- Article
- Published:
Complex modular architecture around a simple toolkit of wing pattern genes
- Steven M. Van Belleghem1,2 na1,
- Pasi Rastas3,1 na1,
- Alexie Papanicolaou ORCID:orcid.org/0000-0002-3635-68484,
- Simon H. Martin3,
- Carlos F. Arias2,5,
- Megan A. Supple2,
- Joseph J. Hanly3,
- James Mallet6,
- James J. Lewis ORCID:orcid.org/0000-0002-4170-91187,
- Heather M. Hines8,
- Mayte Ruiz1,
- Camilo Salazar ORCID:orcid.org/0000-0001-9217-65885,
- Mauricio Linares5,
- Gilson R. P. Moreira8,
- Chris D. Jiggins ORCID:orcid.org/0000-0002-7809-062X3,
- Brian A. Counterman9,1 na2,
- W. Owen McMillan2,1 na2 &
- …
- Riccardo Papa1,10 na2
Nature Ecology & Evolutionvolume 1, Article number: 0052 (2017)Cite this article
10kAccesses
105Altmetric
Abstract
Identifying the genomic changes that control morphological variation and understanding how they generate diversity is a major goal of evolutionary biology. InHeliconius butterflies, a small number of genes control the development of diverse wing colour patterns. Here, we used full-genome sequencing of individuals across theHeliconius erato radiation and closely related species to characterize genomic variation associated with wing pattern diversity. We show that variation around colour pattern genes is highly modular, with narrow genomic intervals associated with specific differences in colour and pattern. This modular architecture explains the diversity of colour patterns and provides a flexible mechanism for rapid morphological diversification.
This is a preview of subscription content,access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Dasmahapatra, K. K. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species.Nature487, 94–98 (2012).
Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing.Nature518, 371–375 (2015).
Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish.Nature513, 375–381 (2014).
Lamas, G. inHesperioidea – Papilionoidea. Gainesville, Florida: Association for Tropical Lepidoptera (ed. Lamas, G. ) 261–274 (Scientific Publisher, 2004).
Nijhout, H. F.The Development and Evolution of Butterfly Wing Patterns. (Smithsonian Institution, 1991).
Chouteau, M., Arias, M. & Joron, M. Warning signals are under positive frequency-dependent selection in nature.Proc. Natl Acad. Sci USA113, 2164–2169 (2016).
Naisbit, R. E., Jiggins, C. D. & Mallet, J. Disruptive sexual selection against hybrids contributes to speciation betweenHeliconius cydno andHeliconius melpomene .Proc. Biol. Sci.268, 1849–1854 (2001).
Turner, J. R. G. A tale of two butterflies.Nat. Hist.84, 28–37 (1975).
Sheppard, P. M., Turner, J. R. G., Brown, K. S., Benson, W. W. & Singer, M. C. Genetics and the evolution of Muellerian mimicry inHeliconius Butterflies.Phil. Trans. R. Soc. B Biol. Sci.308, 433–610 (1985).
Joron, M. et al. A conserved supergene locus controls colour pattern diversity inHeliconius butterflies.PLoS Biol.4, e303 (2006).
Papa, R. et al. Multi-allelic major effect genes interact with minor effect QTLs to control adaptive color pattern variation inHeliconius erato .PLoS ONE8, e57033 (2013).
Kronforst, M. R., Kapan, D. D. & Gilbert, L. E. Parallel genetic architecture of parallel adaptive radiations in mimeticHeliconius butterflies.Genetics174, 535–539 (2006).
Kapan, D. D. et al. Localization of mìllerian mimicry genes on a dense linkage map ofHeliconius erato .Genetics173, 735–757 (2006).
Reed, R. D. et al.optix drives the repeated convergent evolution of butterfly wing pattern mimicry.Science333, 1137–1141 (2011).
Martin, A. et al. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand.Proc. Natl Acad. Sci. USA109, 12632–12637 (2012).
Nadeau, N. et al. The genecortex controls mimicry and crypsis in butterflies and moths.Nature534, 106–110 (2016).
Martin, A. et al. Multiple recent co-options ofOptix associated with novel traits in adaptive butterfly wing radiations.EvoDevo5, 7 (2014).
Carroll, S. B. Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution.Cell134, 25–36 (2008).
Gallant, J. R. et al. Ancient homology underlies adaptive mimetic diversity across butterflies.Nat. Commun.5, 1–10 (2014).
Van’t Hof, A. E. The industrial melanism mutation in British peppered moths is a transposable element.Nature534, 102–105 (2016).
Rosser, N., Dasmahapatra, K. K. & Mallet, J. StableHeliconius butterfly hybrid zones are correlated with a local rainfall peak at the edge of the Amazon basin.Evolution68, 3470–3484 (2014).
Supple, M., Papa, R., Hines, H. M., McMillan, W. O. & Counterman, B. A. Divergence with gene flow across a speciation continuum ofHeliconius butterflies.BMC Evol. Biol.15, 204 (2015).
Hines, H. M. et al. Wing patterning gene redefines the mimetic history ofHeliconius butterflies.Proc. Natl Acad. Sci. USA108, 19666–19671 (2011).
Mallet, J. & Barton, N. H. Strong natural selection in a warning-color hybrid zone.Evolution43, 421–431 (1989).
Kapan, D. D. Three-butterfly system provides a field test of mìllerian mimicry.Nature409, 18–20 (2001).
Supple, M. A et al. Genomic architecture of adaptive color pattern divergence and convergence inHeliconius butterflies.Genome Res.23, 1248–1257 (2013).
Martin, A. et al. Diversification of complex butter flywing patterns by repeated regulatory evolution of a Wnt ligand.Proc. Natl Acad. Sci. USA109, 12632–12637 (2012).
Martin, S. H. & Van Belleghem, S. M. Exploring evolutionary relationships across the genome using topology weighting. Preprint atbioRxivhttp://dx.doi.org/10.1101/069112 (2016).
Nadeau, N. J. et al. Population genomics of parallel hybrid zones in the mimetic butterflies,H. melpomene andH. erato .Genome Res.24, 1316–1333 (2014).
Danielsen, E. T. et al. Transcriptional control of steroid biosynthesis genes in theDrosophila prothoracic gland byVentral veins lacking andKnirps .PLoS Genet.10, e1004343 (2014).
De Celis, J. F., Llimargas, M. & Casanova, J.Ventral veinless, the gene encoding the Cf1a transcription factor, links positional information and cell differentiation during embryonic and imaginal development inDrosophila melanogaster .Development121, 3405–3416 (1995).
Meier, S., Sprecher, S. G., Reichert, H. & Hirth, F.Ventral veins lacking is required for specification of the tritocerebrum in embryonic brain development ofDrosophila .Mech. Dev.123, 76–83 (2006).
Jivan, A ., Earnest, S., Juang, Y.-C. & Cobb, M. H. Radial spoke protein 3 is a mammalian protein kinase A-anchoring protein that binds ERK1/2.J. Biol. Chem.284, 29437–29445 (2009).
Jiggins, C. D. & Mcmillan, W. O. The genetic basis of an adaptive radiation: warning colour in twoHeliconius species.Proc. R. Soc. B264, 1167–1175 (1997).
Baxter, S. W., Johnston, S. E. & Jiggins, C. D. Butterfly speciation and the distribution of gene effect sizes fixed during adaptation. Heredity102, 57–65 (2009).
Huber, B. et al. Conservatism and novelty in the genetic architecture of adaptation inHeliconius butterflies.Heredity114, 515–524 (2015).
Wallbank, R. W. R. et al. Evolutionary novelty in a butterfly wing pattern through enhancer shuffling.PLoS Biol.14, e1002353 (2016).
Maroja, L. S., Alschuler, R., Mcmillan, W. O. & Jiggins, C. D. Partial complementarity of the mimetic yellow bar phenotype inHeliconius butterflies.PLoS ONE7, e48627 (2012).
Sheppard, P. M., Turner, J. R. G., Brown, K. S., Benson, W. W. & Singer, M. C. Genetics and the evolution of Muellerian mimicry inHeliconius butterflies.Phil. Trans. R. Soc. B Biol. Sci.308, 433–610 (1985).
Mallet, J. The genetics of warning colour in Peruvian hybrid zones ofHeliconius erato andH. melpomene .Proc. R. Soc. B236, 163–185 (1989).
Joron, M. et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry.Nature477, 203–206 (2011).
Kronforst, M. R. & Papa, R. The functional basis of wing patterning inHeliconius butterflies: The molecules behind mimicry.Genetics200, 1–19 (2015).
Lewis, J. J. et al. ChIP-Seq-annotatedHeliconius erato genome highlights patterns of cis-regulatory evolution in Lepidoptera.Cell Rep.16, 2855–2863 (2016).
Martin, A. & Reed, R. D. Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems.Dev. Biol.395, 367–378 (2014).
Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data.Proc. Natl Acad. Sci. USA108, 1513–1518 (2011).
Greenfield, P., Duesing, K., Papanicolaou, A. & Bauer, D. C. Sequence analysis Blue: correcting sequencing errors using consensus and context.Bioinformatics30, 2723–2732 (2014).
Salmela, L. & Rivals, E. Sequence analysis LoRDEC: accurate and efficient long read error correction.Bioinformatics30, 3506–3514 (2014).
Kurtz, S. et al. Versatile and open software for comparing large genomes.Genome Biol.5, R12 (2004).
English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology.PLoS ONE7, e47768 (2012).
Li, H. et al. The Sequence Alignment/Map format and SAMtools.Bioinformatics25, 2078–2079 (2009).
Rastas, P., Paulin, L., Hanski, I. & Lehtonen, R. Lep-MAP: fast and accurate linkage map construction for large SNP datasets.Bioinformatics29, 3128–3134 (2013).
Rastas, P., Calboli, F. C. F., Guo, B., Shikano, T. & Merilä, J. Construction of ultradense linkage maps with Lep-MAP2: Stickleback F2 recombinant crosses as an example.Genome Biol. Evol.8, 78–93 (2015).
Weisenfeld, N. I. et al. Comprehensive variation discovery in single human genomes.Nat. Genet.46, 1350–1355 (2014).
Love, R. R., Weisenfeld, N. I., Jaffe, D. B., Besansky, N. J. & Neafsey, D. E. Evaluation of DISCOVARde novo using a mosquito sample for cost-effective short-read genome assembly.BMC Genomics17, 187 (2016).
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint athttps://arxiv.org/abs/1303.3997 (2013).
Smith, T. F. & Waterman, M. S. Identification of common molecular subsequences.J. Mol. Biol.147, 195–197 (1981).
Simão, F. A., Waterhouse, R. M., Ioannidis, P. & Kriventseva, E. V. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs.Bioinformatics31, 3210–3212 (2015).
Haas, B. J. et al.De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis.Nat. Protoc.8, 1494–1512 (2013).
Chevreux, B. et al. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs.Genome Res.14, 1147–1159 (2004).
Haas, B. J. et al. Improving theArabidopsis genome annotation using maximal transcript alignment assemblies.Nucleic Acids Res.31, 5654–5666 (2003).
Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads.Bioinformatics26, 873–881 (2010).
Benson, G. Tandem repeats finder: a program to analyze DNA sequences.Nucleic Acids Res.27, 573–580 (1999).
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker (2014);http://www.repeatmasker.org/
Price, A. L., Jones, N. C. & Pevzner, P. A.De novo identification of repeat families in large genomes.Bioinformatics21, i351–358 (2005).
Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements.Cytogenet. Genome Res.110, 462–467 (2005).
Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence.Nucleic Acids Res.25, 955–964 (1997).
Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences.Nucleic Acids Res.32, 11–16 (2004).
Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm.Nucleic Acids Res.42, e119 (2014).
Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources.BMC Bioinformatics11, 1–11 (2006).
Remmert, M., Biegert, A., Hauser, A. & Johannes, S. HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment.Nat. Methods9, 173–175 (2012).
Davey, J. W. et al. Major improvements to theHeliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution.G36, 695–708 (2016).
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments.Genome Biol.9, R7 (2008).
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform.Bioinformatics26, 589–595 (2010).
Li, H. et al. The Sequence Alignment/Map format and SAMtools.Bioinformatics25, 2078–2079 (2009).
Van der Auwera, G. a. et al. From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline.Curr. Protoc. Bioinform.11.10, 1–33 (2013).
Hudson, R. R., Slatkin, M. & Maddison, W. P. Estimation of levels of gene flow from DNA sequence data.Genetics132, 583–589 (1992).
Nei, M. & Jin, L. Variances of the average numbers of nucleotide substitutions within and between populations.Mol. Biol. Evol.6, 290–300 (1989).
De Mita, S. & Siol, M. EggLib: processing, analysis and simulation tools for population genetics and genomics.BMC Genet.13, 27 (2012).
Nadeau, N. J. et al. Genomic islands of divergence in hybridizingHeliconius butterflies identified by large-scale targeted sequencing.Phil. Trans. R. Soc. Lond. B. Biol. Sci.367, 343–353 (2012).
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately maximum-likelihood trees for large alignments.PLoS ONE5, e9490 (2010).
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Bioinformatics30, 1312–1313 (2014).
Boftelli, D. et al. Phylogenetic shadowing of primate sequences to find functional regions of the human genome.Science299, 1391–1394 (2003).
Acknowledgements
We thank A. Tapia for maintaining theH. erato genome line and for generating our mapping family, and M. Vargas and C. Rosales for Illumina library preparation. We acknowledge the University of Puerto Rico, the Puerto Rico INBRE grant P20 GM103475 from the National Institute for General Medical Sciences (NIGMS), a component of the National Institutes of Health (NIH); CNRS Nouraugues and CEBA awards (B.A.C.); National Science Foundation awards DEB-1257839 (B.A.C.), DEB-1257689 (W.O.M.), DEB-1027019 (W.O.M.); awards 1010094 and 1002410 from the Experimental Program to Stimulate Competitive Research (EPSCoR) program of the National Science Foundation (NSF) for computational resources; and the Smithsonian Institution. This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute, and in part by the Indiana METACyt Initiative. The Indiana METACyt Initiative at IU is also supported in part by Lilly Endowment, Inc.
Author information
Steven M. Van Belleghem and Pasi Rastas: These authors contributed equally to this work.
Brian A. Counterman, W. Owen McMillan and Riccardo Papa: These authors jointly supervised this work.
Authors and Affiliations
Department of Biology, Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio Piedras, Puerto Rico
Steven M. Van Belleghem, Pasi Rastas, Mayte Ruiz, Brian A. Counterman, W. Owen McMillan & Riccardo Papa
Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panamá, Panama
Steven M. Van Belleghem, Carlos F. Arias, Megan A. Supple & W. Owen McMillan
Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
Pasi Rastas, Simon H. Martin, Joseph J. Hanly & Chris D. Jiggins
Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales 2753, Australia
Alexie Papanicolaou
Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera. 24 No. 63C-69, Bogota, 111221, DC, Colombia
Carlos F. Arias, Camilo Salazar & Mauricio Linares
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
James Mallet
Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, 14853-7202, New York, USA
James J. Lewis
Department of Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
Heather M. Hines & Gilson R. P. Moreira
Departamento de Zoologia, PPG Biologia Animal, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bloco IV, Prédio 43435, Porto Alegre, RS 91501-970, Brazil
Brian A. Counterman
Department of Biological Sciences, Mississippi State University, 295 Lee Boulevard, 39762, Mississippi, USA
Riccardo Papa
- Steven M. Van Belleghem
You can also search for this author inPubMed Google Scholar
- Pasi Rastas
You can also search for this author inPubMed Google Scholar
- Alexie Papanicolaou
You can also search for this author inPubMed Google Scholar
- Simon H. Martin
You can also search for this author inPubMed Google Scholar
- Carlos F. Arias
You can also search for this author inPubMed Google Scholar
- Megan A. Supple
You can also search for this author inPubMed Google Scholar
- Joseph J. Hanly
You can also search for this author inPubMed Google Scholar
- James Mallet
You can also search for this author inPubMed Google Scholar
- James J. Lewis
You can also search for this author inPubMed Google Scholar
- Heather M. Hines
You can also search for this author inPubMed Google Scholar
- Mayte Ruiz
You can also search for this author inPubMed Google Scholar
- Camilo Salazar
You can also search for this author inPubMed Google Scholar
- Mauricio Linares
You can also search for this author inPubMed Google Scholar
- Gilson R. P. Moreira
You can also search for this author inPubMed Google Scholar
- Chris D. Jiggins
You can also search for this author inPubMed Google Scholar
- Brian A. Counterman
You can also search for this author inPubMed Google Scholar
- W. Owen McMillan
You can also search for this author inPubMed Google Scholar
- Riccardo Papa
You can also search for this author inPubMed Google Scholar
Contributions
S.M.V.B., B.A.C., W.O.M. and R.P. designed the study and wrote the paper. P.R., A.P. and J.J.M. conducted genome assembly. P.R. conducted linkage map and genome quality assessment. A.P. conducted genome annotation. S.M.V.B. conducted population genomic, phylogenetic and comparative genomic analyses. M.R, M.A.S, H.H. and J.J.H. conducted comparative genomic analyses. S.H.M. contributed scripts for Twisst analyses. B.A.C., W.O.M., R.P., H.H., C.D.J., J.M., M.L., C.S., C.F.A. and G.M. collected samples for sequencing.
Corresponding author
Correspondence toSteven M. Van Belleghem.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary Figures 1–35; Supplementary Tables 1–13 (PDF 5140 kb)
Rights and permissions
About this article
Cite this article
Van Belleghem, S., Rastas, P., Papanicolaou, A.et al. Complex modular architecture around a simple toolkit of wing pattern genes.Nat Ecol Evol1, 0052 (2017). https://doi.org/10.1038/s41559-016-0052
Received:
Accepted:
Published:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative