Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Analysis
  • Published:

An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder

Nature Geneticsvolume 50pages727–736 (2018)Cite this article

Subjects

Abstract

Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Burden analyses for gene-defined annotation categories.
Fig. 2: Defining annotation categories.
Fig. 3: Category-wide association study.
Fig. 4: Structural variation in 519 ASD families.
Fig. 5: Effective number of tests in CWAS and power calculation.

Similar content being viewed by others

References

  1. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci.Nature511, 421–427 (2014).

    Article PubMed Central  Google Scholar 

  2. Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease.Cell167, 1415–1429 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  3. de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease.Nat. Genet.49, 256–261 (2017).

    Article PubMed PubMed Central  Google Scholar 

  4. Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci.Neuron87, 1215–1233 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  5. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders.Nature542, 433–438 (2017).

    Article  Google Scholar 

  6. Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects.Nat. Genet.49, 27–35 (2017).

    Article CAS PubMed  Google Scholar 

  7. MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog).Nucleic Acids Res.45 (D1), D896–D901 (2017).

    Article CAS PubMed  Google Scholar 

  8. Power, R. A. et al. Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings.JAMA Psychiatry70, 22–30 (2013).

    Article PubMed  Google Scholar 

  9. Jin, S. C. et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands.Nat. Genet.49, 1593–1601 (2017).

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Visel, A. et al. ChIP–seq accurately predicts tissue-specific activity of enhancers.Nature457, 854–858 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  11. Shibata, M., Gulden, F. O. & Sestan, N. From trans to cis: transcriptional regulatory networks in neocortical development.Trends Genet.31, 77–87 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  12. Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M. & Sestan, N. The cellular and molecular landscapes of the developing human central nervous system.Neuron89, 248–268 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  13. Sanders, S. J. et al. Whole genome sequencing in psychiatric disorders: the WGSPD consortium.Nat. Neurosci.20, 1661–1668 (2017).

    Article CAS PubMed  Google Scholar 

  14. Caskey, C. T., Tompkins, R., Scolnick, E., Caryk, T. & Nirenberg, M. Sequential translation of trinucleotide codons for the initiation and termination of protein synthesis.Science162, 135–138 (1968).

    Article CAS PubMed  Google Scholar 

  15. Fischbach, G. D. & Lord, C. The Simons Simplex Collection: a resource for identification of autism genetic risk factors.Neuron68, 192–195 (2010).

    Article CAS PubMed  Google Scholar 

  16. Turner, T. N. et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA.Am. J. Hum. Genet.98, 58–74 (2016).

    Article CAS PubMed  Google Scholar 

  17. Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes.Nature526, 75–81 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  18. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.Genome Res.20, 1297–1303 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  19. O’Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations.Nature485, 246–250 (2012).

    Article PubMed PubMed Central  Google Scholar 

  20. Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk.Nature488, 471–475 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.Nature536, 285–291 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism.Cell146, 247–261 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  23. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization.Nat. Methods9, 215–216 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  24. Genovese, G. et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia.Nat. Neurosci.19, 1433–1441 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in schizophrenia.Nature506, 185–190 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Chaste, P. et al. A genome-wide association study of autism using the Simons Simplex Collection: does reducing phenotypic heterogeneity in autism increase genetic homogeneity?Biol. Psychiatry77, 775–784 (2015).

    Article PubMed  Google Scholar 

  27. Collins, R. L. et al. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.Genome Biol.18, 36 (2017).

    Article PubMed PubMed Central  Google Scholar 

  28. Talkowski, M. E. et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries.Cell149, 525–537 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  29. Redin, C. et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies.Nat. Genet.49, 36–45 (2017).

    Article CAS PubMed  Google Scholar 

  30. Brand, H. et al. Paired-duplication signatures mark cryptic inversions and other complex structural variation.Am. J. Hum. Genet.97, 170–176 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  31. Turner, T. N. et al. Genomic patterns of de novo mutation in simplex autism.Cell171, 710–722 (2017).

    Article CAS PubMed  Google Scholar 

  32. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits.Nat. Rev. Genet.6, 95–108 (2005).

    Article CAS PubMed  Google Scholar 

  33. Dudbridge, F. & Gusnanto, A. Estimation of significance thresholds for genomewide association scans.Genet. Epidemiol.32, 227–234 (2008).

    Article PubMed PubMed Central  Google Scholar 

  34. Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders.Nature485, 242–245 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism.Nature485, 237–241 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  36. Yuen, R. K. et al. Whole-genome sequencing of quartet families with autism spectrum disorder.Nat. Med.21, 185–191 (2015).

    Article CAS PubMed  Google Scholar 

  37. Cummings, B. B. et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing.Sci. Transl. Med.9, eaal5209 (2017).

    Article PubMed PubMed Central  Google Scholar 

  38. Akbarian, S. et al. The PsychENCODE project.Nat. Neurosci.18, 1707–1712 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  39. van Berkum, N. L. et al. Hi-C: a method to study the three-dimensional architecture of genomes.J. Vis. Exp.39, e1869 (2010).

    Google Scholar 

  40. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay.Nat. Biotechnol.30, 271–277 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Johnson, E. C. et al. No evidence that schizophrenia candidate genes are more associated with schizophrenia than noncandidate genes.Biol. Psychiatry82, 702–708 (2017).

    Article CAS PubMed  Google Scholar 

  42. Farrell, M. S. et al. Evaluating historical candidate genes for schizophrenia.Mol. Psychiatry20, 555–562 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  43. Munoz, A. et al. De novo indels within introns contribute to ASD incidence. Preprint atbioRxivhttps://doi.org/10.1101/137471 (2017).

  44. Brandler, W. M. et al. Paternally inherited noncoding structural variants contribute to autism. Preprint atbioRxivhttps://doi.org/10.1101/102327 (2017).

  45. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder.Nature515, 216–221 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  46. Ioannidis, J. P. Why most discovered true associations are inflated.Epidemiology19, 640–648 (2008).

    Article PubMed  Google Scholar 

  47. Li, H. Toward better understanding of artifacts in variant calling from high-coverage samples.Bioinformatics30, 2843–2851 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Zook, J. M. et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls.Nat. Biotechnol.32, 246–251 (2014).

    Article CAS PubMed  Google Scholar 

  49. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data.Bioinformatics27, 2987–2993 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  50. Wei, Q. et al. A Bayesian framework for de novo mutation calling in parents–offspring trios.Bioinformatics31, 1375–1381 (2015).

    Article CAS PubMed  Google Scholar 

  51. Ramu, A. et al. DeNovoGear: de novo indel and point mutation discovery and phasing.Nat. Methods10, 985–987 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  52. Narzisi, G. et al. Accurate de novo and transmitted indel detection in exome-capture data using microassembly.Nat. Methods11, 1033–1036 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Lai, Z. et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research.Nucleic Acids Res.44, e108 (2016).

    Article PubMed PubMed Central  Google Scholar 

  54. Yang, H. & Wang, K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR.Nat. Protoc.10, 1556–1566 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  55. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project.Genome Res.22, 1760–1774 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  56. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies.Genome Res.20, 110–121 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  57. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes.Genome Res.15, 1034–1050 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  58. Willsey, A. J. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism.Cell155, 997–1007 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  59. Wright, C. F. et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data.Lancet385, 1305–1314 (2015).

    Article PubMed PubMed Central  Google Scholar 

  60. Cotney, J. et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment.Nat. Commun.6, 6404 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  61. Sugathan, A. et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors.Proc. Natl. Acad. Sci. USA111, E4468–E4477 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  62. Bayés, A. et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density.Nat. Neurosci.14, 19–21 (2011).

    Article PubMed  Google Scholar 

  63. Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L. A. VISTA Enhancer Browser—a database of tissue-specific human enhancers.Nucleic Acids Res.35, D88–D92 (2007).

    Article CAS PubMed  Google Scholar 

  64. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues.Nature507, 455–461 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  65. Doan, R. N. et al. Mutations in human accelerated regions disrupt cognition and social behavior.Cell167, 341–354 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  66. Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes.Nature518, 317–330 (2015).

    Article PubMed Central  Google Scholar 

  67. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions.Nature485, 376–380 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  68. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.Bioinformatics26, 841–842 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  69. Kent, W. J. et al. The human genome browser at UCSC.Genome Res.12, 996–1006 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  70. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis.Bioinformatics28, i333–i339 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  71. Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery.Genome Biol.15, R84 (2014).

    Article PubMed PubMed Central  Google Scholar 

  72. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications.Bioinformatics32, 1220–1222 (2016).

    Article CAS PubMed  Google Scholar 

  73. Kronenberg, Z. N. et al. Wham: identifying structural variants of biological consequence.PLoS Comput. Biol.11, e1004572 (2015).

    Article PubMed PubMed Central  Google Scholar 

  74. Handsaker, R. E. et al. Large multiallelic copy number variations in humans.Nat. Genet.47, 296–303 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  75. Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing.Genome Res.21, 974–984 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  76. Klambauer, G. et al. cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate.Nucleic Acids Res.40, e69 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  77. Gardner, E. J. et al. The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology.Genome Res.27, 1916–1929 (2017).

    Article CAS PubMed PubMed Central  Google Scholar 

  78. Pedersen, B. S., Collins, R. L., Talkowski, M. E. & Quinlan, A. R. Indexcov: fast coverage quality control for whole-genome sequencing.Gigascience6, 1–6 (2017).

    Article PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the families participating in the Simons Foundation Autism Research Initiative (SFARI) Simplex Collection (SSC). This work was supported by grants from the Simons Foundation for Autism Research Initiative (SFARI 385110 to N.S., A.J.W., M.W.S., S.J.S.; 385027 to M.E.T., J.D.B., B.D., M.J.D., X.H., K.R.; 388196 to G.M., H.C., A.R.Q.; and 346042 to M.E.T.), the US National Institutes of Health (R37MH057881 and U01MH111658 to B.D. and K.R.; HD081256 and GM061354 to M.E.T.; U01MH105575 to M.W.S.; U01MH111662 to M.W.S. and S.J.S.; R01MH110928 and U01MH100239-03S1 to M.W.S., S.J.S., A.J.W.; U01MH111661 to J.D.B.; K99DE026824 to H.B.; U01MH100229 to M.J.D.), the Autism Science Foundation to D.M.W., and the March of Dimes to M.E.T. M.E.T. was also supported by the Desmond and Ann Heathwood MGH Research Scholars award. We thank the SSC principal investigators (A. L. Beaudet, R. Bernier, J. Constantino, E. H. Cook Jr, E. Fombonne, D. Geschwind, D. E. Grice, A. Klin, D. H. Ledbetter, C. Lord, C. L. Martin, D. M. Martin, R. Maxim, J. Miles, O. Ousley, B. Peterson, J. Piggot, C. Saulnier, M. W. State, W. Stone, J. S. Sutcliffe, C. A. Walsh, and E. Wijsman) and the coordinators and staff at the SSC clinical sites; the SFARI staff, in particular N. Volfovsky; D. B. Goldstein for contributing to the experimental design; the Rutgers University Cell and DNA repository for accessing biomaterials; and the New York Genome Center for generating the WGS data.

Author information

Author notes
  1. These authors contributed equally: Donna M. Werling, Harrison Brand, Joon-Yong An, Matthew R. Stone, Lingxue Zhu.

Authors and Affiliations

  1. Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA

    Donna M. Werling, Joon-Yong An, Shan Dong, Eirene Markenscoff-Papadimitriou, Grace B. Schwartz, Jeanselle Dea, Clif Duhn, Carolyn A. Erdman, Michael C. Gilson, Jeffrey D. Mandell, Tomasz J. Nowakowski, Louw Smith, Michael F. Walker, John L. Rubenstein, A. Jeremy Willsey, Matthew W. State & Stephan J. Sanders

  2. Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA

    Harrison Brand, Matthew R. Stone, Joseph T. Glessner, Ryan L. Collins, Harold Z. Wang, Benjamin B. Currall, Xuefang Zhao, Rachita Yadav & Michael E. Talkowski

  3. Department of Neurology, Harvard Medical School, Boston, MA, USA

    Harrison Brand, Joseph T. Glessner, Ryan L. Collins, Benjamin B. Currall, Xuefang Zhao, Rachita Yadav & Michael E. Talkowski

  4. Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA

    Harrison Brand, Joseph T. Glessner, Benjamin B. Currall, Xuefang Zhao, Rachita Yadav, Robert E. Handsaker, Seva Kashin, Steven A. McCarroll, Benjamin M. Neale, Mark J. Daly & Michael E. Talkowski

  5. Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA

    Lingxue Zhu & Kathryn Roeder

  6. Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA

    Ryan L. Collins

  7. Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA

    Ryan M. Layer, Andrew Farrell, Aaron R. Quinlan & Gabor T. Marth

  8. USTAR Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA

    Ryan M. Layer, Andrew Farrell, Aaron R. Quinlan & Gabor T. Marth

  9. Department of Genetics, Harvard Medical School, Boston, MA, USA

    Robert E. Handsaker, Seva Kashin & Steven A. McCarroll

  10. Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

    Lambertus Klei & Bernie Devlin

  11. Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA

    Tomasz J. Nowakowski

  12. Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA

    Tomasz J. Nowakowski

  13. Department of Human Genetics, University of Chicago, Chicago, IL, USA

    Yuwen Liu & Xin He

  14. Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA

    Sirisha Pochareddy & Nenad Sestan

  15. Department of Biology, Eastern Nazarene College, Quincy, MA, USA

    Matthew J. Waterman

  16. Department of Neurology, University of California, San Francisco, San Francisco, CA, USA

    Arnold R. Kriegstein

  17. Analytical and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA

    Benjamin M. Neale & Mark J. Daly

  18. Department of Medicine, Harvard Medical School, Boston, MA, USA

    Benjamin M. Neale & Mark J. Daly

  19. Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA

    Hilary Coon

  20. Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA

    Hilary Coon & Aaron R. Quinlan

  21. Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA

    A. Jeremy Willsey

  22. Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA

    Joseph D. Buxbaum

  23. Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA

    Joseph D. Buxbaum

  24. Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

    Joseph D. Buxbaum

  25. Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

    Joseph D. Buxbaum

  26. Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA

    Kathryn Roeder

  27. Departments of Pathology and Psychiatry, Massachusetts General Hospital, Boston, MA, USA

    Michael E. Talkowski

Authors
  1. Donna M. Werling

    You can also search for this author inPubMed Google Scholar

  2. Harrison Brand

    You can also search for this author inPubMed Google Scholar

  3. Joon-Yong An

    You can also search for this author inPubMed Google Scholar

  4. Matthew R. Stone

    You can also search for this author inPubMed Google Scholar

  5. Lingxue Zhu

    You can also search for this author inPubMed Google Scholar

  6. Joseph T. Glessner

    You can also search for this author inPubMed Google Scholar

  7. Ryan L. Collins

    You can also search for this author inPubMed Google Scholar

  8. Shan Dong

    You can also search for this author inPubMed Google Scholar

  9. Ryan M. Layer

    You can also search for this author inPubMed Google Scholar

  10. Eirene Markenscoff-Papadimitriou

    You can also search for this author inPubMed Google Scholar

  11. Andrew Farrell

    You can also search for this author inPubMed Google Scholar

  12. Grace B. Schwartz

    You can also search for this author inPubMed Google Scholar

  13. Harold Z. Wang

    You can also search for this author inPubMed Google Scholar

  14. Benjamin B. Currall

    You can also search for this author inPubMed Google Scholar

  15. Xuefang Zhao

    You can also search for this author inPubMed Google Scholar

  16. Jeanselle Dea

    You can also search for this author inPubMed Google Scholar

  17. Clif Duhn

    You can also search for this author inPubMed Google Scholar

  18. Carolyn A. Erdman

    You can also search for this author inPubMed Google Scholar

  19. Michael C. Gilson

    You can also search for this author inPubMed Google Scholar

  20. Rachita Yadav

    You can also search for this author inPubMed Google Scholar

  21. Robert E. Handsaker

    You can also search for this author inPubMed Google Scholar

  22. Seva Kashin

    You can also search for this author inPubMed Google Scholar

  23. Lambertus Klei

    You can also search for this author inPubMed Google Scholar

  24. Jeffrey D. Mandell

    You can also search for this author inPubMed Google Scholar

  25. Tomasz J. Nowakowski

    You can also search for this author inPubMed Google Scholar

  26. Yuwen Liu

    You can also search for this author inPubMed Google Scholar

  27. Sirisha Pochareddy

    You can also search for this author inPubMed Google Scholar

  28. Louw Smith

    You can also search for this author inPubMed Google Scholar

  29. Michael F. Walker

    You can also search for this author inPubMed Google Scholar

  30. Matthew J. Waterman

    You can also search for this author inPubMed Google Scholar

  31. Xin He

    You can also search for this author inPubMed Google Scholar

  32. Arnold R. Kriegstein

    You can also search for this author inPubMed Google Scholar

  33. John L. Rubenstein

    You can also search for this author inPubMed Google Scholar

  34. Nenad Sestan

    You can also search for this author inPubMed Google Scholar

  35. Steven A. McCarroll

    You can also search for this author inPubMed Google Scholar

  36. Benjamin M. Neale

    You can also search for this author inPubMed Google Scholar

  37. Hilary Coon

    You can also search for this author inPubMed Google Scholar

  38. A. Jeremy Willsey

    You can also search for this author inPubMed Google Scholar

  39. Joseph D. Buxbaum

    You can also search for this author inPubMed Google Scholar

  40. Mark J. Daly

    You can also search for this author inPubMed Google Scholar

  41. Matthew W. State

    You can also search for this author inPubMed Google Scholar

  42. Aaron R. Quinlan

    You can also search for this author inPubMed Google Scholar

  43. Gabor T. Marth

    You can also search for this author inPubMed Google Scholar

  44. Kathryn Roeder

    You can also search for this author inPubMed Google Scholar

  45. Bernie Devlin

    You can also search for this author inPubMed Google Scholar

  46. Michael E. Talkowski

    You can also search for this author inPubMed Google Scholar

  47. Stephan J. Sanders

    You can also search for this author inPubMed Google Scholar

Contributions

Experimental design: D.M.W., H.B., J.-Y.A., M.R.S., J.T.G., M.J.W., X.H., N.S., B.M.N., H.C., A.J.W., J.D.B., M.J.D., M.W.S., A.R.Q., G.T.M., K.R., B.D., M.E.T., and S.J.S. Identification of de novo SNVs and indels: D.M.W., J.-Y.A., S.D., M.C.G., J.D.M., L.S., A.J.W., and S.J.S. Identification of structural variants: H.B., J.-Y.A., M.R.S., J.T.G., R.L.C., R.M.L., A.F., H.Z.W., X.Z., M.C.G., R.E.H., S.K., L.S., S.A.M., A.R.Q., G.T.M., and M.E.T. Confirmation of de novo variants: D.M.W., H.B., S.D., G.B.S., H.Z.W., B.B.C., J.D., C.D., C.A.E., R.Y., M.F.W., and M.J.W. Annotation of functional regions: D.M.W., J.-Y.A., S.D., E.M.-P., J.D.M., Y.L., S.P., J.L.R., N.S., M.E.T., and S.J.S. Generation of midfetal H3K27ac and ATAC–seq data: E.M.-P., T.J.N., A.R.K., and J.L.R. Development of genomic prediction score and de novo score: L.Z., L.K., K.R., and B.D. Analysis of SNVs and indels (Figs. 1–3): D.M.W., J.-Y.A., and S.J.S. Analysis of structural variants (Fig. 4): H.B., M.R.S., J.T.G., X.Z., and M.E.T. Assessment ofP-value correlations, effective number of tests, and power analysis (Figs. 3 and 5): D.M.W., J.-Y.A., L.Z., G.B.S., K.R., B.D., and S.J.S. Manuscript preparation: D.M.W., H.B., J.-Y.A., M.R.S., L.Z., J.T.G., R.L.C., S.D., B.M.N., H.C., J.D.B., M.J.D., M.W.S., A.R.Q., G.T.M., K.R., B.D., M.E.T., and S.J.S.

Corresponding authors

Correspondence toBernie Devlin,Michael E. Talkowski orStephan J. Sanders.

Ethics declarations

Competing interests

J.L.R. is cofounder, stockholder, and currently on the scientific board of Neurona, a company studying the potential therapeutic use of interneuron transplantation. B.M.N. is an SAB member of Deep Genomics and serves as a consultant for Avanir Therapeutics. All other authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Note

Supplementary Tables

Supplementary Tables 1–13

Supplementary Data

Visualization plots of de novo structural variants

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werling, D.M., Brand, H., An, JY.et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder.Nat Genet50, 727–736 (2018). https://doi.org/10.1038/s41588-018-0107-y

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Sizing up whole-genome sequencing studies of common diseases

  • Naomi R. Wray
  • Jacob Gratten
Nature GeneticsNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing: Translational Research

Sign up for theNature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly.Sign up for Nature Briefing: Translational Research

[8]ページ先頭

©2009-2025 Movatter.jp