Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Molecular Cell Biology
  • Review Article
  • Published:

The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis

Nature Reviews Molecular Cell Biologyvolume 19pages45–58 (2018)Cite this article

Subjects

Key Points

  • There is an incalculable number of potential molecular tRNA species, represented by their post-transcriptionally modified forms, by the presence of isoacceptors and isodecoders as well as by the generation of tRNA fragments and the formation of complexes between tRNAs and various proteins.

  • These molecular species are active, both within and outside of translation, as regulators of cellular homeostasis.

  • Modifications of bases are prominent in regulating translation for adaptation to the local environment.

  • Fragmentation repurposes tRNAs to functions outside of translation, including regulation of gene expression and epigenetics.

  • These repurposed functions of tRNAs and their fragments may have arisen early, during the development of the genetic code.

  • The complexity of the tRNA world is so vast that the analysis of how all these functions and molecular species act together will require tools analogous to those used in designing artificial intelligence systems.

Abstract

The discovery of the genetic code and tRNAs as decoders of the code transformed life science. However, after establishing the role of tRNAs in protein synthesis, the field moved to other parts of the RNA world. Now, tRNA research is blooming again, with demonstration of the involvement of tRNAs in various other pathways beyond translation and in adapting translation to environmental cues. These roles are linked to the presence of tRNA sequence variants known as isoacceptors and isodecoders, various tRNA base modifications, the versatility of protein binding partners and tRNA fragmentation events, all of which collectively create an incalculable complexity. This complexity provides a vast repertoire of tRNA species that can serve various functions in cellular homeostasis and in adaptation of cellular functions to changing environments, and it likely arose from the fundamental role of RNAs in early evolution.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall structure of tRNAs and the various isoacceptors and isodecoders.
Figure 2: The build-up of complexity in the tRNA world.
Figure 3: Complexes of tRNAs with binding partners.
Figure 4: Examples of the many regulatory roles of tRNAs.
Figure 5: tRNA fragments in the regulation of cell biology.
Figure 6: Emergence of tRNA structure from its individual domains.

Similar content being viewed by others

References

  1. Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing.Nat. Methods12, 835–837 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  2. Cozen, A. E. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments.Nat. Methods12, 879–884 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  3. Arimbasseri, A. G. et al. RNA polymerase III output is functionally linked to tRNA dimethyl-G26 modification.PLoS Genet.11, e1005671 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  4. Chen, Q., Yan, W. & Duan, E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications.Nat. Rev. Genet.17, 733–743 (2016).This highly readable review describes the latest advances on sperm-mediated epigenetic inheritance and the connection to tRNA.

    Article CAS PubMed PubMed Central  Google Scholar 

  5. Kirchner, S. & Ignatova, Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease.Nat. Rev. Genet.16, 98–112 (2015).This is a good summary and overview of the historical literature on aspects of tRNA repurposing.

    Article CAS PubMed  Google Scholar 

  6. Lyons, S. M., Fay, M. M., Akiyama, Y., Anderson, P. & Ivanov, P. RNA biology of angiogenin: current state and perspectives.RNA Biol.http://dx.doi.org/10.1080/15476286.2016.1272746 (2016).This perspective provides an excellent summary of the broad reach of angiogenin.

  7. Zhang, X., Cozen, A. E., Liu, Y., Chen, Q. & Lowe, T. M. Small RNA modifications: integral to function and disease.Trends Mol. Med.22, 1025–1034 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  8. Lyons, S. M., Fay, M. M. & Ivanov,P. inModified Nucleic Acids in Biology and Medicine (eds Jurga, J., Volker Erdmann, A. & Barciszewski, J.) 27–54 (Springer International Publishing, 2016).

    Book  Google Scholar 

  9. Agris, P. F., Narendran, A., Sarachan, K. & Vare, Y. P. V. & Eruysal, E. inThe Enzmes Vol. 41 (ed. Chanfreau, G.) (Elsevier, 2017).

    Google Scholar 

  10. Rich, A. & RajBhandary, U. L. Transfer RNA: molecular structure, sequence, and properties.Annu. Rev. Biochem.45, 805–860 (1976).This is a classic review of the early structural work on tRNAs and has stood the test of time for its utility.

    Article CAS PubMed  Google Scholar 

  11. Suzuki, T., Nagao, A. & Suzuki, T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases.Annu. Rev. Genet.45, 299–329 (2011).

    Article CAS PubMed  Google Scholar 

  12. Kelley, S. O., Steinberg, S. V. & Schimmel, P. Functional defects of pathogenic human mitochondrial tRNAs related to structural fragility.Nature Struct. Biol.7, 862–865 (2000).

    Article CAS PubMed  Google Scholar 

  13. Kelley, S. O., Steinberg, S. V. & Schimmel, P. Fragile T-stem in disease-associated human mitochondrial tRNA sensitizes structure to local and distant mutations.J. Biol. Chem.276, 10607–10611 (2001).

    Article CAS PubMed  Google Scholar 

  14. Iben, J. R. & Maraia, R. J. tRNA gene copy number variation in humans.Gene536, 376–384 (2014).

    Article CAS PubMed  Google Scholar 

  15. Parisien, M., Wang, X. & Pan, T. Diversity of human tRNA genes from the 1000-genomes project.RNA Biol.10, 1853–1867 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  16. Abe, T. et al. tRNADB-CE: tRNA gene database well-timed in the era of big sequence data.Front. Genet.5, 114 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  17. Francklyn, C. & Schimmel, P. Aminoacylation of RNA minihelices with alanine.Nature337, 478–481 (1989).

    Article CAS PubMed  Google Scholar 

  18. Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression.PLoS Genet.2, e221 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Geslain, R. & Pan, T. Functional analysis of human tRNA isodecoders.J. Mol. Biol.396, 821–831 (2010).

    Article CAS PubMed  Google Scholar 

  20. Machnicka, M. A. et al. MODOMICS: a database of RNA modification pathways—2013 update.Nucleic Acids Res.41, D262–D267 (2013).

    Article CAS PubMed  Google Scholar 

  21. Cantara, W. A. The RNA Modification Database, RNAMDB: 2011 update.Nucleic Acids Res.39, D195–D201 (2011).

    Article CAS PubMed  Google Scholar 

  22. Saikia, M., Fu, Y., Pavon-Eternod, M., He, C. & Pan, T. Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs.RNA16, 1317–1327 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  23. Clark, W. C., Evans, M. E., Dominissini, D., Zheng, G. & Pan, T. tRNA base methylation identification and quantification via high-throughput sequencing.RNA22, 1771–1784 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  24. Torres, A. G., Batlle, E. & Ribas de Pouplana, L. Role of tRNA modifications in human diseases.Trends Mol. Med.20, 306–314 (2014).This review provides comprehensive coverage of disease connections to tRNA modifications.

    Article CAS PubMed  Google Scholar 

  25. Frohlich, K. M. et al. inModified Nucleic Acids in Biology and Medicine (eds Jurga, J., Volker Erdmann, A. & Barciszewski, J.) 91–130 (Springer International Publishing, 2016).

    Book  Google Scholar 

  26. Lodish, H. F. & Darnell, J.Molecular Cell Biology 3rd edn (Scientific American Books, 1995).

    Google Scholar 

  27. Ibba, M., Francklyn, C. & Cusack, S.The Aminoacyl-tRNA Synthetases. (Landes Bioscience, 2005).

    Google Scholar 

  28. Ling, J. & Söll, D. inEncyclopedia of Biophysics (ed. Roberts Gordon C. K.) 57–61 (Springer, 2013).

    Book  Google Scholar 

  29. Beebe, K., Mock, M., Merriman, E. & Schimmel, P. Distinct domains of tRNA synthetase recognize the same base pair.Nature451, 90–93 (2008).

    Article CAS PubMed  Google Scholar 

  30. Ruan, L. L., Zhou, X. L., Tan, M. & Wang, E. D. Human cytoplasmic ProX edits mischarged tRNAPro with amino acid but not tRNA specificity.Biochem. J.450, 243–252 (2013).

    Article CAS PubMed  Google Scholar 

  31. Yao, P. & Fox, P. L. Aminoacyl-tRNA synthetases in medicine and disease.EMBO Mol. Med.5, 332–343 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  32. Yao, P., Poruri, K., Martinis, S. A. & Fox, P. L. Non-catalytic regulation of gene expression by aminoacyl-tRNA synthetases.Top. Curr. Chem.344, 167–187 (2014).

    Article CAS PubMed  Google Scholar 

  33. Arif, A. et al. EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice.Nature542, 357–361 (2017).

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Ofir-Birin, Y. et al. Structural switch of lysyl-tRNA synthetase between translation and transcription.Mol. Cell49, 30–42 (2013).

    Article CAS PubMed  Google Scholar 

  35. Ahn, Y. H. et al. Secreted tryptophanyl-tRNA synthetase as a primary defence system against infection.Nat. Microbiol.2, 16191 (2016).

    Article CAS PubMed  Google Scholar 

  36. Motzik, A., Nechushtan, H., Foo, S. Y. & Razin, E. Non-canonical roles of lysyl-tRNA synthetase in health and disease.Trends Mol. Med.19, 726–731 (2013).

    Article CAS PubMed  Google Scholar 

  37. Guo, M. & Schimmel, P. Essential nontranslational functions of tRNA synthetases.Nature Chem. Biol.9, 145–153 (2013).

    Article CAS  Google Scholar 

  38. Lo, W. S. et al. Human tRNA synthetase catalytic nulls with diverse functions.Science345, 328–332 (2014).This is a summary of the splice variants of human tRNA synthetases, many of which can interact with tRNAs to form a wide class of protein–tRNA complexes.

    Article CAS PubMed PubMed Central  Google Scholar 

  39. Gale, A. J. & Schimmel, P. Isolated RNA binding domain of a class I tRNA synthetase.Biochemistry34, 8896–8903 (1995).

    Article CAS PubMed  Google Scholar 

  40. Wright, D. J., Martinis, S. A., Jahn, M., Söll, D. & Schimmel, P. Acceptor stem and anticodon RNA hairpin helix interactions with glutamine tRNA synthetase.Biochimie75, 1041–1049 (1993).

    Article CAS PubMed  Google Scholar 

  41. Morales, A. J., Swairjo, M. A. & Schimmel, P. Structure-specific tRNA-binding protein from the extreme thermophile Aquifex aeolicus.EMBO J.18, 3475–3483 (1999).

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Swairjo, M. A., Morales, A. J., Wang, C. C., Ortiz, A. R. & Schimmel, P. Crystal structure of trbp111: a structure-specific tRNA-binding protein.EMBO J.19, 6287–6298 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  43. Kushiro, T. & Schimmel, P. Trbp111 selectively binds a noncovalently assembled tRNA-like structure.Proc. Natl Acad. Sci. USA99, 16631–16635 (2002).

    Article CAS PubMed  Google Scholar 

  44. Fett, J. W. et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells.Biochemistry24, 5480–5486 (1985).

    Article CAS PubMed  Google Scholar 

  45. Strydom, D. J. et al. Amino acid sequence of human tumor derived angiogenin.Biochemistry24, 5486–5494 (1985).

    Article CAS PubMed  Google Scholar 

  46. Vallee, B. L. et al. Tumor-derived angiogenesis factors from rat Walker 256 carcinoma: an experimental investigation and review.Experientia41, 1–15 (1985).

    Article CAS PubMed  Google Scholar 

  47. Honda, S. et al. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers.Proc. Natl Acad. Sci. USA112, E3816–E3825 (2015).This paper connected sex hormone tumorigenesis with aminoacylated tRNAs that are cleaved by angiogenin.

    Article CAS PubMed  Google Scholar 

  48. Novoa, E. M. & Ribas de Pouplana, L. Speeding with control: codon usage, tRNAs, and ribosomes.Trends Genet.28, 574–581 (2012).

    Article CAS PubMed  Google Scholar 

  49. Rudolph, K. L. et al. Codon-driven translational efficiency is stable across diverse mammalian cell states.PLoS Genet.12, e1006024 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  50. Goodarzi, H. et al. Modulated expression of specific tRNAs drives gene expression and cancer progression.Cell165, 1416–1427 (2016).This is a powerful study of adaptive translation driving cancer development and progression.

    Article CAS PubMed PubMed Central  Google Scholar 

  51. Bazzini, A. A. et al. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition.EMBO J.35, 2087–2103 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  52. Presnyak, V. et al. Codon optimality is a major determinant of mRNA stability.Cell160, 1111–1124 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  53. Ishimura, R. et al. RNA function. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration.Science345, 455–459 (2014).This reports describes the first example of a tissue-specific isodecoder connected to neuronal homeostasis.

    Article CAS PubMed PubMed Central  Google Scholar 

  54. Ishimura, R., Nagy, G., Dotu, I., Chuang, J. H. & Ackerman, S. L. Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation.eLifehttp://dx.doi.org/10.7554/eLife.14295 (2016).

  55. Shigi, N. inModified Nucleic Acids in Biology and Medicine (eds Jurga, J., Volker Erdmann, A. & Barciszewski, J.) 55–71 (Springer International Publishing, 2016).

    Book  Google Scholar 

  56. Liu, F. et al. ALKBH1-mediated tRNA demethylation regulates translation.Cell167, 1897 (2016).This was the first detailed investigation of how a specific base modification can regulate translation.

    Article CAS PubMed  Google Scholar 

  57. Agris, P. F., Vendeix, F. A. & Graham, W. D. tRNA's wobble decoding of the genome: 40 years of modification.J. Mol. Biol.366, 1–13 (2007).

    Article CAS PubMed  Google Scholar 

  58. Maehigashi, T., Dunkle, J. A., Miles, S. J. & Dunham, C. M. Structural insights into +1 frameshifting promoted by expanded or modification-deficient anticodon stem loops.Proc. Natl Acad. Sci. USA111, 12740–12745 (2014).

    Article CAS PubMed  Google Scholar 

  59. Suzuki, T. & Suzuki, T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs.Nucleic Acids Res.42, 7346–7357 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  60. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome.Nat. Methods12, 767–772 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  61. Cai, W. M. et al. A platform for discovery and quantification of modified ribonucleosides in RNA: application to stress-induced reprogramming of tRNA modifications.Methods Enzymol.560, 29–71 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  62. Chionh, Y. H. et al. tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence.Nature Commun.7, 13302 (2016).This work describes an in-depth RNA-Seq array analysis to study how a specific tRNA modification mobilizes adaptive translation to enable survival and persistence of an intracellular pathogen.

    Article CAS  Google Scholar 

  63. Via, L. E. et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates.Infect. Immun.76, 2333–2340 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  64. Galagan, J. E. et al. TheMycobacterium tuberculosis regulatory network and hypoxia.Nature499, 178–183 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  65. Leistikow, R. L. et al. TheMycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy.J. Bacteriol.192, 1662–1670 (2010).

    Article CAS PubMed  Google Scholar 

  66. Majumdar, S. D. et al. Appropriate DevR (DosR)-mediated signaling determines transcriptional response, hypoxic viability and virulence ofMycobacterium tuberculosis.PLoS ONE7, e35847 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  67. Selvaraj, S., Sambandam, V., Sardar, D. & Anishetty, S. In silico analysis of DosR regulon proteins ofMycobacterium tuberculosis.Gene506, 233–241 (2012).

    Article CAS PubMed  Google Scholar 

  68. Saint-Leger, A. et al. Saturation of recognition elements blocks evolution of new tRNA identities.Sci. Adv.2, e1501860 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  69. Ivanov, P. et al. G-Quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments.Proc. Natl Acad. Sci. USA111, 18201–18206 (2014).

    Article CAS PubMed  Google Scholar 

  70. Ivanov, P., Emara, M. M., Villen, J., Gygi, S. P. & Anderson, P. Angiogenin-induced tRNA fragments inhibit translation initiation.Mol. Cell43, 613–623 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  71. Lyons, S. M., Achorn, C., Kedersha, N. L., Anderson, P. J. & Ivanov, P. YB-1 regulates tiRNA-induced stress granule formation but not translational repression.Nucleic Acids Res.44, 6949–6960 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Zhang, Y. et al. Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection.J. Mol. Cell. Biol.6, 172–174 (2014).

    Article PubMed  Google Scholar 

  73. Dhahbi, J. M. et al. 5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction.BMC Genomics14, 298 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  74. Mishima, E. et al. Conformational change in transfer RNA is an early indicator of acute cellular damage.J. Am. Soc. Nephrol.25, 2316–2326 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  75. Saikia, M. et al. Angiogenin-cleaved tRNA halves interact with cytochromec, protecting cells from apoptosis during osmotic stress.Mol. Cell. Biol.34, 2450–2463 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  76. Mei, Y. et al. tRNA binds to cytochromec and inhibits caspase activation.Mol. Cell37, 668–678 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  77. Goodarzi, H. et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement.Cell161, 790–802 (2015).This is an in-depth study of how tRNA fragments capture and disable pro-oncogenic transcripts.

    Article CAS PubMed PubMed Central  Google Scholar 

  78. Uchiumi, T. et al. YB-1 is important for an early stage embryonic development: neural tube formation and cell proliferation.J. Biol. Chem.281, 40440–40449 (2006).

    Article CAS PubMed  Google Scholar 

  79. Lasham, A. et al. YB-1, the E2F pathway, and regulation of tumor cell growth.J. Natl Cancer Inst.104, 133–146 (2012).

    Article CAS PubMed  Google Scholar 

  80. Wu, Y. et al. Strong YB-1 expression is associated with liver metastasis progression and predicts shorter disease-free survival in advanced gastric cancer.J. Surg. Oncol.105, 724–730 (2012).

    Article CAS PubMed  Google Scholar 

  81. Jurchott, K. et al. Identification of Y-box binding protein 1 as a core regulator of MEK/ERK pathway-dependent gene signatures in colorectal cancer cells.PLoS Genet.6, e1001231 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  82. Saikia, M. et al. Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress.J. Biol. Chem.287, 42708–42725 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  83. Pekarsky, Y. et al. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer.Proc. Natl Acad. Sci. USA113, 5071–5076 (2016).

    Article CAS PubMed  Google Scholar 

  84. Goncalves, K. A. et al. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells.Cell166, 894–906 (2016).This study reveals the surprising role of angiogenin in dichotomous regulation of haematopoiesis.

    Article CAS PubMed PubMed Central  Google Scholar 

  85. Carone, B. R. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals.Cell143, 1084–1096 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  86. Ng, S. F. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring.Nature467, 963–966 (2010).

    Article CAS PubMed  Google Scholar 

  87. Shea, J. M. Genetic and epigenetic variation, but not diet, shape the sperm methylome.Dev. Cell35, 750–758 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  88. Gapp, K. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice.Nat. Neurosci.17, 667–669 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  89. Rassoulzadegan, M. RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse.Nature441, 469–474 (2006).

    Article CAS PubMed  Google Scholar 

  90. Peng, H. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm.Cell Res.22, 1609–1612 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  91. Chen, Q. et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder.Science351, 397–400 (2016).

    Article CAS PubMed  Google Scholar 

  92. Sharma, U. et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.Science351, 391–396 (2016).References 91 and 92 are back-to-back landmark papers on tRNA fragmentation in sperm-mediated epigenetic inheritance.

    Article CAS PubMed  Google Scholar 

  93. Schoorlemmer, J., Perez-Palacios, R., Climent, M., Guallar, D. & Muniesa, P. Regulation of mouse retroelement MuERV-L/MERVL expression by REX1 and epigenetic control of stem cell potency.Front. Oncol.4, 14 (2014).

    Article PubMed PubMed Central  Google Scholar 

  94. Blanco, S. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders.EMBO J.33, 2020–2039 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  95. Schaefer, M. et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage.Genes Dev.24, 1590–1595 (2010).This is an in-depth study of how m5C methylation of tRNAs regulates stem cell function.

    Article CAS PubMed PubMed Central  Google Scholar 

  96. Spriggs, K. A., Bushell, M. & Willis, A. E. Translational regulation of gene expression during conditions of cell stress.Mol. Cell40, 228–237 (2010).

    Article CAS PubMed  Google Scholar 

  97. Tuorto, F. et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis.Nature Struct. Mol. Biol.19, 900–905 (2012).

    Article CAS  Google Scholar 

  98. Blanco, S. et al. Stem cell function and stress response are controlled by protein synthesis.Nature534, 335–340 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  99. Blanco, S. The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate.PLoS Genet.7, e1002403 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  100. Frugier, M., Florentz, C. & Giegé, R. Anticodon-independent aminoacylation of an RNA minihelix with valine.Proc. Natl Acad. Sci. USA89, 3990–3994 (1992).

    Article CAS PubMed  Google Scholar 

  101. Rudinger, J., Florentz, C., Dreher, T. & Giegé, R. Efficient mischarging of a viral tRNA-like structure and aminoacylation of a minihelix containing a pseudoknot: histidinylation of turnip yellow mosaic virus RNA.Nucleic Acids Res.20, 1865–1870 (1992).

    Article CAS PubMed PubMed Central  Google Scholar 

  102. Frugier, M., Florentz, C. & Giegé, R. Efficient aminoacylation of resected RNA helices by class II aspartyl-tRNA synthetase dependent on a single nucleotide.EMBO J.13, 2218–2226 (1994).

    Article CAS PubMed PubMed Central  Google Scholar 

  103. Felden, B. & Giegé, R. Resected RNA pseudoknots and their recognition by histidyl-tRNA synthetase.Proc. Natl Acad. Sci. USA95, 10431–10436 (1998).

    Article CAS PubMed  Google Scholar 

  104. Sampson, J. R. & Saks, M. E. Contributions of discrete tRNA(Ser) domains to aminoacylation by E.coli seryl-tRNA synthetase: a kinetic analysis using model RNA substrates.Nucleic Acids Res.21, 4467–4475 (1993).

    Article CAS PubMed PubMed Central  Google Scholar 

  105. Saks, M. E. & Sampson, J. R. Variant minihelix RNAs reveal sequence-specific recognition of the helical tRNA(Ser) acceptor stem by E.coli seryl-tRNA synthetase.EMBO J.15, 2843–2849 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  106. Hamann, C. S. & Hou, Y. M. Enzymatic aminoacylation of tRNA acceptor stem helices with cysteine is dependent on a single nucleotide.Biochemistry34, 6527–6532 (1995).

    Article CAS PubMed  Google Scholar 

  107. Nierhaus, K. H., Franceschi, F. o., Subramanian, A. R., Erdmann, V. A. & Wittmann-Liebold, B.The Translational Apparatus: Structure, Function, Regulation, Evolution (Springer, 1993).

    Book  Google Scholar 

  108. Beuning, P. J. & Musier-Forsyth, K. Transfer RNA recognition by aminoacyl-tRNA synthetases.Biopolymers52, 1–28 (1999).

    Article CAS PubMed  Google Scholar 

  109. Musier-Forsyth, K. & Schimmel, P. Atomic determinants for aminoacylation of RNA minihelices and relationship to genetic code.Accounts Chem. Res.32, 368–375 (1999).

    Article CAS  Google Scholar 

  110. de Duve, C. Transfer RNAs: the second genetic code.Nature333, 117–118 (1988).

    Article CAS PubMed  Google Scholar 

  111. Möller, W. & Janssen, G. M. Statistical evidence for remnants of the primordial code in the acceptor stem of prokaryotic transfer RNA.J. Mol. Evol.34, 471–477 (1992).

    Article PubMed  Google Scholar 

  112. Rodin, S., Rodin, A. & Ohno, S. The presence of codon-anticodon pairs in the acceptor stem of tRNAs.Proc. Natl Acad. Sci. USA93, 4537–4542 (1996).

    Article CAS PubMed  Google Scholar 

  113. Branciamore, S. & Di Giulio, M. The presence in tRNA molecule sequences of the double hairpin, an evolutionary stage through which the origin of this molecule is thought to have passed.J. Mol. Evol.72, 352–363 (2011).

    Article CAS PubMed  Google Scholar 

  114. Schimmel, P., Giegé, R., Moras, D. & Yokoyama, S. An operational RNA code for amino acids and possible relationship to genetic code.Proc. Natl Acad. Sci. USA90, 8763–8768 (1993).

    Article CAS PubMed  Google Scholar 

  115. Weiner, A. M. & Maizels, N. tRNA-like structures tag the 3′ ends of genomic RNA molecules for replication: implications for the origin of protein synthesis.Proc. Natl Acad. Sci. USA84, 7383–7387 (1987).

    Article CAS PubMed  Google Scholar 

  116. Weiner, A. M. & Maizels, N. Molecular evolution. Unlocking the secrets of retroviral evolution.Curr. Biol.4, 560–563 (1994).

    Article CAS PubMed  Google Scholar 

  117. Blackburn, E. H. Telomerases.Annu. Rev. Biochem.61, 113–129 (1992).

    Article CAS PubMed  Google Scholar 

  118. Wang, H. & Lambowitz, A. M. The Mauriceville plasmid reverse transcriptase can initiate cDNA synthesisde novo and may be related to reverse transcriptase and DNA polymerase progenitor.Cell75, 1071–1081 (1993).

    Article CAS PubMed  Google Scholar 

  119. Mak, J. & Kleiman, L. Primer tRNAs for reverse transcription.J. Virol.71, 8087–8095 (1997).

    CAS PubMed PubMed Central  Google Scholar 

  120. Kleiman, L., Jones, C. P. & Musier-Forsyth, K. Formation of the tRNALys packaging complex in HIV-1.FEBS Lett.584, 359–365 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  121. Randau, L. & Söll, D. Transfer RNA genes in pieces.EMBO Rep.9, 623–628 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  122. Fujishima, K. et al. Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea.Proc. Natl Acad. Sci. USA106, 2683–2687 (2009).This report is a striking analysis of split tRNA genes and the evidence for the assembly of full tRNAs from the split pieces.

    Article CAS PubMed  Google Scholar 

  123. Zuo, Z. et al. Genome-wide analysis reveals origin of transfer RNA genes from tRNA halves.Mol. Biol. Evol.30, 2087–2098 (2013).

    Article CAS PubMed  Google Scholar 

  124. Geslain, R. & Ribas de Pouplana, L. Regulation of RNA function by aminoacylation and editing?Trends Genet.20, 604–610 (2004).

    Article CAS PubMed  Google Scholar 

  125. Kumar, P., Kuscu, C. & Dutta, A. Biogenesis and function of transfer RNA-related fragments (tRFs).Trends Biochem. Sci.41, 679–689 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  126. Zheng, L. L. et al. tRF2Cancer: a web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers.Nucleic Acids Res.44, W185–W193 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  127. Nientiedt, M. et al. Identification of aberrant tRNA-halves expression patterns in clear cell renal cell carcinoma.Sci. Rep.6, 37158 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  128. Li, Q. et al. tRNA-derived small non-coding RNAs in response to ischemia inhibit angiogenesis.Sci. Rep.6, 20850 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  129. Keam, S. P. & Hutvagner, G. tRNA-derived fragments (tRFs): emerging new roles for an ancient RNA in the regulation of gene expression.Life (Basel)5, 1638–1651 (2015).

    CAS  Google Scholar 

  130. [No authors listed.] Digital intuition.Nature529, 437 (2016).

  131. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search.Nature529, 484–489 (2016).

    Article CAS PubMed  Google Scholar 

  132. Yamasaki, S., Ivanov, P., Hu, G. F. & Anderson, P. Angiogenin cleaves tRNA and promotes stress-induced translational repression.J. Cell Biol.185, 35–42 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  133. Lee, J. W. et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration.Nature443, 50–55 (2006).

    Article CAS PubMed  Google Scholar 

  134. Gomes, A. C. et al. A genetic code alteration generates a proteome of high diversity in the human pathogenCandida albicans.Genome Biol.8, R206 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  135. Li, L. et al. Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites.Proc. Natl Acad. Sci. USA108, 9378–9383 (2011).

    Article CAS PubMed  Google Scholar 

  136. Javid, B. et al. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance.Proc. Natl Acad. Sci. USA111, 1132–1137 (2014).

    Article CAS PubMed  Google Scholar 

  137. Fan, Y. et al. Protein mistranslation protects bacteria against oxidative stress.Nucleic Acids Res.43, 1740–1748 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  138. Bullwinkle, T. J. & Ibba, M. Translation quality control is critical for bacterial responses to amino acid stress.Proc. Natl Acad. Sci. USA113, 2252–2257 (2016).

    Article CAS PubMed  Google Scholar 

  139. Netzer, N. et al. Innate immune and chemically triggered oxidative stress modifies translational fidelity.Nature462, 522–526 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  140. Lee, J. Y. et al. Promiscuous methionyl-tRNA synthetase mediates adaptive mistranslation to protect cells against oxidative stress.J. Cell Sci.127, 4234–4245 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  141. Schwartz, M. H., Waldbauer, J. R., Zhang, L. & Pan, T. Global tRNA misacylation induced by anaerobiosis and antibiotic exposure broadly increases stress resistance inEscherichia coli.Nucleic Acids Res.44, 10292–10303 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  142. Sun, L. et al. Evolutionary gain of alanine mischarging to noncognate tRNAs with a G4:U69 base pair.J. Am. Chem. Soc.138, 12948–12955 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Dr Bernhard Kuhle and Mr Ryan Shapiro for extensive efforts on the artwork, and Professor Xianglei Yang for advice on construction of thematic elements. I am most appreciative of the instructive comments made by an anonymous reviewer on the section on complexity in the Concluding Remarks. Lastly, I also thank the following colleagues in the field, who collectively made extensive comments on a draft of this manuscript: Susan Ackerman (U. California, San Diego), Paul Agris (SUNY at Albany), Qi Chen (U. Nevada School of Medicine, Reno), Peter Dedon (MIT), Michaela Fry (University of Cambridge), Michael Ibba (Ohio State University, Columbus), Pavel Ivanov (Harvard Medical School), Karin Musier-Forsyth (Ohio State University, Columbus), Tao Pan (University of Chicago), Lluis Ribas de Pouplana (Institute for Research in Biomedicine, Barcelona) and Sohail Tavazoie (Rockefeller University). This work was supported by a fellowship from the National Foundation for Cancer Research.

Author information

Authors and Affiliations

  1. The Scripps Florida Research Institute, 130 Scripps Way, Jupiter, 33458, Florida, USA

    Paul Schimmel

  2. The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037, California, USA

    Paul Schimmel

Authors
  1. Paul Schimmel

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toPaul Schimmel.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Angiogenin and other nucleases involved in tRNA fragmentation (PDF 138 kb)

Supplementary information S2 (box)

Mutations in tRNA modification enzymes are associated with human diseases. (PDF 128 kb)

Glossary

Trans-acting editing factors

Editing domains that are not linked to tRNA synthetases, where they act incis as part of the synthetase, but rather are 'free-standing' and can erase mistakes of aminoacylation by directly binding to a mischarged tRNA.

mTOR signalling

A major signalling pathway for integrated cellular signalling pathways in eukaryotes.

Stress granules

Tightly packed aggregates of proteins and RNA that appear under stress.

RNA exosome

A multi-protein complex that degrades specific RNAs in an extracellular vesicle known as an exosome.

Integrated stress response

A response to stress found in eukaryotes, where global protein synthesis is diminished to conserve cellular energy.

Granulomas

Masses of immune cells (macrophages) that surround and sequester invading pathogens.

Dos regulon

A group of genes that act together to enable the survival and persistence ofMycobacterium tuberculosis in host cells.

Cold shock domain

A protein domain designed to bind DNA and found to facilitate survival of bacteria when exposed to drops in temperature. The domain is widely distributed in proteins throughout evolution.

G-quadruplex

A naturally occurring four-stranded nucleic acid helical structure that has a high proportion of guanine bases.

Cytochromec

A small haem-containing mitochondrial protein that is essential for electron transport.

Apoptosome

An oligomeric protein complex minimally comprising cytochromec and apoptosis protease-activating factor 1 (APAF1), which cleaves a protease precursor (pro-caspase 9) that then triggers downstream protein cleavage events leading to cell death.

Hormone-sensitive cancers

Cancers that grow when stimulated by specific hormones, such as oestrogen or testosterone.

Epididymis

A narrow, tightly coiled tube several metres in length that serves as the site of sperm maturation.

Retrotransposon

DNA genetic element that copies itself by reverse transcription through an RNA intermediate and can insert itself at various target sites within the genome. These elements are widespread in the human genome.

Microcephaly

A size of head that is at least two standard deviations below that of a normal head.

RNA world hypothesis

The hypothesis that RNA appeared before proteins and had many of the catalytic and ligand-binding characters of the modern proteins that eventually took over many of these functions.

Mauriceville plasmid

A circular DNA that replicates in some strains ofNeurospora crassa through an RNA intermediate that has a tRNA-like structure at its 3′-end.

Telomerase

A ribonucleoprotein that catalyses the addition of nucleotide-repeat elements to the ends of chromosomes.

Ischaemia

A shortage of blood supply that deprives tissues of the oxygen and glucose needed for cell survival.

Extracellular vesicles

Membranous vesicles released from cells and containing proteins, RNAs and other cellular constituents.

Artificial intelligence systems

Computer programmes that are designed to make choices and decisions, and solve problems, by cognitive human-like, experience-based learning.

Neutral drift

The hypothesis that, at the molecular level, non-harmful (neutral) mutations are the main anomalies accounting for gene sequence variations among and between species in evolution.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schimmel, P. The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis.Nat Rev Mol Cell Biol19, 45–58 (2018). https://doi.org/10.1038/nrm.2017.77

Download citation

Access through your institution
Buy or subscribe

Associated content

Series

RNA processing and modifications

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp