Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Chemistry
  • Review Article
  • Published:

Natural product anticipation through synthesis

Nature Reviews Chemistryvolume 6pages170–181 (2022)Cite this article

Subjects

AnAuthor Correction to this article was published on 22 February 2022

This article has beenupdated

Abstract

Natural product synthesis remains one of the most vibrant and intellectually rewarding areas of chemistry, although the justifications for pursuing it have evolved over time. In the early years, the emphasis lay on structure elucidation and confirmation through synthesis, as exemplified by celebrated studies on cocaine, morphine, strychnine and chlorophyll. This was followed by a phase where the sheer demonstration that highly complex molecules could be recreated in the laboratory in a rational manner was enough to justify the economic expense and intellectual agonies of a synthesis. Since then, syntheses of natural products have served as platforms for the demonstration of elegant strategies, for inventing new methodology ‘on the fly’ or to demonstrate the usefulness and scope of methods established with simpler molecules. We now add another aspect that we find fascinating, viz. ‘natural product anticipation’. In this Review, we survey cases where the synthesis of a compound in the laboratory has preceded its isolation from nature. The focus of our Review lies on examples where this anticipation of a natural product has triggered a successful search or where synthesis and isolation have occurred independently. Finally, we highlight cases where a potential natural product structure has been suggested as a result of synthetic endeavours but not yet confirmed by isolation, inviting further collaborations between synthetic and natural product chemists.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

¥14,900 per year

only ¥1,242 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Notable examples of ‘unwitting’ natural product anticipation7,8,9,10,11,12,13,14,15,16,17,18,19,20.
Fig. 2: Anticipation of caryophyllene-derived meroterpenoids fromPsidium guajava.
Fig. 3: Anticipation of incarvilleatone, mesitylene and nagelamide E.
Fig. 4: Anticipation of exiguamine B.
Fig. 5: Anticipation of ‘missing’ dimeric natural products.
Fig. 6: Anticipation of 14-methylelysiapyrone A and psychotriadine.
Fig. 7: Anticipation of phototridachiahydropyrone andatrop-abyssomicin C.
Fig. 8: Additional examples for anticipated natural products and suspected natural products awaiting confirmation.

Similar content being viewed by others

Change history

References

  1. Nicolaou, K. C. & Snyder, S. A. Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation.Angew. Chem. Int. Ed.44, 1012–1044 (2005).

    Article CAS  Google Scholar 

  2. Brown, P. D. & Lawrence, A. L. The importance of asking “how and why?” in natural product structure elucidation.Nat. Prod. Rep.34, 1193–1202 (2017).

    Article CAS PubMed  Google Scholar 

  3. Sheehan, J. C. & Henery-Logan, K. R. The total synthesis of penicillin V.J. Am. Chem. Soc.79, 1262–1263 (1957).

    Article CAS  Google Scholar 

  4. Kuttruff, C. A., Eastgate, M. D. & Baran, P. S. Natural product synthesis in the age of scalability.Nat. Prod. Rep.31, 419–432 (2014).

    Article CAS PubMed  Google Scholar 

  5. Baran, P. S. Natural product total synthesis: as exciting as ever and here to stay.J. Am. Chem. Soc.140, 4751–4755 (2018).

    Article CAS PubMed  Google Scholar 

  6. Trauner, D. Finding function and form.Nat. Prod. Rep.31, 411–413 (2014).

    Article CAS PubMed  Google Scholar 

  7. Gabriel, S. & Pinkus, G. Zur Kenntniss der Amidoketone.Ber. Dtsch. Chem. Ges.26, 2197–2209 (1893).

    Article CAS  Google Scholar 

  8. Gabriel, S. & Colman, J. Zur Kenntniss des Amidoacetons.Ber. Dtsch. Chem. Ges.35, 3805–3811 (1902).

    Article CAS  Google Scholar 

  9. Elliott, W. H. Amino-acetone: its isolation and role in metabolism.Nature183, 1051–1052 (1959).

    Article CAS PubMed  Google Scholar 

  10. Willstätter, R. Synthese der Hygrinsäure.Ber. Dtsch. Chem. Ges.33, 1160–1166 (1900).

    Article  Google Scholar 

  11. Fischer, E. & Abderhalden, E. Ober die verdauung einiger Eiweißkörper durch Pankreasfermente.Biol. Chem.39, 81–94 (1903).

    CAS  Google Scholar 

  12. Willstätter, R.From My Life: The Memoirs of Richard Willstätter (Plunkett Lake, 2016).

  13. Falk, H., Hoornaert, G., Isenring, H.-P. & Eschenmoser, A. Über Enolderivate der Chlorophyllreihe. Darstellung von 132,173-Cyclophäophorbid-enolen. Vorläufige Mitteilung.Helv. Chim. Acta58, 2347–2357 (1975).

    Article CAS  Google Scholar 

  14. Karuso, P. et al. 132,173-Cyclopheophorbide enol, the first porphyrin isolated from a sponge.Tetrahedron Lett.27, 2177–2178 (1986).

    Article CAS  Google Scholar 

  15. Ocampo, R., Sachs, J. P. & Repeta, D. J. Isolation and structure determination of the unstable 132, 173-Cyclopheophorbide a enol from recent sediments.Geochim. Cosmochim. Acta63, 3743–3749 (1999).

    Article CAS  Google Scholar 

  16. Bell, R. A. & Ireland, R. E. The construction of the C/D ring system present in the diterpenoid alkaloids atisine and garryfoline.Tetrahedron Lett.4, 269–273 (1963).

    Article  Google Scholar 

  17. Church, R. F., Ireland, R. E. & Marshall, J. A. The stereospecific total synthesis of d1-8β-carbomethoxy-13-oxopodocarpane, a degradation product of phyllocladene.Tetrahedron Lett.1, 1–4 (1960).

    Article  Google Scholar 

  18. Zalkow, L. H. & Girotra, N. N. The synthesis of 5a,8,8-trimethyl-3, 10a-ethanoperhydrophenanthrene. Terpenes. VII.J. Org. Chem.28, 2037–2039 (1963).

    Article CAS  Google Scholar 

  19. Zalkow, L. H. & Girotra, N. N. Studies in the synthesis of atisine. Terpenes. X.J. Org. Chem.29, 1299–1302 (1964).

    Article CAS  Google Scholar 

  20. Kapadi, A. H., Sobti, R. R. & Dev, S. The diterpenoids ofErythroxylon monogynum — V atisirene, isoatisirene and devadarene.Tetrahedron Lett.6, 2729–2735 (1965).

    Article  Google Scholar 

  21. Bonneau, N. et al. An unprecedented blue chromophore found in nature using a “chemistry first” and molecular networking approach: discovery of dactylocyanines A–H.Chem. Eur. J.23, 14454–14461 (2017).

    Article CAS PubMed  Google Scholar 

  22. Fox Ramos, A. E. et al. CANPA: computer-assisted natural products anticipation.Anal. Chem.91, 11247–11252 (2019).

    Article CAS PubMed  Google Scholar 

  23. Medema, M. H. & Fischbach, M. A. Computational approaches to natural product discovery.Nat. Chem. Biol.11, 639–648 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  24. Lawrence, A. L. et al. A short biomimetic synthesis of the meroterpenoids guajadial and psidial A.Org. Lett.12, 1676–1679 (2010).

    Article CAS PubMed  Google Scholar 

  25. Yang, X.-L., Hsieh, K.-L. & Liu, J.-K. Guajadial: an unusual meroterpenoid from guava leaves psidium guajava.Org. Lett.9, 5135–5138 (2007).

    Article CAS PubMed  Google Scholar 

  26. Collado, I. G., Hanson, J. R. & Macías-Sánchez, A. J. Recent advances in the chemistry of caryophyllene.Nat. Prod. Rep.15, 187–204 (1998).

    Article CAS  Google Scholar 

  27. Fu, H.-Z., Luo, Y.-M., Li, C.-J., Yang, J.-Z. & Zhang, D.-M. Psidials A–C, three unusual meroterpenoids from the leaves ofPsidium guajava L.Org. Lett.12, 656–659 (2010).

    Article CAS PubMed  Google Scholar 

  28. Tang, G.-H. et al. Psiguajadials A–K: unusualPsidium meroterpenoids as phosphodiesterase-4 inhibitors from the leaves ofPsidium guajava.Sci. Rep.7, 1047 (2017).

    Article PubMed PubMed Central  Google Scholar 

  29. Ning, S., Liu, Z., Wang, Z., Liao, M. & Xie, Z. Biomimetic synthesis of psiguajdianone guided discovery of the meroterpenoids fromPsidium guajava.Org. Lett.21, 8700–8704 (2019).

    Article CAS PubMed  Google Scholar 

  30. Chen, Y.-Q., Shen, Y.-H., Su, Y.-Q., Kong, L.-Y. & Zhang, W.-D. Incarviditone: a novel cytotoxic benzofuranone dimer fromIncarvillea delavayi Bureau et Franchet.Chem. Biodivers.6, 779–783 (2009).

    Article CAS PubMed  Google Scholar 

  31. Brown, P. D., Willis, A. C., Sherburn, M. S. & Lawrence, A. L. Total synthesis of incarviditone and incarvilleatone.Org. Lett.14, 4537–4539 (2012).

    Article CAS PubMed  Google Scholar 

  32. Gao, Y.-P. et al. Incarvilleatone, a new cyclohexylethanoid dimer fromIncarvillea younghusbandii and its inhibition against nitric oxide (NO) release.Org. Lett.14, 1954–1957 (2012).

    Article CAS PubMed  Google Scholar 

  33. Novak, A. J. E. & Trauner, D. Reflections on racemic natural products.Trends Chem.2, 1052–1065 (2020).

    Article CAS  Google Scholar 

  34. Kakinuma, K., Hanson, C. A. & Rinehart, K. L. Spectinabilin, a new nitro-containing metabolite isolated fromStreptomyces spectabilis.Tetrahedron32, 217–222 (1976).

    Article CAS  Google Scholar 

  35. Takahashi, K., Tsuda, E. & Kurosawa, K. SNF4435C and D, novel imimmosuppressants produced by a strain ofStreptomyces spectabilis. II. Structure elucidation.J. Antibiot.54, 548–553 (2001).

    Article CAS  Google Scholar 

  36. Kurosawa, K., Takahashi, K. & Tsuda, E. SNF4435C and D, novel immunosuppressants produced by a strain ofStreptomyces spectabilis. I. Taxonomy, fermentation, isolation and biological activities.J. Antibiot.54, 541–547 (2001).

    Article CAS  Google Scholar 

  37. Beaudry, C. M. & Trauner, D. Total synthesis of (−)-SNF4435 C and (+)-SNF4435 D.Org. Lett.7, 4475–4477 (2005).

    Article CAS PubMed  Google Scholar 

  38. Müller, M. et al. Photochemical origin of the immunosuppressive SNF4435C/D and formation of orinocin through “polyene splicing”.Angew. Chem. Int. Ed.45, 7835–7838 (2006).

    Article  Google Scholar 

  39. Lindel, T. Chemistry and biology of the pyrrole–imidazole alkaloids.Alkaloids Chem. Biol.77, 117–219 (2017).

    Article CAS PubMed  Google Scholar 

  40. Baran, P. S., O’Malley, D. P. & Zografos, A. L. Sceptrin as a potential biosynthetic precursor to complex pyrrole–imidazole alkaloids: the total synthesis of ageliferin.Angew. Chem. Int. Ed.43, 2674–2677 (2004).

    Article CAS  Google Scholar 

  41. Northrop, B. H., O’Malley, D. P., Zografos, A. L., Baran, P. S. & Houk, K. N. Mechanism of the vinylcyclobutane rearrangement of sceptrin to ageliferin and nagelamide E.Angew. Chem. Int. Ed.45, 4126–4130 (2006).

    Article CAS  Google Scholar 

  42. Endo, T. et al. Nagelamides A–H, new dimeric bromopyrrole alkaloids from marine spongeAgelas species.J. Nat. Prod.67, 1262–1267 (2004).

    Article CAS PubMed  Google Scholar 

  43. Brastianos, H. C. et al. Exiguamine A, an indoleamine-2,3-dioxygenase (IDO) inhibitor isolated from the marine spongeNeopetrosia exigua.J. Am. Chem. Soc.128, 16046–16047 (2006).

    Article CAS PubMed  Google Scholar 

  44. Sofiyev, V., Lumb, J., Volgraf, M. & Trauner, D. Total synthesis of exiguamines A and B inspired by catecholamine chemistry.Chem. Eur. J.18, 4999–5005 (2012).

    Article CAS PubMed  Google Scholar 

  45. Volgraf, M. et al. Biomimetic synthesis of the IDO inhibitors exiguamine A and B.Nat. Chem. Biol.4, 535–537 (2008).

    Article CAS PubMed  Google Scholar 

  46. Minato, H. & Horibe, I. Structure and stereochemistry of Xanthumin, a stereoisomer of Xanthinin.J. Chem. Soc. Resumed1965, 7009–7017 (1965).

    Article  Google Scholar 

  47. Ahmed, A. A., Mahmoud, A. A. & El-Gamal, A. A. A xanthanolide diol and a dimeric xanthanolide fromXanthium species.Planta Med.65, 470–472 (1999).

    Article CAS PubMed  Google Scholar 

  48. Nour, A. M. M. et al. The antiprotozoal activity of sixteen asteraceae species native to Sudan and bioactivity-guided isolation of xanthanolides fromXanthium brasilicum.Planta Med.75, 1363–1368 (2009).

    Article CAS PubMed  Google Scholar 

  49. Wang, L. et al. Cytotoxic sesquiterpene lactones from aerial parts ofXanthium sibiricum.Planta Med.79, 661–665 (2013).

    Article CAS PubMed  Google Scholar 

  50. Feng, J. et al. Enantioselective and collective total syntheses of xanthanolides.Angew. Chem. Int. Ed.56, 16323–16327 (2017).

    Article CAS  Google Scholar 

  51. Ren, W. et al. Enantioselective and collective syntheses of xanthanolides involving a controllable dyotropic rearrangement ofcis-β-lactones.Angew. Chem. Int. Ed.51, 6984–6988 (2012).

    Article CAS  Google Scholar 

  52. Shang, H. et al. Biomimetic synthesis: discovery of xanthanolide dimers.Angew. Chem. Int. Ed.53, 14494–14498 (2014).

    Article CAS  Google Scholar 

  53. Brady, S. F., Singh, M. P., Janso, J. E. & Clardy, J. Cytoskyrins A and B, new BIA active bisanthraquinones isolated from an endophytic fungus.Org. Lett.2, 4047–4049 (2000).

    Article CAS PubMed  Google Scholar 

  54. Jadulco, R. et al. New metabolites from sponge-derived fungiCurvularia lunata andCladosporium herbarum.J. Nat. Prod.65, 730–733 (2002).

    Article CAS PubMed  Google Scholar 

  55. Ejiri, H., Sankawa, U. & Shibata, S. Graciliformin and its acetates inCladonia graciliformis.Phytochemistry14, 277–279 (1975).

    Article CAS  Google Scholar 

  56. Yamazaki, H., Koyama, N., Ōmura, S. & Tomoda, H. New rugulosins, anti-MRSA antibiotics, produced byPenicillium radicum FKI-3765-2.Org. Lett.12, 1572–1575 (2010).

    Article CAS PubMed  Google Scholar 

  57. Ogihara, Y., Kobayashi, N. M. & Shibata, S. Further studies on the bianthraquinones ofPenicillium islandicum Sopp.Tetrahedron Lett.9, 1881–1886 (1968).

    Article  Google Scholar 

  58. Nicolaou, K. C., Lim, Y. H., Papageorgiou, C. D. & Piper, J. L. Total synthesis of (+)-rugulosin and (+)-2,2′-epi-cytoskyrin A through cascade reactions.Angew. Chem. Int. Ed.44, 7917–7921 (2005).

    Article CAS  Google Scholar 

  59. Nicolaou, K. C., Lim, Y. H., Piper, J. L. & Papageorgiou, C. D. Total syntheses of 2,2′-epi-cytoskyrin A, rugulosin, and the alleged structure of rugulin.J. Am. Chem. Soc.129, 4001–4013 (2007).

    Article CAS PubMed  Google Scholar 

  60. Agusta, A., Ohashi, K. & Shibuya, H. Bisanthraquinone metabolites produced by the endophytic fungusDiaporthe sp.Chem. Pharm. Bull.54, 579–582 (2006).

    Article CAS  Google Scholar 

  61. Manzo, E. et al. New γ-pyrone propionates from the Indian Ocean sacoglossanPlacobranchus ocellatus.Tetrahedron Lett.46, 465–468 (2005).

    Article CAS  Google Scholar 

  62. Cueto, M., D’Croz, L., Maté, J. L., San-Martín, A. & Darias, J. Elysiapyrones fromElysia Diomedea. Do such metabolites evidence an enzymatically assisted electrocyclization cascade for the biosynthesis of their bicyclo[4.2.0]octane core?Org. Lett.7, 415–418 (2005).

    Article CAS PubMed  Google Scholar 

  63. Miller, A. K. & Trauner, D. Mining the tetraene manifold: total synthesis of complex pyrones fromPlacobranchus ocellatus.Angew. Chem. Int. Ed.44, 4602–4606 (2005).

    Article CAS  Google Scholar 

  64. Wu, Q. et al. Complex polypropionates from a South China Sea photosynthetic mollusk: isolation and biomimetic synthesis highlighting novel rearrangements.Angew. Chem. Int. Ed.59, 12105–12112 (2020).

    Article CAS  Google Scholar 

  65. Eccles, R. G. Calycanthine.Drug. Circular Chem. Gaz.32, 65 (1888).

    Google Scholar 

  66. Steven, A. & Overman, L. E. Total synthesis of complex cyclotryptamine alkaloids: stereocontrolled construction of quaternary carbon stereocenters.Angew. Chem. Int. Ed.46, 5488–5508 (2007).

    Article CAS  Google Scholar 

  67. Schmidt, M. A. & Movassaghi, M. New strategies for the synthesis of hexahydropyrroloindole alkaloids inspired by biosynthetic hypotheses.Synlett2008, 313–324 (2008).

    Article  Google Scholar 

  68. Trost, B. M. & Osipov, M. Recent advances on the total syntheses of the communesin alkaloids and perophoramidine.Chem. Weinh. Bergstr. Ger.21, 16318–16343 (2015).

    CAS  Google Scholar 

  69. Xu, J.-B. & Cheng, K.-J. Studies on the alkaloids of the calycanthaceae and their syntheses.Molecules20, 6715–6738 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  70. May, J. A. & Stoltz, B. The structural and synthetic implications of the biosynthesis of the calycanthaceous alkaloids, the communesins, and nomofungin.Tetrahedron62, 5262–5271 (2006).

    Article CAS  Google Scholar 

  71. Dotson, J. J., Bachman, J. L., Garcia-Garibay, M. A. & Garg, N. K. Discovery and total synthesis of a bis(cyclotryptamine) alkaloid bearing the elusive piperidinoindoline scaffold.J. Am. Chem. Soc.142, 11685–11690 (2020).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Hall, E. S., McCapra, F. & Scott, A. I. Biogenetic-type synthesis of the calycanthaceous alkaloids.Tetrahedron23, 4131–4141 (1967).

    Article CAS PubMed  Google Scholar 

  73. Gavagnin, M., Mollo, E., Cimino, G. & Ortea, J. A new γ-dihydropyrone-propionate from the Caribbean sacoglossanTridachia crispata.Tetrahedron Lett.37, 4259–4262 (1996).

    Article CAS  Google Scholar 

  74. Sharma, P., Lygo, B., Lewis, W. & Moses, J. E. Biomimetic synthesis and structural reassignment of the tridachiahydropyrones.J. Am. Chem. Soc.131, 5966–5972 (2009).

    Article CAS PubMed  Google Scholar 

  75. Gavagnin, M., Mollo, E. & Cimino, G. Is phototridachiahydropyrone a true natural product?Rev. Bras. Farmacogn.25, 588–591 (2015).

    Article CAS  Google Scholar 

  76. Bister, B. et al. Abyssomicin C — A polycyclic antibiotic from a marineVerrucosispora strain as an inhibitor of thep-aminobenzoic acid/tetrahydrofolate biosynthesis pathway.Angew. Chem. Int. Ed.43, 2574–2576 (2004).

    Article CAS  Google Scholar 

  77. Nicolaou, K. C. & Harrison, S. T. Total synthesis of abyssomicin C, atrop-abyssomicin C, and abyssomicin D: implications for natural origins of atrop-abyssomicin C.J. Am. Chem. Soc.129, 429–440 (2007).

    Article CAS PubMed  Google Scholar 

  78. Nicolaou, K. C. & Harrison, S. T. Total synthesis of abyssomicin C and atrop-abyssomicin C.Angew. Chem. Int. Ed.45, 3256–3260 (2006).

    Article CAS  Google Scholar 

  79. Keller, S. et al. Abyssomicins G and H and atrop-abyssomicin C from the marineVerrucosispora strain AB-18-032.J. Antibiot.60, 391–394 (2007).

    Article CAS  Google Scholar 

  80. Ellerbrock, P., Armanino, N., Ilg, M. K., Webster, R. & Trauner, D. An eight-step synthesis of epicolactone reveals its biosynthetic origin.Nat. Chem.7, 879–882 (2015).

    Article CAS PubMed  Google Scholar 

  81. Yan, Z. et al. Fused multicyclic polyketides with a two-spiro-carbon skeleton from mangrove-derived endophytic fungusEpicoccum nigrum SCNU-F0002.RSC Adv.10, 28560–28566 (2020).

    Article CAS  Google Scholar 

  82. Greshock, T. J. & Williams, R. M. Improved biomimetic total synthesis ofd,l-stephacidin A.Org. Lett.9, 4255–4258 (2007).

    Article CAS PubMed  Google Scholar 

  83. Qin, W.-F. et al. Total synthesis of (−)-depyranoversicolamide B.Chem. Commun.51, 16143–16146 (2015).

    Article CAS  Google Scholar 

  84. Xu, X., Zhang, X., Nong, X., Wang, J. & Qi, S. Brevianamides and mycophenolic acid derivatives from the deep-sea-derived fungusPenicillium brevicompactum DFFSCS025.Mar. Drugs15, 43 (2017).

    Article PubMed Central  Google Scholar 

  85. Crombie, L. & Ponsford, R. Synthesis of (±)-deoxybruceol.Chem. Commun. Lond.1968, 368a (1968).

    Google Scholar 

  86. Crombie, L. & Ponsford, R. Pyridine-catalysed condensation of citral with phloroglucinols, a novel reaction leading to tetracyclic bis-ethers and chromenes. Two-step synthesis of (±)-deoxybruceol.J. Chem. Soc. C Org.1971, 788–795 (1971).

    Article  Google Scholar 

  87. Ghisalberti, E. L. et al. Structural studies in the bruceol system.J. Chem. Soc. Perkin Trans.2, 583–589 (1981).

    Article  Google Scholar 

  88. Day, A. J., Sumby, C. J. & George, J. H. Biomimetic synthetic studies on the bruceol family of meroterpenoid natural products.J. Org. Chem.85, 2103–2117 (2020).

    Article CAS PubMed  Google Scholar 

  89. Harada, N. et al. Total synthesis, absolute configuration, and later isolation of (−)-prehalenaquinone, a putative biosynthetic precursor to the marine natural products: halenaquinone and xestoquinone.J. Org. Chem.59, 6606–6613 (1994).

    Article CAS  Google Scholar 

  90. Matsuura, B. S., Kölle, P., Trauner, D., de Vivie-Riedle, R. & Meier, R. Unravelling photochemical relationships among natural products fromAplysia dactylomela.ACS Cent. Sci.3, 39–46 (2017).

    Article CAS PubMed  Google Scholar 

  91. Kotammagari, T. K., Gonnade, R. G. & Bhattacharya, A. K. Biomimetic total synthesis of angiopterlactone B and other potential natural products.Org. Lett.19, 3564–3567 (2017).

    Article CAS PubMed  Google Scholar 

  92. Nicolaou, K. C., Sanchini, S., Wu, T. R. & Sarlah, D. Total synthesis and structural revision of biyouyanagin B.Chem. Eur. J.16, 7678–7682 (2010).

    Article CAS PubMed  Google Scholar 

  93. Löbermann, F., Mayer, P. & Trauner, D. Biomimetic synthesis of (−)-pycnanthuquinone C through the Diels–Alder reaction of a vinyl quinone.Angew. Chem. Int. Ed.49, 6199–6202 (2010).

    Article  Google Scholar 

  94. Ma, D., Liu, Y. & Wang, Z. Biomimetic total synthesis of (±)-homodimericin A.Angew. Chem. Int. Ed.56, 7886–7889 (2017).

    Article CAS  Google Scholar 

  95. Stichnoth, D. et al. Photochemical formation of intricarene.Nat. Commun.5, 5597 (2014).

    Article CAS PubMed  Google Scholar 

  96. Brown, P. D. & Lawrence, A. L. Total synthesis of millingtonine.Angew. Chem. Int. Ed.128, 8421–8425 (2016).

    Article  Google Scholar 

  97. Brown, P. D., Willis, A. C., Sherburn, M. S. & Lawrence, A. L. Total synthesis and structural revision of the alkaloid incargranine B.Angew. Chem.125, 13515–13517 (2013).

    Article  Google Scholar 

  98. Purgett, T. J., Dyer, M. W., Bickel, B., McNeely, J. & Porco, J. A. Gold(I)-mediated cycloisomerization/cycloaddition enables bioinspired syntheses of neonectrolides B–E and analogues.J. Am. Chem. Soc.141, 15135–15144 (2019).

    Article CAS PubMed PubMed Central  Google Scholar 

  99. Novak, A. J. E., Grigglestone, C. E. & Trauner, D. A biomimetic synthesis elucidates the origin of preuisolactone A.J. Am. Chem. Soc.141, 15515–15518 (2019).

    Article CAS PubMed PubMed Central  Google Scholar 

  100. Li, H., Korotkov, A., Chapman, C. W., Eastman, A. & Wu, J. Enantioselective formal syntheses of 11 nuphar alkaloids and discovery of potent apoptotic monomeric analogues.Angew. Chem. Int. Ed.55, 3509–3513 (2016).

    Article CAS  Google Scholar 

  101. Breunig, M., Yuan, P. & Gaich, T. An unexpected transannular [4+2] cycloaddition during the total synthesis of (+)-norcembrene 5.Angew. Chem. Int. Ed.59, 5521–5525 (2020).

    Article CAS  Google Scholar 

  102. Nicolaou, K. C., Chen, Q., Li, R., Anami, Y. & Tsuchikama, K. Total synthesis of the monomeric unit of lomaiviticin A.J. Am. Chem. Soc.142, 20201–20207 (2020).

    Article CAS PubMed  Google Scholar 

  103. Zheng, K., Shen, D., Zhang, B. & Hong, R. Landscape of lankacidin biomimetic synthesis: structural revisions and biogenetic implications.J. Org. Chem.85, 13818–13836 (2020).

    Article CAS PubMed  Google Scholar 

  104. Su, S., Seiple, I. B., Young, I. S. & Baran, P. S. Total syntheses of (±)-massadine and massadine chloride.J. Am. Chem. Soc.130, 16490–16491 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  105. Strych, S. et al. Biomimetic total synthesis of santalin Y.Angew. Chem. Int. Ed.54, 5079–5083 (2015).

    Article CAS  Google Scholar 

  106. Gao, Y. et al. Isolation and biomimetic synthesis of (±)-guajadial B, a novel meroterpenoid fromPsidium guajava.Org. Lett.14, 5936–5939 (2012).

    Article CAS PubMed  Google Scholar 

  107. Yang, B. et al. Asymmetric total synthesis and biosynthetic implications of perovskones, hydrangenone, and hydrangenone B.J. Am. Chem. Soc.143, 6370–6375 (2021).

    Article CAS PubMed  Google Scholar 

  108. Long, X., Wu, H., Ding, Y., Qu, C. & Deng, J. Biosynthetically inspired divergent syntheses of merocytochalasans.Chem7, 212–223 (2021).

    Article CAS  Google Scholar 

Download references

Acknowledgements

B.E.H. thanks New York University for a MacCracken fellowship. The authors thank B. S. Matsuura for helpful discussions. The authors thank B. S. Matsuura, A. J. E. Novak and K.-P. Rühmann for their critical review of the manuscript.

Author information

Authors and Affiliations

  1. Department of Chemistry, New York University, New York, NY, USA

    Belinda E. Hetzler & Dirk Trauner

  2. EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK

    Andrew L. Lawrence

Authors
  1. Belinda E. Hetzler
  2. Dirk Trauner
  3. Andrew L. Lawrence

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence toDirk Trauner orAndrew L. Lawrence.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks J. George and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hetzler, B.E., Trauner, D. & Lawrence, A.L. Natural product anticipation through synthesis.Nat Rev Chem6, 170–181 (2022). https://doi.org/10.1038/s41570-021-00345-7

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp