Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Microbiology
  • Review Article
  • Published:

Clostridium difficile infection: new developments in epidemiology and pathogenesis

Nature Reviews Microbiologyvolume 7pages526–536 (2009)Cite this article

Key Points

  • This article reviews the latest clinical and fundamental research data on the important human pathogenClostridium difficile.

  • The clinical aspects ofC. difficile infection (CDI) that are discussed include description of the disease spectrum and severity, and the signs, symptoms and clinical pathogenesis of CDI. An overview of the available treatment options for CDI is also given, including discussion of the problems associated with each therapeutic approach and new recommendations for treatment based on disease severity and the numbers of recurrences. CDI prevention is also discussed. Prevention methods include preventing acquisition ofC. difficile spores by patients (using barrier and cleaning methods) and reducing the risk of symptomatic infection if the organism is encountered, primarily by avoidance of unnecessary use of antimicrobials.

  • The laboratory diagnosis and characterization ofC. difficile is also reviewed. The main detection methods and diagnostic tests, including the recent development of molecular testing and two-step diagnostic protocols, are discussed. The main molecular typing techniques used forC. difficile and the importance of antibiotic resistance testing are described.

  • The changing epidemiology of CDI is reviewed. Important changes in the epidemiology of CDI have been observed over the past five years, especially increased infection rates in hospitals, increased disease severity, and increased rates and mortality with patient age. Most of these changes are presumed to be driven by presence of a new epidemic strain,C. difficile BI/NAP1/027. Changes in host populations (human versus animal populations with previous low risk), a possible increase in community associated disease, and new risk factors have also been observed.

  • The knownC. difficile virulence factors (TcdA and TcdB) and newly recognized virulence factors and their role in pathogenesis are discussed.

  • The role of antibiotics in the development of CDI is discussed in relation to the susceptibility ofC. difficile to antibiotics taken by the patient. The implication of the resistance ofC. difficile to the fluoroquinolone class of antibiotics, and fluoroquinolones as an increasing risk factor for CDI, are discussed.

Abstract

Clostridium difficile is now considered to be one of the most important causes of health care-associated infections.C. difficile infections are also emerging in the community and in animals used for food, and are no longer viewed simply as unpleasant complications that follow antibiotic therapy. Since 2001, the prevalence and severity ofC. difficile infection has increased significantly, which has led to increased research interest and the discovery of new virulence factors, and has expanded and focused the development of new treatment and prevention regimens. This Review summarizes the recent epidemiological changes inC. difficile infection, our current knowledge ofC. difficile virulence factors and the clinical outcomes ofC. difficile infection.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for the acquisition ofClostridium difficile infection (CDI).
Figure 2: The effect of antibiotics on the normal gut flora and the risk ofClostridium difficile infection (CDI).
Figure 3: Toxins produced byClostridium difficile.
Figure 4: The clinical outcome ofClostridium difficile infection.
Figure 5:Clostridium difficile pathogenesis.

Similar content being viewed by others

References

  1. Bartlett, J. G.Clostridium difficile: history of its role as an enteric pathogen and the current state of knowledge about the organism.Clin. Infect. Dis.18 (Suppl. 4), S265–S272 (1994).Exceptional overview of historical studies and the development of recognition ofC. difficile as a human pathogen.

    Article PubMed  Google Scholar 

  2. Kim, J. et al. Epidemiological features ofClostridium difficile-associated disease among inpatients at children's hospitals in the United States, 2001–2006.Pediatrics122, 1266–1270 (2008).

    Article PubMed  Google Scholar 

  3. Rouphael, N. G. et al.Clostridium difficile-associated diarrhea: an emerging threat to pregnant women.Am. J. Obstet. Gynecol.198, 635.e1–e6 (2008).

    Article  Google Scholar 

  4. Pepin, J. et al.Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity.Can. Med. Assoc. J.171, 466–472 (2004).

    Article  Google Scholar 

  5. Loo, V. G. et al. A predominantly clonal multi-institutional outbreak ofClostridium difficile-associated diarrhea with high morbidity and mortality.N. Engl. J. Med.353, 2442–2449 (2005).Key early study that highlights the transmission, potential risk factors for, and impact of, a new virulentC. difficile clone.

    Article CAS PubMed  Google Scholar 

  6. Labbe, A. C. et al.Clostridium difficile infections in a Canadian tertiary care hospital before and during a regional epidemic associated with the BI/NAP1/027 strain.Antimicrob. Agents Chemother.52, 3180–3187 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  7. Dallal, R. M. et al. FulminantClostridium difficile: an underappreciated and increasing cause of death and complications.Ann. Surg.235, 363–372 (2002).First documentation of the high severity and mortality of CDI, which was subsequently shown to be caused by theC. difficile BI/NAP1/027 strain.

    Article PubMed PubMed Central  Google Scholar 

  8. Kuijper, E. J. et al. Update ofClostridium difficile infection due to PCR ribotype 027 in Europe, 2008.Euro Surveill.13, pii: 18942 (2008).

    PubMed  Google Scholar 

  9. Kuijper, E. J., Coignard, B. & Tull, P. Emergence ofClostridium difficile-associated disease in North America and Europe.Clin. Microbiol. Infect.12 (Suppl. 6), 2–18 (2006).

    Article CAS PubMed  Google Scholar 

  10. Burckhardt, F., Friedrich, A., Beier, D. & Eckmanns, T.Clostridium difficile surveillance trends, Saxony, Germany.Emerg. Infect. Dis.14, 691–692 (2008).

    Article PubMed PubMed Central  Google Scholar 

  11. Soler, P., Nogareda, F. & Cano, R. Rates ofClostridium difficile infection in patients discharged from Spanish hospitals, 1997–2005.Infect. Control Hosp. Epidemiol.29, 887–889 (2008).

    Article PubMed  Google Scholar 

  12. Summary points on quarterly (October to December. 2008) and financial year (2007/08) acute TrustClostridium difficile data. Key points: analyses of quarterly mandatoryClostridium difficile surveillance data.Health Protection Agency[online], (2008).

  13. McDonald, L. C. et al. An epidemic, toxin gene-variant strain ofClostridium difficile.N. Engl. J. Med.353, 2433–2441 (2005).First report of the toxin variantC. difficile BI/NAP1/027 in the United States.

    Article CAS PubMed  Google Scholar 

  14. Muto, C. A. et al. A large outbreak ofClostridium difficile-associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use.Infect. Control Hosp. Epidemiol.26, 273–280 (2005).

    Article PubMed  Google Scholar 

  15. Hubert, B. et al. A portrait of the geographic dissemination of theClostridium difficile North American pulsed-field type 1 strain and the epidemiology ofC. difficile-associated disease in Québec.Clin. Infect. Dis.44, 238–244 (2007).

    Article CAS PubMed  Google Scholar 

  16. Killgore, G. et al. Comparison of seven techniques for typing international epidemic strains ofClostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing.J. Clin. Microbiol.46, 431–437 (2008).Updated comparison of typing techniques forC. difficile.

    Article CAS PubMed  Google Scholar 

  17. Fawley, W. N. et al. Use of highly discriminatory fingerprinting to analyze clusters ofClostridium difficile infection cases due to epidemic ribotype 027 strains.J. Clin. Microbiol.46, 954–960 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  18. Borgmann, S. et al. Increased number ofClostridium difficile infections and prevalence ofClostridium difficile PCR ribotype 001 in southern Germany.Euro Surveill.13, pii: 19057 (2008).

    PubMed  Google Scholar 

  19. Goorhuis, A. et al. Emergence ofClostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078.Clin. Infect. Dis.47, 1162–1170 (2008).

    Article CAS PubMed  Google Scholar 

  20. Rupnik, M., Widmer, A., Zimmermann, O., Eckert, C. & Barbut, F.Clostridium difficile toxinotype V, ribotype 078, in animals and humans.J. Clin. Microbiol.46, 2146 (2008).

    Article PubMed PubMed Central  Google Scholar 

  21. Hirschhorn, L. R., Trnka, Y., Onderdonk, A., Lee, M. L. & Platt, R. Epidemiology of community-acquiredClostridium difficile-associated diarrhea.J. Infect. Dis.169, 127–133 (1994).

    Article CAS PubMed  Google Scholar 

  22. Chernak, E. et al. SevereClostridium difficile–associated disease in populations previously at low risk — four states.Morb. Mortal. Wkly Rep.54, 1201–1205 (2005).

    Google Scholar 

  23. Centers for Disease Control and Prevention (CDC). Surveillance for community-associatedClostridium difficile--Connecticut, 2006.Morb. Mortal. Wkly Rep.57, 340–343 (2008).

  24. Wilcox, M. H., Mooney, L., Bendall, R., Settle, C. D. & Fawley, W. N. A case-control study of community-associatedClostridium difficile infection.J. Antimicrob. Chemother.62, 388–396 (2008).

    Article CAS PubMed  Google Scholar 

  25. Thompson, A. et al. inNinth Biennial Congress of the Anaerobe Society of Americas. PII-14 (Long Beach, California, 2008).

    Google Scholar 

  26. Angulo, F. et al. inSecond International Clostridium difficile Symposium. P5 (Maribor, Slovenia, 2007).

    Google Scholar 

  27. al Saif, N. & Brazier, J. S. The distribution ofClostridium difficile in the environment of South Wales.J. Med. Microbiol.45, 133–137 (1996).Documentation of the high level of environmental contamination byC. difficile.

    Article CAS PubMed  Google Scholar 

  28. Rodriguez-Palacios, A., Staempfli, H. R., Duffield, T. & Weese, J. S. Clostridium difficile in retail ground meat, Canada.Emerg. Infect. Dis.13, 485–487 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  29. Songer, J. et al.Clostridium difficile in retail meat products, USA, 2007.Emerg. Infect. Dis.15, 819–821 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  30. Jhung, M. A. et al. Toxinotype VClostridium difficile in humans and food animals.Emerg. Infect. Dis.14, 1039–1045 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  31. Rupnik, M. IsClostridium difficile-associated infection a potentially zoonotic and foodborne disease?Clin. Microbiol. Infect.13, 457–459 (2007).

    Article CAS PubMed  Google Scholar 

  32. Songer, G. J. & Anderson, M. A.Clostridium difficile: an important pathogen of food animals.Anaerobe12, 1–4 (2006).

    Article CAS PubMed  Google Scholar 

  33. Rodruiges-Palacios, A. et al.Clostridium difficile PCR ribotypes in calves, Canada.Emerg. Infect. Dis.12, 1730–1736 (2006).

    Article  Google Scholar 

  34. Keel, K. & Songer, J. G. The comparative pathology ofClostridium difficile-associated disease.Vet. Pathol.43, 225–240 (2006).

    Article CAS PubMed  Google Scholar 

  35. Keel, K., Brazier, J. S., Post, K. W., Weese, S. & Songer, J. G. Prevalence of PCR ribotypes amongClostridium difficile isolates from pigs, calves, and other species.J. Clin. Microbiol.45, 1963–1964 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  36. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing.PLoS Biol.6, e280 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  37. Chang, J. Y. et al. Decreased diversity of the fecal microbiome in recurrentClostridium difficile-associated diarrhea.J. Infect. Dis.197, 435–438 (2008).Confirmation of the suspected alteration of the normal bacterial flora in patients with recurrent CDI.

    Article PubMed  Google Scholar 

  38. Merrigan, M. M., Sambol, S. P., Johnson, S. & Gerding, D. N. Prevention of fatalClostridium difficile-associated disease during continuous administration of clindamycin in hamsters.J. Infect. Dis.188, 1922–1927 (2003).

    Article CAS PubMed  Google Scholar 

  39. Merrigan, M., Sambol, S., Johnson, S. & Gerding, D. Susceptibility of hamsters to human pathogenicClostridium difficile strain B1 following clindamycin, ampicillin or ceftriaxone administration.Anaerobe9, 91–95 (2003).

    Article CAS PubMed  Google Scholar 

  40. Johnson, S. et al. Epidemics of diarrhea caused by a clindamycin-resistant strain ofClostridium difficile in four hospitals.N. Engl. J. Med.341, 1645–1651 (1999).

    Article CAS PubMed  Google Scholar 

  41. Baines, S. D. et al. Emergence of reduced susceptibility to metronidazole inClostridium difficile.J. Antimicrob. Chemother.62, 1046–1052 (2008).Evidence for the emergence and local spread of reduced susceptibility ofC. difficile to metronidazole, one of only two main options for the treatment of CDI.

    Article CAS PubMed  Google Scholar 

  42. Peláez, T. et al. Metronidazole resistance inClostridium difficile is heterogeneous.J. Clin. Microbiol.46, 3028–3032 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  43. O'Connor, J. R. et al. Rifampin and rifaximin resistance in clinical isolates ofClostridium difficile.Antimicrob. Agents Chemother.52, 2813–2817 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  44. Bartlett, J. G. & Gerding, D. N. Clinical recognition and diagnosis ofClostridium difficile infection.Clin. Infect. Dis.46 (Suppl. 1), 12–18 (2008).

    Article  Google Scholar 

  45. Johansen, A., Vasishta, S., Edison, P. & Hosein, I.Clostridium difficile associated diarrhoea: how good are nurses at identifying the disease?Age Ageing31, 487–488 (2002).

    Article PubMed  Google Scholar 

  46. Burdette, S. D. & Bernstein, J. M. Does the nose know? The odiferous diagnosis ofClostridium difficile-associated diarrhea.Clin. Infect. Dis.44, 1142 (2007).

    Article PubMed  Google Scholar 

  47. Wilcox, M. H. Diagnosis ofClostridium difficile-associated diarrhea and odor.Clin. Infect. Dis.45, 1110 (2007).

    Article PubMed  Google Scholar 

  48. Planche, T. et al. Diagnosis ofClostridium difficile infection by toxin detection kits: a systematic review.Lancet Infect. Dis.8, 777–784 (2008).Summary data showing why there are concerns about the accuracy and poor predictive value of toxin detection kits.

    Article PubMed  Google Scholar 

  49. Sloan, L. M., Duresko, B. J., Gustafson, D. R. & Rosenblatt, J. E. Comparison of real-time PCR for detection of thetcdC gene with four toxin immunoassays and culture in diagnosis ofClostridium difficile infection.J. Clin. Microbiol.46, 1996–2001 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  50. Riggs, M. M. et al. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemicClostridium difficile strains among long-term care facility residents.Clin. Infect. Dis.45, 992–998 (2007).

    Article PubMed  Google Scholar 

  51. Ticehurst, J. R. et al. Effective detection of toxigenicClostridium difficile by a two-step algorithm including tests for antigen and cytotoxin.J. Clin. Microbiol.44, 1145–1149 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  52. Silva, J. Jr et al. Treatment ofClostridium difficile colitis and diarrhea with vancomycin.Am. J. Med.71, 815–822 (1981).

    Article PubMed  Google Scholar 

  53. Teasley, D. G. et al. Prospective randomised trial of metronidazole versus vancomycin forClostridium-difficile-associated diarrhoea and colitis.Lancet2, 1043–1046 (1983).

    Article CAS PubMed  Google Scholar 

  54. Louie, T. et al. inThe 47th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy. K-425a (Chicago, Illinois, 2007).

    Google Scholar 

  55. Zar, F. A., Bakkanagari, S. R., Moorthi, K. M. & Davis, M. B. A comparison of vancomycin and metronidazole for the treatment ofClostridium difficile-associated diarrhea, stratified by disease severity.Clin. Infect. Dis.45, 302–307 (2007).Reported a prospective, randomized, stratified, blinded trial that revealed the superiority of vancomycin versus metronidazole for the treatment of severe CDI.

    Article CAS PubMed  Google Scholar 

  56. Johnson, S., Adelmann, A., Clabots, C. R., Peterson, L. R. & Gerding, D. N.Recurrences ofClostridium difficile diarrhea not caused by the original infecting organism.J. Infect. Dis.159, 340–343 (1989).

    Article CAS PubMed  Google Scholar 

  57. O'Neill, G. L., Beaman, M. H. & Riley, T. V.Relapse versus reinfection withClostridium difficile.Epidemiol. Infect.107, 627–635 (1991).

    Article CAS PubMed PubMed Central  Google Scholar 

  58. Aas, J., Gessert, C. E. & Bakken, J. S.RecurrentClostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube.Clin. Infect. Dis.36, 580–585 (2003).

    Article PubMed  Google Scholar 

  59. Lamontagne, F. et al. Impact of emergency colectomy on survival of patients with fulminantClostridium difficile colitis during an epidemic caused by a hypervirulent strain.Ann. Surg.245, 267–272 (2007).

    Article PubMed PubMed Central  Google Scholar 

  60. Dial, S., Kezouh, A., Dascal, A., Barkun, A. & Suissa, S.Patterns of antibiotic use and risk of hospital admission because ofClostridium difficile infection.Can. Med. Assoc. J.179, 767–772 (2008).

    Article  Google Scholar 

  61. Gaynes, R. et al. Outbreak ofClostridium difficile infection in a long-term care facility: association with gatifloxacin use.Clin. Infect. Dis.38, 640–645 (2004).

    Article PubMed  Google Scholar 

  62. Pepin, J. et al. Emergence of fluoroquinolones as the predominant risk factor forClostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec.Clin. Infect. Dis.41, 1254–1260 (2005).

    Article CAS PubMed  Google Scholar 

  63. Dial, S., Alrasadi, K., Manoukian, C., Huang, A. & Menzies, D. Risk ofClostridium difficile diarrhea among hospital inpatients prescribed proton pump inhibitors: cohort and case-control studies.Can. Med. Assoc. J.171, 33–38 (2004).

    Article  Google Scholar 

  64. Kyne, L., Warny, M., Qamar, A. & Kelly, C. P.Asymptomatic carriage ofClostridium difficile and serum levels of IgG antibody against toxin A.N. Engl. J. Med.342, 390–397 (2000).

    Article CAS PubMed  Google Scholar 

  65. Kyne, L., Warny, M., Qamar, A. & Kelly, C. P.Association between antibody response to toxin A and protection against recurrentClostridium difficile diarrhoea.Lancet357, 189–193 (2001).

    Article CAS PubMed  Google Scholar 

  66. Hu, M. Y. et al. Prospective derivation and validation of a clinical prediction rule for recurrentClostridium difficile infection.Gastroenterology136, 1206–1214 (2009).

    Article PubMed  Google Scholar 

  67. Sebaihia, M. et al. The multidrug-resistant human pathogenClostridium difficile has a highly mobile, mosaic genome.Nature Genet.38, 779–786 (2006).

    PubMed  Google Scholar 

  68. Thelestam, M. & Chaves-Olarte, E. Cytotoxic effects of theClostridium difficile toxins.Curr. Top. Microbiol. Immunol.250, 85–96 (2000).

    CAS PubMed  Google Scholar 

  69. Rupnik, M. & Just, I. inThe Comprehensive Sourcebook of Bacterial Protein Toxins 3rd edn (eds Alouf, J. A. & Popoff, M. R.) 409–429 (Academic Press, Burlington, Massachusetts, USA, 2006).

    Google Scholar 

  70. Jank, T., Giesemann, T. & Aktories, K. Rho-glucosylatingClostridium difficile toxins A and B: new insights into structure and function.Glycobiology17, 15R–22R (2007).Overview of our current knowledge of the structural basis of toxin functions.

    Article CAS PubMed  Google Scholar 

  71. Riegler, M. et al.Clostridium difficile toxin B is more potent than toxin A in damaging human colonic epitheliumin vitro.J. Clin. Invest.95, 2004–2011 (1995).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Pothoulakis, C. Effects ofClostridium difficile toxins on epithelial cell barrier.Ann. NY Acad. Sci.915, 347–356 (2000).

    Article CAS PubMed  Google Scholar 

  73. Hamm, E., Voth, D. E. & Ballard, J. Identification ofClostridium difficile toxin B cardiotoxicity using a zebrafish embryo model of intoxication.Proc. Natl Acad. Sci. USA103, 14176–14181 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  74. Lyerly, D. M., Saum, K. E., MacDonald, D. K. & Wilkins, T. D. Effects ofClostridium difficile given intragastrically to animals.Infect. Immun.47, 349–352 (1985).

    CAS PubMed PubMed Central  Google Scholar 

  75. Heap, J. T., Pennington, O. J., Cartman, S. T., Carter, G. P. & Minton, N. P. The ClosTron: a universal gene knock-out system for the genusClostridium.J. Microbiol. Methods70, 452–464 (2007).

    Article CAS PubMed  Google Scholar 

  76. Lyras, D. et al. Toxin B is essential for virulence ofClostridium difficile.Nature458, 1176–1179 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  77. von Eichel-Streiber, C., Boquet, P., Sauerborn, M. & Thelestam, M. Large clostridial cytotoxins — a family of glycosyltransferases modifying small GTP-binding proteins.Trends Microbiol.4, 375–382 (1996).

    Article CAS PubMed  Google Scholar 

  78. Amimoto, K., Taichi, N., Eiji, O. & Mitsugu, S. A novel toxin homologous to large clostridial catotoxins found in culture supernatant ofClostridium perfringens type C.Microbiology153, 1198–1206 (2007).

    Article CAS PubMed  Google Scholar 

  79. Just, I. et al. Glucosylation of Rho proteins byClostridium difficile toxin B.Nature375, 500–503 (1995).

    Article CAS PubMed  Google Scholar 

  80. Na, X., Kim, H., Moyer, M. P., Pohoulakis, C. & LaMont, T. J. gp96 is a human colonocyte plasma membrane binding protein forClostridium difficile toxin A.Infect. Immun.76, 2862–2871 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  81. Reineke, J. et al. Autocatalytic cleavage ofClostridium difficile toxin B.Nature446, 415–419 (2007).First description of self-cleavage of bacterial toxins during internalization in the host cell.

    Article CAS PubMed  Google Scholar 

  82. Egerer, M., Giesemann, T., Jank, T., Satchell, K. J. & Aktories, K. Auto-catalytic cleavage ofClostridium difficile toxins A and B depends on cysteine protease activity.J. Biol. Chem.282, 25314–25321 (2007).

    Article CAS PubMed  Google Scholar 

  83. Mani, N. & Dupuy, B. Regulation of toxin synthesis inClostridium difficile by an alternative RNA polymerase sigma factor.Proc. Natl Acad. Sci. USA98, 5844–5849 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  84. Matamouros, S., England, P. & Dupuy, B.Clostridium difficile toxin expression is inhibited by the novel regulator TcdC.Mol. Microbiol.64, 1274–1288 (2007).

    Article CAS PubMed  Google Scholar 

  85. Tan, K. S., Wee, B. Y. & Song, K. P. Evidence for holin function oftcdE gene in the pathogenicity ofClostridium difficile.J. Med. Microbiol.50, 613–619 (2001).

    Article CAS PubMed  Google Scholar 

  86. Braun, V., Hundsberger, T., Leukel, P., Sauerborn, M. & Eichel-Streiber, C. Definition of the single integration site of the pathogenicity locus inClostridium difficile.Gene181, 29–38 (1996).Description of the chromosomal element that encodes TcdA and TcdB.

    Article CAS PubMed  Google Scholar 

  87. Rupnik, M. et al. Revised nomenclature ofClostridium difficile toxins and associated genes.J. Med. Microbiol.54, 113–117 (2005).

    Article CAS PubMed  Google Scholar 

  88. Rupnik, M. Heterogeneity of large clostridial toxins: importance ofClostridium difficile toxinotypes.FEMS Microbiol. Rev.2, 541–555 (2008).

    Article CAS  Google Scholar 

  89. Hundsberger, T. et al. Transcription analysis of the genestcdA–E of the pathogenicity locus ofClostridium difficile.Eur. J. Biochem.244, 735–742 (1997).

    Article CAS PubMed  Google Scholar 

  90. Dupuy, B., Govind, R., Antunes, A. & Matamouros, S.Clostridium difficile toxin synthesis is negatively regulated by TcdC.J. Med. Microbiol.57, 685–689 (2008).

    Article CAS PubMed  Google Scholar 

  91. Freeman, J., Baines, S. D. & Wilcox, M. H. Comparison of the efficacy of ramoplaninvs vancomycin in bothin vitro andin vivo models of clindamycin-inducedClostridium difficile infection.J. Antimicrob. Chemother.56, 717–725 (2005).

    Article CAS PubMed  Google Scholar 

  92. Saxton, K., Baines, S. D., Freeman, J., O'Connor, R. & Wilcox, M. H. Effects of exposure ofClostridium difficile PCR ribotypes 027 and 001 to fluoroquinolones in a human gut model.Antimicrob. Agents Chemother.53, 412–420 (2009).

    Article CAS PubMed  Google Scholar 

  93. Dineen, S. S., Villapakkam, A. C., Nordman, J. T. & Sonenshein, A. L. Repression ofClostridium difficile toxin gene expression by CodY.Mol. Microbiol.66, 206–219 (2007).

    Article CAS PubMed  Google Scholar 

  94. Stubbs, S. et al. Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains ofClostridium difficile.FEMS Microbiol. Lett.186, 307–312 (2000).

    Article CAS PubMed  Google Scholar 

  95. Carter, G. P. et al. Binary toxin production inClostridium difficile is regulated by CdtR, a LytTR family response regulator.J. Bacteriol.189, 7290–7301 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  96. Perelle, S., Gibert, M., Bourlioux, P., Corthier, G. & Popoff, M. R. Production of a complete binary toxin (actin-specific ADP-ribosyltranferase) byClostridium difficile CD196.Infect. Immun.65, 1402–1407 (1997).

    CAS PubMed PubMed Central  Google Scholar 

  97. Geric, B. et al. Binary toxin-producing, large clostridial toxin-negativeClostridium difficile strains are enterotoxic but do not cause disease in hamsters.J. Infect. Dis.193, 1143–1150 (2006).

    Article CAS PubMed  Google Scholar 

  98. Calabi, E. & Fairweather, N. Patterns of sequence conservation in the S-layer proteins and related sequences inClostridium difficile.J. Bacteriol.184, 33886–33897 (2002).

    Article CAS  Google Scholar 

  99. Drudy, D. et al. Human antibody response to surface layer proteins inClostridium difficile infection.FEMS Immunol. Med. Microbiol.41, 237–242 (2004).

    Article CAS PubMed  Google Scholar 

  100. Wright, A. et al. Proteomic analysis of cell surface proteins fromClostridium difficile.Proteomics5, 2443–2452 (2005).

    Article CAS PubMed  Google Scholar 

  101. Péchiné, S., Janoir, C. & Collignon, A. Variability ofClostridium difficile surface proteins and specific serum antibody response in patients withClostridium difficile-associated disease.J. Clin. Microbiol.43, 5018–5025 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  102. Ausiello, C. M. et al. Surface layer proteins fromClostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells.Microbes Infect.8, 2640–2646 (2006).

    Article CAS PubMed  Google Scholar 

  103. Merrigan, M. M., Gerding, D. N. & Vedantam, G. inEighth Biennial Conference of the Anaerobe Society of America. PI-12 (Boise, Idaho, 2006).

    Google Scholar 

  104. Fawley, W. N. et al. Efficacy of hospital cleaning agents and germicides against epidemicClostridium difficile strains.Infect. Control Hosp. Epidemiol.28, 920–925 (2007).Quantification of the activity of detergents and disinfectants againstC. difficile and the potential for some of these products to promote sporulation.

    Article PubMed  Google Scholar 

  105. Hellickson, L. A. & Owens, K. L. Cross-contamination ofClostridium difficile spores on bed linen during laundering.Am. J. Infect. Control35, E32–E33 (2007).

    Article  Google Scholar 

  106. Wilcox, M. H. & Fawley, W. N. Hospital disinfectants and spore formation byClostridium difficile.Lancet356, 1324 (2000).

    Article CAS PubMed  Google Scholar 

  107. Baines, S. D., O'Connor, R., Saxton, K., Freeman, J. & Wilcox, M. H. Activity of vancomycin against epidemicClostridium difficile strains in a human gut model.J. Antimicrob. Chemother.63, 520–525 (2009).

    Article CAS PubMed  Google Scholar 

  108. Baines, S. D., O'Connor, R., Saxton, K., Freeman, J. & Wilcox, M. H. Comparison of oritavancin versus vancomycin as treatments for clindamycin-inducedClostridium difficile PCR ribotype 027 infection in a human gut model.J. Antimicrob. Chemother.62, 1078–1085 (2008).

    Article CAS PubMed  Google Scholar 

  109. Johnson, S. et al. Prospective, controlled study of vinyl glove use to interruptClostridium difficile nosocomial transmission.Am. J. Med.88, 137–140 (1990).

    Article CAS PubMed  Google Scholar 

  110. Brooks, S. et al. Reduction in vancomycin-resistantEnterococcus andClostridium difficile infections following change to tympanic thermometers.Infect. Control Hosp. Epidemiol.19, 333–336 (1998).

    Article CAS PubMed  Google Scholar 

  111. Jernigan, J. A., Siegman-Igra, Y., Guerrant, R. C. & Farr, B. M. A randomized crossover study of disposable thermometers for prevention ofClostridium difficile and other nosocomial infections.Infect. Control Hosp. Epidemiol.19, 494–499 (1998).

    Article CAS PubMed  Google Scholar 

  112. Samore, M. H., Venkataraman, L., DeGirolami, P. C., Arbeit, R. D. & Karchmer, A. W. Clinical and molecular epidemiology of sporadic and clustered cases of nosocomialClostridium difficile diarrhea.Am. J. Med.100, 32–40 (1996).

    Article CAS PubMed  Google Scholar 

  113. McFarland, L. V., Mulligan, M. E., Kwok, R. Y. & Stamm, W. E. Nosocomial acquisition ofClostridium difficile infection.N. Engl. J. Med.320, 204–210 (1989).

    Article CAS PubMed  Google Scholar 

  114. Mayfield, J. L., Leet, T., Miller, J. & Mundy, L. M. Environmental control to reduce transmission ofClostridium difficile.Clin. Infect. Dis.31, 995–1000 (2000).

    Article CAS PubMed  Google Scholar 

  115. Wilcox, M. H. et al. Comparison of effect of detergent versus hypochlorite cleaning on environmental contamination and incidence ofClostridium difficile infection.J. Hosp. Infect.54, 109–114 (2003).

    Article CAS PubMed  Google Scholar 

  116. Wilcox, M. H. et al. Long-term surveillance of cefotaxime and piperacillin-tazobactam prescribing and incidence ofClostridium difficile diarrhoea.J. Antimicrob. Chemother.54, 168–172 (2004).

    Article CAS PubMed  Google Scholar 

  117. Davey, P. et al. Interventions to improve antibiotic prescribing practices for hospital inpatients.Cochrane Database Syst. Rev.19, CD003543 (2005).

    Google Scholar 

  118. Davey, P. et al. Systematic review of antimicrobial drug prescribing in hospitals.Emerg. Infect. Dis.12, 211–216 (2006).

    Article PubMed PubMed Central  Google Scholar 

  119. Valiquette, L., Cossette, B., Garant, M. P., Diab, H. & Pepin, J. Impact of a reduction in the use of high risk antibiotics on the course of an epidemic ofClostridium difficile associated disease caused by the hypervirulent NAP1/027 strain.Clin. Infect. Dis.45, S112–S121 (2007).Useful assessment of the major changes to antimicrobial prescribing that were implemented as part of the control of a large outbreak of CDI caused predominantly by a new virulentC. difficile clone.

    Article CAS PubMed  Google Scholar 

  120. Muto, C. A. et al. Control of an outbreak of infection with the hypervirulentClostridium difficile BI strain in a University hospital using a comprehensive 'bundle' approach.Clin. Infect. Dis.45, 1266–1273 (2007).

    Article PubMed  Google Scholar 

  121. Dendukuri, N., Costa, V., McGregor, M. & Brophy, J. M. Probiotic therapy for the prevention and treatment ofClostridium difficile-associated diarrhea: a systematic review.Can. Med. Assoc. J.173, 167–170 (2005); erratum173, 345 (2005).

    Article  Google Scholar 

  122. Dendukuri, N. & Brophy, J. Inappropriate use of meta-analysis to estimate efficacy of probiotics.Am. J. Gastroenterol.102, 201 (2007); author reply102, 202–204 (2007).

    Article PubMed  Google Scholar 

  123. Lewis, S. Response to the article: McFarland, L. V. Meta-analysis of probiotics for the prevention of antibiotic-associated diarrhea and the treatment ofClostridium difficile disease.Am. J. Gastroenterol.101, 812–822 (2006).Am. J. Gastroenterol.102, 201–202 (2007).

    Article  Google Scholar 

  124. Rupnik, M., Avesani, V., Janc, M., Eichel-Streiber, C. & Delmee, M. A novel toxinotyping scheme and correlation of toxinotypes with serogroups ofClostridium difficile isolates.J. Clin. Microbiol.36, 2240–2247 (1998).

    CAS PubMed PubMed Central  Google Scholar 

  125. Curry, S. R.et al. tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains ofClostridium difficile.J. Clin. Microbiol.45, 215–221 (2007).

    Article CAS PubMed  Google Scholar 

  126. Shim, J. K., Johnson, S., Samore, M. H., Bliss, D. Z. & Gerding, D. N. Primary symptomless colonisation byClostridium difficile and decreased risk of subsequent diarrhoea.Lancet351, 633–636 (1998).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

M.R. was supported by EU grant 223585, ERA NET PathoGenoMics grant and ARRS grant J3-0194-0377-08.

Author information

Authors and Affiliations

  1. Institute of Public Health Maribor, Centre for Microbiology, Prvomajska 1, 2000 Maribor, Slovenia, and University of Maribor, Faculty of Medicine, Slomaskov trg 15, 2000, Maribor, Slovenia

    Maja Rupnik

  2. Leeds General Infirmary, Leeds, LS1 3EX, UK

    Mark H. Wilcox

  3. Hines Veterans Affairs Hospital and Loyola University Chicago Stritch School of Medicine, ACOS Research and Development, 5th Avenue and Roosevelt Road, Building 1, Hines, 60141, Illinois, USA

    Dale N. Gerding

Authors
  1. Maja Rupnik
  2. Mark H. Wilcox
  3. Dale N. Gerding

Ethics declarations

Competing interests

Dale N. Gerding has received research grants from ViroPharma, Optimer, Merck, GOJO Industries, Cepheid and Massachusetts Biological Laboratories. He is a consultant or advisory board member for ViroPharma, Optimer, Merck, GOJO Industries, Cepheid and BD GeneOhm. He currently holds patents forC. difficile prevention that are licensed to ViroPharma.

Glossary

Pseudomembranous colitis

Found in some (generally the more severe cases) but not all patients withClostridium difficile infection, and refers to changes on the inner surface of the lining of the large intestine (colon). Characteristically, the colon is inflamed and has visible patches caused by an inflammatory membrane that consists of red and white blood cells, fibrin and bacteria.

Leukocytosis

A term used to refer to an individual with an increased number of white blood cells. A common explanation for leukocytosis is infection, and in general the higher the number of white blood cells (particularly neutrophils) in the blood the greater the severity of the infection.

Toxic megacolon

An uncommon condition that occurs in only the most severe cases ofClostridium difficile infection. The large bowel (colon) becomes dangerously inflamed and dilated, and can eventually perforate.

Ribotype

Characterized by the pattern of amplified intergenic regions in the ribosomal RNA operons present inClostridium difficile in multiple copies.

Toxinotype

A group ofC. difficile strains with identical changes in the toxin-coding region known as the pathogenicity locus (PaLoc).

Heteroresistance

A type of resistance in which some but not all of the cells in a population are resistant to an antibiotic; the remainder retain their susceptibility to the antibiotic.

Negative predictive value

A measurement (usually expressed as a percentage) of all negative test results that are truly negative.

Positive predictive value

A measurement (usually expressed as a percentage) of all positive test results that are truly positive.

Rights and permissions

About this article

Cite this article

Rupnik, M., Wilcox, M. & Gerding, D.Clostridium difficile infection: new developments in epidemiology and pathogenesis.Nat Rev Microbiol7, 526–536 (2009). https://doi.org/10.1038/nrmicro2164

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp