  4. Caballero-Gaudes, C. & Reynolds, R. C. Methods for cleaning the BOLD fMRI signal.Neuroimage154, 128–149 (2017).

    Article PubMed  Google Scholar 

  5. Strother, S. C. Evaluating fMRI preprocessing pipelines.IEEE Eng. Med. Biol. Mag.25, 27–41 (2006).

    Article PubMed  Google Scholar 

  6. Sladky, R. et al. Slice-timing effects and their correction in functional MRI.Neuroimage58, 588–594 (2011).

    Article PubMed  Google Scholar 

  7. Ashburner, J. Preparing fMRI data for statistical analysis. In: M. Filippi, ed.fMRI Techniques and Protocols (pp. 151–178. Humana Press, New York, 2009).

    Chapter  Google Scholar 

  8. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.Neuroimage59, 2142–2154 (2012).

    Article PubMed  Google Scholar 

  9. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI.Neuroimage84, 320–341 (2014).

    Article PubMed  Google Scholar 

  10. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI.Neuroimage37, 90–101 (2007).

    Article PubMed  Google Scholar 

  11. Pruim, R. H. R. et al. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data.Neuroimage112, 267–277 (2015).

    Article PubMed  Google Scholar 

  12. Cox, R. W. & Hyde, J. S. Software tools for analysis and visualization of fMRI data.NMR. Biomed.10, 171–178 (1997).

    Article CAS PubMed  Google Scholar 

  13. Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration.Neuroimage54, 2033–2044 (2011).

    Article PubMed  Google Scholar 

  14. Fischl, B. FreeSurfer.Neuroimage62, 774–781 (2012).

    Article PubMed  Google Scholar 

  15. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. FSL.Neuroimage62, 782–790 (2012).

    Article PubMed  Google Scholar 

  16. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn.Front. Neuroinform.8, 14 (2014).

    Article PubMed PubMed Central  Google Scholar 

  17. Friston, K. J., Ashburner, J., Kiebel, S. J., Nichols, T. E. & Penny, W. D.Statistical Parametric Mapping: The Analysis of Functional Brain Images. (Academic Press, London, 2006).

    Google Scholar 

  18. Power, J. D., Plitt, M., Kundu, P., Bandettini, P. A. & Martin, A. Temporal interpolation alters motion in fMRI scans: magnitudes and consequences for artifact detection.PLoS ONE12, e0182939 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  19. Carp, J. The secret lives of experiments: methods reporting in the fMRI literature.Neuroimage63, 289–300 (2012).

    Article PubMed  Google Scholar 

  20. Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python.Front. Neuroinform.5, 13 (2011).

    Article PubMed PubMed Central  Google Scholar 

  21. Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments.Sci. Data3, 160044 (2016).

    Article PubMed PubMed Central  Google Scholar 

  22. Esteban, O. et al. FMRIPrep: a robust preprocessing pipeline for functional MRI.Code Oceanhttps://doi.org/10.24433/CO.ed5ddfef-76a3-4996-b298-e3200f69141b (2018).

  23. Poldrack, R. A. et al. Guidelines for reporting an fMRI study.Neuroimage40, 409–414 (2008).

    Article PubMed  Google Scholar 

  24. Sikka, S. et al. Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC). 5th INCF Congress of Neuroinformatics, Munich, Germany, 10–12 September 2012.

  25. Van Essen, D. C. et al. The Human Connectome Project: a data acquisition perspective.Neuroimage62, 2222–2231 (2012).

    Article PubMed  Google Scholar 

  26. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project.Neuroimage80, 105–124 (2013).

    Article PubMed  Google Scholar 

  27. Esteban, O. et al. MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites.PLoS ONE12, e0184661 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  28. Calhoun, V. D. et al. The impact of T1 versus EPI spatial normalization templates for fMRI data analyses.Hum. Brain. Mapp.38, 5331–5342 (2017).

    Article PubMed PubMed Central  Google Scholar 

  29. Beckmann, C. F., Jenkinson, M. & Smith, S. M. General multilevel linear modeling for group analysis in FMRI.Neuroimage20, 1052–1063 (2003).

    Article PubMed  Google Scholar 

  30. Strother, S. C. et al. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework.Neuroimage15, 747–771 (2002).

    Article PubMed  Google Scholar 

  31. Karaman, M., Nencka, A. S., Bruce, I. P. & Rowe, D. B. Quantification of the statistical effects of spatiotemporal processing of nontask fMRI data.Brain Connect4, 649–661 (2014).

    Article PubMed PubMed Central  Google Scholar 

  32. Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank.Neuroimage166, 400–424 (2018).

    Article PubMed  Google Scholar 

  33. Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study.Nat. Neurosci.19, 1523–1536 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Poldrack, R. A. et al. A phenome-wide examination of neural and cognitive function.Sci. Data3, 160110 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Schonberg, T. et al. Decreasing ventromedial prefrontal cortex activity during sequential risk-taking: an fMRI investigation of the balloon analog risk task.Front. Neurosci.6, 80 (2012).

    Article PubMed PubMed Central  Google Scholar 

  36. Aron, A. R., Gluck, M. A. & Poldrack, R. A. Long-term test-retest reliability of functional MRI in a classification learning task.Neuroimage29, 1000–1006 (2006).

    Article PubMed  Google Scholar 

  37. Xue, G. & Poldrack, R. A. The neural substrates of visual perceptual learning of words: implications for the visual word form area hypothesis.J. Cogn. Neurosci.19, 1643–1655 (2007).

    Article PubMed  Google Scholar 

  38. Tom, S. M., Fox, C. R., Trepel, C. & Poldrack, R. A. The neural basis of loss aversion in decision-making under risk.Science315, 515–518 (2007).

    Article CAS PubMed  Google Scholar 

  39. Xue, G., Aron, A. R. & Poldrack, R. A. Common neural substrates for inhibition of spoken and manual responses.Cereb. Cortex18, 1923–1932 (2008).

    Article PubMed  Google Scholar 

  40. Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J. & Poldrack, R. A. Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI.J. Neurosci.27, 3743–3752 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Foerde, K., Knowlton, B. J. & Poldrack, R. A. Modulation of competing memory systems by distraction.Proc. Natl Acad. Sci. USA103, 11778–11783 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Gorgolewski, K. J., Durnez, J. & Poldrack, R. A. Preprocessed Consortium for Neuropsychiatric Phenomics dataset.F1000 Res.6, 1262 (2017).

    Article  Google Scholar 

  43. Laumann, T. O. et al.Functional system and areal organization of a highly sampled individual human brain.Neuron87, 657–670 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  44. Alvarez, R., Jasdzewski, G. & Poldrack, R. A. Building memories in two languages: an fMRI study of episodic encoding in bilinguals. In SfN Neuroscience (Orlando, FL, US, 2002).

  45. Poldrack, R. A. et al. Interactive memory systems in the human brain.Nature414, 546–550 (2001).

    Article CAS PubMed  Google Scholar 

  46. Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X. & Milham, M. P. Competition between functional brain networks mediates behavioral variability.Neuroimage39, 527–537 (2008).

    Article PubMed  Google Scholar 

  47. Mennes, M. et al. Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity.Neuroimage50, 1690–1701 (2010).

    Article PubMed  Google Scholar 

  48. Mennes, M. et al. Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics.Neuroimage54, 2950–2959 (2011).

    Article PubMed  Google Scholar 

  49. Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex.Science293, 2425–2430 (2001).

    Article CAS PubMed  Google Scholar 

  50. Hanson, S. J., Matsuka, T. & Haxby, J. V. Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area?Neuroimage23, 156–166 (2004).

    Article PubMed  Google Scholar 

  51. Duncan, K. J., Pattamadilok, C., Knierim, I. & Devlin, J. T. Consistency and variability in functional localisers.Neuroimage46, 1018–1026 (2009).

    Article PubMed  Google Scholar 

  52. Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. Prefrontal-subcortical pathways mediating successful emotion regulation.Neuron59, 1037–1050 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Moran, J. M., Jolly, E. & Mitchell, J. P. Social-cognitive deficits in normal aging.J. Neurosci.32, 5553–5561 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  54. Uncapher, M. R., Hutchinson, J. B. & Wagner, A. D. Dissociable effects of top-down and bottom-up attention during episodic encoding.J. Neurosci.31, 12613–12628 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  55. Gorgolewski, K. J. et al. A test-retest fMRI dataset for motor, language and spatial attention functions.Gigascience2, 6 (2013).

    Article PubMed PubMed Central  Google Scholar 

  56. Repovš, G. & Barch, D. M. Working memory related brain network connectivity in individuals with schizophrenia and their siblings.Front. Hum. Neurosci.6, 137 (2012).

    Article PubMed PubMed Central  Google Scholar 

  57. Repovš, G., Csernansky, J. G. & Barch, D. M. Brain network connectivity in individuals with schizophrenia and their siblings.Biol. Psychiatry69, 967–973 (2011).

    Article PubMed  Google Scholar 

  58. Walz, J. M. et al. Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem.J. Neurosci.33, 19212–19222 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  59. Walz, J. M. et al. Simultaneous EEG-fMRI reveals a temporal cascade of task-related and default-mode activations during a simple target detection task.Neuroimage102, 229–239 (2014).

    Article PubMed  Google Scholar 

  60. Conroy, B. R., Walz, J. M. & Sajda, P. Fast bootstrapping and permutation testing for assessing reproducibility and interpretability of multivariate fMRI decoding models.PLoS ONE8, e79271 (2013).

    Article PubMed PubMed Central CAS  Google Scholar 

  61. Walz, J. M. et al. Prestimulus EEG alpha oscillations modulate task-related fMRI BOLD responses to auditory stimuli.Neuroimage113, 153–163 (2015).

    Article PubMed  Google Scholar 

  62. Velanova, K., Wheeler, M. E. & Luna, B. Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control.Cereb. Cortex18, 2505–2522 (2008).

    Article PubMed PubMed Central  Google Scholar 

  63. Padmanabhan, A., Geier, C. F., Ordaz, S. J., Teslovich, T. & Luna, B. Developmental changes in brain function underlying the influence of reward processing on inhibitory control.Dev. Cogn. Neurosci.1, 517–529 (2011).

    Article PubMed PubMed Central  Google Scholar 

  64. Geier, C. F., Terwilliger, R., Teslovich, T., Velanova, K. & Luna, B. Immaturities in reward processing and its influence on inhibitory control in adolescence.Cereb. Cortex20, 1613–1629 (2010).

    Article CAS PubMed  Google Scholar 

  65. Cera, N., Tartaro, A. & Sensi, S. L. Modafinil alters intrinsic functional connectivity of the right posterior insula: a pharmacological resting state fMRI study.PLoS ONE9, e107145 (2014).

    Article PubMed PubMed Central CAS  Google Scholar 

  66. Woo, C.-W., Roy, M., Buhle, J. T. & Wager, T. D. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain.PLoS Biol.13, e1002036 (2015).

    Article PubMed PubMed Central CAS  Google Scholar 

  67. Smeets, P. A. M., Kroese, F. M., Evers, C. & de Ridder, D. T. D. Allured or alarmed: counteractive control responses to food temptations in the brain.Behav. Brain. Res.248, 41–45 (2013).

    Article PubMed  Google Scholar 

  68. Pernet, C. R. et al. The human voice areas: Spatial organization and inter-individual variability in temporal and extra-temporal cortices.Neuroimage119, 164–174 (2015).

    Article PubMed  Google Scholar 

  69. Verstynen, T. D. The organization and dynamics of corticostriatal pathways link the medial orbitofrontal cortex to future behavioral responses.J. Neurophysiol.112, 2457–2469 (2014).

    Article PubMed  Google Scholar 

  70. Bursley, J. K., Nestor, A., Tarr, M. J. & Creswell, J. D. Awake, offline processing during associative learning.PLoS ONE11, e0127522 (2016).

    Article PubMed PubMed Central  Google Scholar 

  71. Gabitov, E., Manor, D. & Karni, A. Learning from the other limb’s experience: sharing the ‘trained’ M1 representation of the motor sequence knowledge.J. Physiol. (Lond.)594, 169–188 (2016).

    Article CAS  Google Scholar 

  72. Gabitov, E., Manor, D. & Karni, A. Patterns of modulation in the activity and connectivity of motor cortex during the repeated generation of movement sequences.J. Cogn. Neurosci.27, 736–751 (2015).

    Article PubMed  Google Scholar 

  73. Gabitov, E., Manor, D. & Karni, A. Done that: short-term repetition related modulations of motor cortex activity as a stable signature for overnight motor memory consolidation.J. Cogn. Neurosci.26, 2716–2734 (2014).

    Article PubMed  Google Scholar 

  74. Lepping, R. J., Atchley, R. A. & Savage, C. R. Development of a validated emotionally provocative musical stimulus set for research.Psychol. Music44, 1012–1028 (2016).

    Article  Google Scholar 

  75. Park, C.-A. & Kang, C.-K. Sensing the effects of mouth breathing by using 3-tesla MRI.J. Korean Phys. Soc.70, 1070–1076 (2017).

    Article  Google Scholar 

  76. Iannilli, E. et al. Effects of manganese exposure on olfactory functions in teenagers: a pilot study.PLoS ONE11, e0144783 (2016).

    Article PubMed PubMed Central CAS  Google Scholar 

  77. Kim, J., Wang, J., Wedell, D. H. & Shinkareva, S. V. Identifying core affect in individuals from fMRI responses to dynamic naturalistic audiovisual stimuli.PLoS ONE11, e0161589 (2016).

    Article PubMed PubMed Central CAS  Google Scholar 

  78. Tétreault, P. et al. Brain connectivity predicts placebo response across chronic pain clinical trials.PLoS Biol.14, e1002570 (2016).

    Article PubMed PubMed Central CAS  Google Scholar 

  79. Chakroff, A. et al. When minds matter for moral judgment: intent information is neurally encoded for harmful but not impure acts.Soc. Cogn. Affect. Neurosci.11, 476–484 (2016).

    Article PubMed  Google Scholar 

  80. Koster-Hale, J., Saxe, R., Dungan, J. & Young, L. L. Decoding moral judgments from neuralrepresentations of intentions.Proc. Natl Acad. Sci. USA110, 5648–5653 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  81. Gao, X. et al. My body looks like that girl's: body mass index modulates brain activity during body image self-reflection among young women.PLoS ONE11, e0164450 (2016).

    Article PubMed PubMed Central CAS  Google Scholar 

  82. Romaniuk, L., Pope, M., Nicol, K., Steele, D. & Hall, J. Neural correlates of fears of abandonment and rejection in borderline personality disorder.Wellcome Open Res.1, 33 (2016).

    Article  Google Scholar 

  83. Cohen, A. D., Nencka, A. S., Lebel, R. M. & Wang, Y. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.PLoS ONE12, e0169253 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  84. Dalenberg, J. R., Weitkamp, L., Renken, R. J., Nanetti, L. & Ter Horst, G. J. Flavor pleasantness processing in the ventral emotion network.PLoS ONE12, e0170310 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  85. Roy, A. et al. The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury.PLoS ONE12, e0170541 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  86. Gordon, E. M. et al. Precision functional mapping of individual human brains.Neuron95, 791–807.e7 (2017).

    Article CAS PubMed PubMed Central  Google Scholar 

  87. Veldhuizen, M. G. et al. Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward.Curr. Biol.27, 2476–2485.e6 (2017).

    Article CAS PubMed PubMed Central  Google Scholar 

  88. Greene, D. J. et al. Behavioral interventions for reducing head motion during MRI scans in children.Neuroimage171, 234–245 (2018).

    Article PubMed  Google Scholar 

  89. Nastase, S. A. et al. Attention selectively reshapes the geometry of distributed semantic representation.Cereb. Cortex27, 4277–4291 (2017).

    Article PubMed PubMed Central  Google Scholar 

  90. Kanazawa, Y. et al. Phonological memory in sign language relies on the visuomotor neural system outside the left hemisphere language network.PLoS ONE12, e0177599 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  91. Tustison, N. J. et al. N4ITK: improved N3 bias correction.IEEE Trans. Med. Imaging29, 1310–1320 (2010).

    Article PubMed PubMed Central  Google Scholar 

  92. Marcus, D. S. et al. Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults.J. Cogn. Neurosci.19, 1498–1507 (2007).

    Article PubMed  Google Scholar 

  93. Nooner, K. B. et al. The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry.Front. Neurosci.6, 152 (2012).

    Article PubMed PubMed Central  Google Scholar 

  94. Reuter, M., Rosas, H. D. & Fischl, B. Highly accurate inverse consistent registration: a robust approach.Neuroimage53, 1181–1196 (2010).

    Article PubMed  Google Scholar 

  95. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction.Neuroimage9, 179–194 (1999).

    Article CAS PubMed  Google Scholar 

  96. Klein, A. et al. Mindboggling morphometry of human brains.PLoS Comput. Biol.13, e1005350 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  97. Fonov, V., Evans, A., McKinstry, R., Almli, C. & Collins, D. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood.Neuroimage47, S102 (2009).

    Article  Google Scholar 

  98. Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain.Med. Image. Anal.12, 26–41 (2008).

    Article CAS PubMed  Google Scholar 

  99. Klein, A. et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.Neuroimage46, 786–802 (2009).

    Article PubMed  Google Scholar 

  100. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.IEEE Trans. Med. Imaging20, 45–57 (2001).

    Article CAS PubMed  Google Scholar 

  101. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images.Neuroimage17, 825–841 (2002).

    Article PubMed  Google Scholar 

  102. Oakes, T. R. et al. Comparison of fMRI motion correction software tools.Neuroimage28, 529–543 (2005).

    Article CAS PubMed  Google Scholar 

  103. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration.Neuroimage48, 63–72 (2009).

    Article PubMed  Google Scholar 

  104. Lanczos, C. Evaluation of noisy data.Journal of the Society for Industrial and Applied Mathematics Series B: Numerical Analysis1, 76–85 (1964).

    Article  Google Scholar 

  105. Wang, S. et al. Evaluation of field map and nonlinear registration methods for correction of susceptibility artifacts in diffusion MRI.Front. Neuroinform.11, 17 (2017).

    PubMed PubMed Central  Google Scholar 

  106. McIntosh, S., Kamei, Y., Adams, B. & Hassan, A. E. The impact of code review coverage and code review participation on software quality: a case study of the Qt, VTK, and ITK projects. In: P. Devanbu, S. Kim, M. Pinzger eds.Proc. 11th Working Conference on Mining Software Repositories, MSR 2014 (pp. 192–201. ACM, New York, 2014).

    Chapter  Google Scholar 

  107. Gorgolewski, K. J. et al. BIDS apps: improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods.PLoS Comput. Biol.13, e1005209 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

  108. Beaulieu-Jones, B. K. & Greene, C. S. Reproducibility of computational workflows is automated using continuous analysis.Nat. Biotechnol.35, 342–346 (2017).

    Article CAS PubMed PubMed Central  Google Scholar 

  109. Kurtzer, G. M., Sochat, V. & Bauer, M. W. Singularity: scientific containers for mobility of compute.PLoS ONE12, e0177459 (2017).

    Article PubMed PubMed Central CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Laura and John Arnold Foundation (R.A.P. and K.J.G.), the NIH (grant NBIB R01EB020740, S.S.G.), NIMH (R24MH114705 and R24MH117179, R.A.P.), and NINDS (U01NS103780, R.A.P.). J.D. has received funding from the European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie grant agreement 706561. The authors thank S. Nastase and T. van Mourik for their thoughtful open reviews of a preprint version of this paper.

Author information

Author notes
  1. These authors contributed equally: Russell A. Poldrack, Krzysztof J. Gorgolewski.

Authors and Affiliations

  1. Department of Psychology, Stanford University, Stanford, CA, USA

    Oscar Esteban, Christopher J. Markiewicz, Ross W. Blair, Craig A. Moodie, Jessey Wright, Joke Durnez, Russell A. Poldrack & Krzysztof J. Gorgolewski

  2. Max Planck Institute for Empirical Aesthetics, Hesse, Germany

    A. Ilkay Isik

  3. Computational Neuroimaging Lab, Biocruces Health Research Institute, Bilbao, Spain

    Asier Erramuzpe

  4. Neuroscience Program, University of Iowa, Iowa City, IA, USA

    James D. Kent

  5. McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

    Mathias Goncalves & Satrajit S. Ghosh

  6. Montreal Neurological Institute, McGill University, Montreal, QC, Canada

    Elizabeth DuPre

  7. Department of Psychiatry, Stanford Medical School, Stanford University, Stanford, CA, USA

    Madeleine Snyder

  8. Department of Neurosurgery, University of Iowa Health Care, Iowa City, IA, USA

    Hiroyuki Oya

  9. Department of Otolaryngology, Harvard Medical School, Boston, MA, USA

    Satrajit S. Ghosh

Authors
  1. Oscar Esteban

    You can also search for this author inPubMed Google Scholar

  2. Christopher J. Markiewicz

    You can also search for this author inPubMed Google Scholar

  3. Ross W. Blair

    You can also search for this author inPubMed Google Scholar

  4. Craig A. Moodie

    You can also search for this author inPubMed Google Scholar

  5. A. Ilkay Isik

    You can also search for this author inPubMed Google Scholar

  6. Asier Erramuzpe

    You can also search for this author inPubMed Google Scholar

  7. James D. Kent

    You can also search for this author inPubMed Google Scholar

  8. Mathias Goncalves

    You can also search for this author inPubMed Google Scholar

  9. Elizabeth DuPre

    You can also search for this author inPubMed Google Scholar

  10. Madeleine Snyder

    You can also search for this author inPubMed Google Scholar

  11. Hiroyuki Oya

    You can also search for this author inPubMed Google Scholar

  12. Satrajit S. Ghosh

    You can also search for this author inPubMed Google Scholar

  13. Jessey Wright

    You can also search for this author inPubMed Google Scholar

  14. Joke Durnez

    You can also search for this author inPubMed Google Scholar

  15. Russell A. Poldrack

    You can also search for this author inPubMed Google Scholar

  16. Krzysztof J. Gorgolewski

    You can also search for this author inPubMed Google Scholar

Contributions

O.E. contributed with conceptualization, data curation, formal analysis, investigation, methodology, software, validation, visualization, and writing (original draft, review, and editing). C.J.M. contributed with conceptualization, data curation, methodology, software, validation, and writing (review and editing). R.W.B. contributed with software, validation, and writing (review and editing). C.A.M. contributed with methodology, software, and writing (review and editing). A.I.I. contributed with software and writing (review and editing). A.E. contributed with software and writing (review and editing). J.D.K. contributed with investigation, methodology, software, visualization, and writing (review and editing). M.G. contributed with software and writing (review and editing). E.D. contributed with software and writing (review and editing). M.S. contributed with software and writing (review and editing). H.O. contributed with data acquisition and writing (review and editing). S.S.G. contributed with conceptualization, software, and writing (review and editing). J.W. contributed with conceptualization and writing (review and editing). J.D. contributed with formal analysis, investigation, methodology, software, and writing (review and editing). R.A.P. contributed with conceptualization, formal analysis, investigation, methodology, validation, supervision, resources, funding acquisition, and writing (original draft, review, and editing). K.J.G. contributed with conceptualization, data curation, formal analysis, investigation, methodology, software, validation, visualization, supervision, resources, funding acquisition, and writing (original draft, review, and editing).

Corresponding authors

Correspondence toOscar Esteban orKrzysztof J. Gorgolewski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Notes 1–5, Supplementary Results 1 and 2, Supplementary Figures 1–6, and Supplementary Table 1

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esteban, O., Markiewicz, C.J., Blair, R.W.et al. fMRIPrep: a robust preprocessing pipeline for functional MRI.Nat Methods16, 111–116 (2019). https://doi.org/10.1038/s41592-018-0235-4

Download citation

Associated content

Analysis of task-based functional MRI data preprocessed with fMRIPrep

  • Oscar Esteban
  • Rastko Ciric
  • Krzysztof J. Gorgolewski
Nature ProtocolsProtocol

Advertisement

Search

Advanced search

Quick links

Nature Briefing AI and Robotics

Sign up for theNature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing: AI and Robotics

[8]ページ先頭

©2009-2025 Movatter.jp