Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Ecology & Evolution
  • Brief Communication
  • Published:

Impact of 2019–2020 mega-fires on Australian fauna habitat

Nature Ecology & Evolutionvolume 4pages1321–1326 (2020)Cite this article

Subjects

This article has beenupdated

Abstract

Australia’s 2019–2020 mega-fires were exacerbated by drought, anthropogenic climate change and existing land-use management. Here, using a combination of remotely sensed data and species distribution models, we found these fires burnt ~97,000 km2 of vegetation across southern and eastern Australia, which is considered habitat for 832 species of native vertebrate fauna. Seventy taxa had a substantial proportion (>30%) of habitat impacted; 21 of these were already listed as threatened with extinction. To avoid further species declines, Australia must urgently reassess the extinction vulnerability of fire-impacted species and assist the recovery of populations in both burnt and unburnt areas. Population recovery requires multipronged strategies aimed at ameliorating current and fire-induced threats, including proactively protecting unburnt habitats.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

¥14,900 per year

only ¥1,242 per issue

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vertebrate fauna habitat burned during the 2019–2020 mega-fires.
Fig. 2: Proportional impact of the 2019–2020 mega-fires on the habitats of 832 species.

Similar content being viewed by others

Data availability

All datasets used in this analysis are available via the citations identified in the Methods. The raw data used to create Figs.1 and2 are available in Supplementary Table1 and in figshare with the identifierhttps://figshare.com/s/62ef92b49704bb139333.

Code availability

The code used in this study is freely available athttps://figshare.com/s/d9140d7c22e5ebbf2e03.

Change history

  • 10 August 2020

    The Data availability and Code availability statements have been amended to update the links where the data and code are deposited, respectively. The second sentence of the Data availability statement now reads: ‘The raw data used to create Figs. 1 and 2 are available in Supplementary Table 1 and in figshare with the identifier https://figshare.com/s/62ef92b49704bb139333.’ The Code availability statement now reads ‘The code used in this study is freely available at https://figshare.com/s/d9140d7c22e5ebbf2e03.’

References

  1. Bowman, D. et al. Fire in the Earth system.Science324, 481–484 (2009).

    CAS PubMed  Google Scholar 

  2. Mangel, M. & Tier, C. Four facts every conservation biologist should know about persistence.Ecology75, 607–614 (1994).

    Google Scholar 

  3. Gill, A. M. Fire and the Australian flora: a review.Aust. For.38, 4–25 (1975).

    Google Scholar 

  4. Brotons, L., Herrando, S. & Pons, P. Wildfires and the expansion of threatened farmland birds: the ortolan buntingEmberiza hortulana in Mediterranean landscapes.J. Appl. Ecol.45, 1059–1066 (2008).

    Google Scholar 

  5. Bird, R. B., Tayor, N., Codding, B. F. & Bird, D. W. Niche construction and Dreaming logic: Aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia.Proc. Biol. Sci.280, 20132297 (2013).

    PubMed PubMed Central  Google Scholar 

  6. Bowman, D. M. J. S., Wood, S. W., Neyland, D., Sanders, G. J. & Prior, L. D. Contracting Tasmanian montane grasslands within a forest matrix is consistent with cessation of Aboriginal fire management.Austral Ecol.38, 627–638 (2013).

    Google Scholar 

  7. Lindenmayer, D. B., Kooyman, R. M., Taylor, C., Ward, M. & Watson, J. E. M. Recent Australian wildfires made worse by logging and associated forest management.Nat. Ecol. Evol.4, 898–900 (2020).

    PubMed  Google Scholar 

  8. Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013.Nat. Commun.6, 7537 (2015).

  9. Murphy, B. P. & Russell-Smith, J. Fire severity in a northern Australian savanna landscape: the importance of time since previous fire.Int. J. Wildl. Fire19, 46–51 (2010).

    Google Scholar 

  10. Mantgem, P. J. et al. Climatic stress increases forest fire severity across the western United States.Ecol. Lett.16, 1151–1156 (2013).

    PubMed  Google Scholar 

  11. Fonseca, M. G. et al. Climatic and anthropogenic drivers of northern Amazon fires during the 2015-2016 El Nino event.Ecol. Appl.27, 2514–2527 (2017).

    PubMed  Google Scholar 

  12. Huge Wildfires in Russia’s Siberian Province Continue (NASA, 2019).

  13. Escobar, H. Amazon fires clearly linked to deforestation, scientists say.Science365, 853 (2019).

    CAS PubMed  Google Scholar 

  14. 2018 Incident Archive Report (California Government, 2019).

  15. Dennis, R., Hoffmann, A., Applegate, G., von Gemmingen, G. & Kartawinata, K. Large-scale fire: creator and destroyer of secondary forests in western Indonesia.J. Trop. Sci.13, 786–799 (2001).

    Google Scholar 

  16. Verhegghen, A. et al. The potential of sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests.Remote Sens.8, 986 (2016).

    Google Scholar 

  17. Boer, M. M., Resco de Dios, V. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires.Nat. Clim. Change10, 171–172 (2020).

    Google Scholar 

  18. Borunda, A. See how much of the Amazon is burning, how it compares to other years.National Geographic (29 August 2019).

  19. Nolan, R. H. et al. Causes and consequences of eastern Australia’s 2019–20 season of mega-fires.Glob. Change Biol.26, 1039–1041 (2020).

    Google Scholar 

  20. Kooyman, R. M., Watson, J. & Wilf, P. Gondwana World Heritage Site burns.Science367, 1083 (2020).

    PubMed  Google Scholar 

  21. Kelly, L. T., Bennett, A. F., Clarke, M. F. & Mccarthy, M. A. Optimal fire histories for biodiversity conservation.Conserv. Biol.29, 473–481 (2015).

    PubMed  Google Scholar 

  22. Davis, R. et al. Conserving long unburnt vegetation is important for bird species, guilds and diversity.Biodivers. Conserv.25, 2709–2722 (2016).

    Google Scholar 

  23. Doherty, T. S., Davis, R. A., van Etten, E. J. B., Collier, N. & Krawiec, J. Response of a shrubland mammal and reptile community to a history of landscape-scale wildfire.Int. J. Wildl. Fire24, 534–543 (2015).

    Google Scholar 

  24. Dixon, K. M., Cary, G. J., Worboys, G. L. & Gibbons, P. The disproportionate importance of long-unburned forests and woodlands for reptiles.Ecol. Evol.8, 10952–10963 (2018).

    PubMed PubMed Central  Google Scholar 

  25. Taylor, R. S. et al. Landscape‐scale effects of fire on bird assemblages: does pyrodiversity beget biodiversity?Divers. Distrib.18, 519–529 (2012).

    Google Scholar 

  26. Lindenmayer, D. B. et al. Fire severity and landscape context effects on arboreal marsupials.Biol. Conserv.167, 137–148 (2013).

    Google Scholar 

  27. Chia, E. K. et al. Effects of the fire regime on mammal occurrence after wildfire: site effects vs landscape context in fire-prone forests.Ecol. Manag.363, 130–139 (2016).

    Google Scholar 

  28. Leahy, L. et al. Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas.Wildl. Res.42, 705–716 (2015).

    Google Scholar 

  29. Murphy, S. A. & Legge, S. M. The gradual loss and episodic creation of palm cockatoo (Probosciger aterrimus) nest-trees in a fire- and cyclone-prone habitat.Emu107, 1–6 (2007).

    Google Scholar 

  30. Lyon, J. P. & O’Connor, J. P. Smoke on the water: can riverine fish populations recover following a catastrophic fire-related sediment slug?Austral Ecol.33, 794–806 (2008).

    Google Scholar 

  31. Haslem, A. et al. Time-since-fire and inter-fire interval influence hollow availability for fauna in a fire-prone system.Biol. Conserv.152, 212–221 (2012).

    Google Scholar 

  32. Kearney, S. et al. The threats to Australia’s imperilled species and implications for a national conservation response.Pac. Conserv. Biol. 25, 231–244 (2018).

  33. Ward, M. S. et al. Lots of loss with little scrutiny: the attrition of habitat critical for threatened species in Australia.Conserv. Sci. Pract.1, e117 (2019).

    Google Scholar 

  34. Species of National Environmental Significance (Commonwealth of Australia, 2019).

  35. National Indicative Aggregated Fire Extent Dataset Version 20200225 (Commonwealth of Australia, 2020);https://go.nature.com/38wZSRr

  36. Graham, E. M. et al. Climate change and biodiversity in Australia: a systematic modelling approach to nationwide species distributions.Australas. J. Environ. Manag.26, 112–123 (2019).

    Google Scholar 

  37. Hoskin, C., Grigg, G., Stewart, D. & Macdonald, S.Frogs of Australia (James Cook University, 2015).

  38. Tingley, R. et al. Geographic and taxonomic patterns of extinction risk in Australian squamates.Biol. Conserv.238, 108203 (2019).

    Google Scholar 

  39. Guidelines for Assessing the Conservation Status of Native Species According to the Environment Protection and Biodiversity Conservation Act 1999 and Environment Protection and Biodiversity Conservation Regulations 2000 (Commonwealth of Australia, 2000).

  40. Rapid Analysis of Impacts of the 2019–20 Fires on Animal Species, and Prioritisation of Species for Management Response – Preliminary Report (Commonwealth of Australia, 2020).

  41. Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought.Science368, 261–266 (2020).

    CAS PubMed  Google Scholar 

  42. Scheele, B. C. et al. Continental-scale assessment reveals inadequate monitoring for threatened vertebrates in a megadiverse country.Biol. Conserv.235, 273–278 (2019).

    Google Scholar 

  43. Victoria’s Bushfire Emergency: Biodiversity Response and Recovery (Victoria State Government, 2020).

  44. Smales, I., Brown, P., Menkhorst, P., Holdsworth, M. & Holz, P. Contribution of captive management of orange-bellied parrots to the recovery programme for the species in Australia.Int. Zoo. Yearb.37, 171–178 (2000).

    Google Scholar 

  45. Broughton, S. K. & Dickman, C. R. The effect of supplementary food on home range of the southern brown bandicoot,Isoodon obesulus.Aust. J. Ecol.16, 71–78 (1991).

    Google Scholar 

  46. Legge, S., Kennedy, M. S., Lloyd, R., Murphy, S. A. & Fisher, A. Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following the removal of introduced herbivores.Austral Ecol.36, 791–799 (2011).

    Google Scholar 

  47. IPCCSpecial Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  48. Clarke, H. & Evans, J. P. Exploring the future change space for fire weather in southeast Australia.Theor. Appl. Climatol.136, 513–527 (2019).

    Google Scholar 

  49. Dowdy, A. J. et al. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires.Sci. Rep.9, 10073 (2019).

    PubMed PubMed Central  Google Scholar 

  50. Taylor, C., Mccarthy, M. A. & Lindenmayer, D. B. Nonlinear effects of stand age on fire severity.Conserv. Lett.7, 355–370 (2014).

    Google Scholar 

  51. Zylstra, P. J. Flammability dynamics in the Australian Alps.Austral Ecol.43, 578–591 (2018).

    Google Scholar 

  52. Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement.Proc. Natl Acad. Sci. USA112, 4531–4540 (2015).

    CAS PubMed  Google Scholar 

  53. Woinarski, J. C. Z. et al. Reading the black book: the number, timing, distribution and causes of listed extinctions in Australia.Biol. Conserv.239, 108261 (2019).

    Google Scholar 

  54. Lindenmayer, D. B., Hunter, M. L., Burton, P. J. & Gibbons, P. Effects of logging on fire regimes in moist forests.Conserv. Lett.2, 271–277 (2009).

    Google Scholar 

  55. Berry, Z. C., Wevill, K. & Curran, T. J. The invasive weedLantana camara increases fire risk in dry rainforest by altering fuel beds.Weed Res.51, 525–533 (2011).

    Google Scholar 

  56. McAlpine, C. A. et al. A continent under stress: interactions, feedbacks and risks associated with impact of modified land cover on Australia’s climate.Glob. Change Biol.15, 2206–2223 (2009).

    Google Scholar 

  57. Dale, V. H. et al. Climate Change and forest disturbances.BioScience51, 723–734 (2001).

    Google Scholar 

  58. Interim Biogeographic Regionalisation for Australia (IBRA) Version 7 (Subregions) (Commonwealth of Australia, 2018);https://go.nature.com/3e6j21L

  59. Lobo, J. M., Jiménez‐Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models.Glob. Ecol. Biogeogr.17, 145–151 (2008).

    Google Scholar 

  60. Reside, A. E., Watson, I., Vanderwal, J. & Kutt, A. S. Incorporating low-resolution historic species location data decreases performance of distribution models.Ecol. Model.222, 3444–3448 (2011).

    Google Scholar 

  61. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions.Ecol. Model.190, 231–259 (2006).

    Google Scholar 

  62. Fenner, A. L. & Bull, C. M. Short-term impact of grassland fire on the endangered pygmy bluetongue lizard.J. Zool.272, 444–450 (2007).

    Google Scholar 

  63. Kuchling, G. Impact of fuel reduction burns and wildfires on the critically endangered western swamp tortoisePeudemydura umbrina. InEcological Society of Australia Conference Proceedings (2007).

  64. Driscoll, D. A. & Dale Roberts, J. Impact of fuel-reduction burning on the frogGeocrinia lutea in southwest Western Australia.Austral Ecol.22, 334–339 (1997).

    Google Scholar 

  65. Smith, A., Meulders, B., Bull, C. M. & Driscoll, D. Wildfire-induced mortality of Australian reptiles.Herpetol. Notes5, 233–235 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank S. Legge and C. Pavey for their critical comments on an early version of the manuscript and the Commonwealth Government for providing both species and fire datasets. A.I.T.T. is supported by an ARC DECRA Fellowship.

Author information

Authors and Affiliations

  1. Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia

    Michelle Ward, Brooke A. Williams, April E. Reside, Helen J. Mayfield, Martine Maron, Hugh P. Possingham, Emily J. Massingham, Jeremy S. Simmonds, Laura J. Sonter & James E. M. Watson

  2. School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia

    Michelle Ward, Ayesha I. T. Tulloch, Brooke A. Williams, April E. Reside, Helen J. Mayfield, Martine Maron, Jeremy S. Simmonds, Laura J. Sonter & James E. M. Watson

  3. School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia

    Ayesha I. T. Tulloch & Aaron C. Greenville

  4. Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Victoria, Australia

    James Q. Radford

  5. Research Centre for Future Landscapes, La Trobe University, Bundoora, Victoria, Australia

    James Q. Radford

  6. College of Science and Engineering, James Cook University, Townsville, Queensland, Australia

    Stewart L. Macdonald

  7. The Nature Conservancy, Minneapolis, MN, USA

    Hugh P. Possingham

  8. Birdlife Australia, Carlton, Victoria, Australia

    Samantha J. Vine & James L. O’Connor

  9. Threatened Species Recovery Hub, Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia

    John C. Z. Woinarski & Stephen T. Garnett

  10. Centre for Applied Water Science, University of Canberra, Canberra, Australian Capital Territory, Australia

    Mark Lintermans

  11. Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia

    Ben C. Scheele & David B. Lindenmayer

  12. CSIRO, Land and Water, Dutton Park, Brisbane, Queensland, Australia

    Josie Carwardine

  13. School of Environmental Science, Institute for Land, Water, and Society, Charles Sturt University, Albury, New South Wales, Australia

    Dale G. Nimmo

  14. Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia

    Robert M. Kooyman

  15. Wildlife Conservation Society, Global Conservation Program, New York, NY, USA

    James E. M. Watson

Authors
  1. Michelle Ward

    You can also search for this author inPubMed Google Scholar

  2. Ayesha I. T. Tulloch

    You can also search for this author inPubMed Google Scholar

  3. James Q. Radford

    You can also search for this author inPubMed Google Scholar

  4. Brooke A. Williams

    You can also search for this author inPubMed Google Scholar

  5. April E. Reside

    You can also search for this author inPubMed Google Scholar

  6. Stewart L. Macdonald

    You can also search for this author inPubMed Google Scholar

  7. Helen J. Mayfield

    You can also search for this author inPubMed Google Scholar

  8. Martine Maron

    You can also search for this author inPubMed Google Scholar

  9. Hugh P. Possingham

    You can also search for this author inPubMed Google Scholar

  10. Samantha J. Vine

    You can also search for this author inPubMed Google Scholar

  11. James L. O’Connor

    You can also search for this author inPubMed Google Scholar

  12. Emily J. Massingham

    You can also search for this author inPubMed Google Scholar

  13. Aaron C. Greenville

    You can also search for this author inPubMed Google Scholar

  14. John C. Z. Woinarski

    You can also search for this author inPubMed Google Scholar

  15. Stephen T. Garnett

    You can also search for this author inPubMed Google Scholar

  16. Mark Lintermans

    You can also search for this author inPubMed Google Scholar

  17. Ben C. Scheele

    You can also search for this author inPubMed Google Scholar

  18. Josie Carwardine

    You can also search for this author inPubMed Google Scholar

  19. Dale G. Nimmo

    You can also search for this author inPubMed Google Scholar

  20. David B. Lindenmayer

    You can also search for this author inPubMed Google Scholar

  21. Robert M. Kooyman

    You can also search for this author inPubMed Google Scholar

  22. Jeremy S. Simmonds

    You can also search for this author inPubMed Google Scholar

  23. Laura J. Sonter

    You can also search for this author inPubMed Google Scholar

  24. James E. M. Watson

    You can also search for this author inPubMed Google Scholar

Contributions

J.E.M.W. conceived the idea. M.W., J.E.M.W., A.I.T.T., J.Q.R., B.A.W., A.E.R., S.L.M., H.J.M., M.M., H.P.P., S.J.V., J.L.O., E.J.M., A.C.G. and L.J.S. designed the research. A.E.R. and S.L.M. extracted non-threatened species data. M.W. and B.A.W. assembled and revised the database and analysed the data. M.W., A.I.T.T., J.Q.R., B.A.W., A.E.R., S.L.M., H.J.M., M.M., H.P.P., S.J.V., J.L.O., E.J.M., A.C.G., J.C.Z.W., S.T.G., M.L., B.C.S., J.C., D.G.N., D.B.L., R.M.K., J.S.S., L.J.S. and J.E.M.W. wrote and edited the manuscript.

Corresponding author

Correspondence toMichelle Ward.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

This file contains all taxa impacted by the 2019–2020 mega-fires, including their approximate habitat loss, approximate proportional habitat loss and approximate habitat remaining.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ward, M., Tulloch, A.I.T., Radford, J.Q.et al. Impact of 2019–2020 mega-fires on Australian fauna habitat.Nat Ecol Evol4, 1321–1326 (2020). https://doi.org/10.1038/s41559-020-1251-1

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp