Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Genetics
  • Review Article
  • Published:

MicroRNAs: small RNAs with a big role in gene regulation

Nature Reviews Geneticsvolume 5pages522–531 (2004)Cite this article

ACorrection to this article was published on 01 August 2004

Key Points

  • MicroRNAs (miRNAs) are a family of21–25-nucleotide small RNAs that negatively regulate gene expression at the post-transcriptional level.

  • The founding members of the miRNA family,lin-4 andlet-7, were identified through genetic screens for defects in the temporal regulation ofCaenorhabditis elegans larval development.

  • Owing to genome-wide cloning efforts, hundreds of miRNAs have now been identified in almost all metazoans, including flies, plants and mammals.

  • MiRNAs exhibit temporally and spatially regulated expression patterns during diverse developmental and physiological processes.

  • Most of the miRNAs that have been characterized so far seem to regulate aspects of development, including larval developmental transitions and neuronal development inC. elegans, growth control and apoptosis inDrosophila melanogaster, haematopoietic differentiation in mammals, and leaf development, flower development and embryogenesis inArabidopsis thaliana.

  • The majority of the animal miRNAs that have been characterized so far affect protein synthesis from their target mRNAs. On the other hand, most of the plant miRNAs studied so far direct the cleavage of their targets.

  • The degree of complementarity between a miRNA and its target, at least in part, determines the regulatory mechanism.

  • In animals, primary transcripts of miRNAs are processed sequentially by two RNase-III enzymes, Drosha and Dicer, into a small, imperfect dsRNA duplex (miRNA:miRNA*) that contains both the mature miRNA strand and its complementary strand (miRNA*). Relative instability at the 5′ end of the mature miRNA leads to the asymmetric assembly of the mature miRNA into the effector complex, the RNA-induced silencing complex (RISC).

  • Ago proteins are a key component of the RISC. Multiple Ago homologues in various metazoan genomes indicate the existence of multiple RISCs that carry out related but specific biological functions.

  • Bioinformatic prediction of miRNA targets has provided an important tool to explore the functions of miRNAs. However, the overall success rate of such predictions remains to be determined by experimental validation.

Abstract

MicroRNAs are a family of small, non-coding RNAs that regulate gene expression in a sequence-specific manner. The two founding members of the microRNA family were originally identified inCaenorhabditis elegans as genes that were required for the timed regulation of developmental events. Since then, hundreds of microRNAs have been identified in almost all metazoan genomes, including worms, flies, plants and mammals. MicroRNAs have diverse expression patterns and might regulate various developmental and physiological processes. Their discovery adds a new dimension to our understanding of complex gene regulatory networks.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The molecular hallmarks oflin-4, the founding member of the microRNA family.
Figure 2: The current model for the biogenesis and post-transcriptional suppression of microRNAs and small interfering RNAs.
Figure 3: The structure and function of the Dicer family.

Similar content being viewed by others

References

  1. del Solar, G. & Espinosa, M. Plasmid copy number control: an ever-growing story.Mol. Microbiol.37, 492–500 (2000).

    CAS PubMed  Google Scholar 

  2. Mlynarczyk, S. K. & Panning, B. X inactivation: Tsix and Xist as yin and yang.Curr. Biol.10, R899–R903 (2000).

    CAS PubMed  Google Scholar 

  3. Ambros, V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing.Cell113, 673–676 (2003).

    CAS PubMed  Google Scholar 

  4. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function.Cell116, 281–297 (2004).

    Article CAS PubMed  Google Scholar 

  5. Lai, E. C. microRNAs: runts of the genome assert themselves.Curr. Biol.13, R925–R936 (2003).

    CAS PubMed  Google Scholar 

  6. Pasquinelli, A. E. & Ruvkun, G. Control of developmental timing by micrornas and their targets.Annu. Rev. Cell Dev. Biol.18, 495–513 (2002).

    CAS PubMed  Google Scholar 

  7. McManus, M. T. MicroRNAs and cancer.Semin. Cancer Biol.13, 253–258 (2003).

    CAS PubMed  Google Scholar 

  8. Carrington, J. C. & Ambros, V. Role of microRNAs in plant and animal development.Science301, 336–338 (2003).

    CAS PubMed  Google Scholar 

  9. Johnston, R. J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry inCaenorhabditis elegans.Nature426, 845–849 (2003).

    Article CAS PubMed  Google Scholar 

  10. Chalfie, M., Horvitz, H. R. & Sulston, J. E. Mutations that lead to reiterations in the cell lineages ofC. elegans.Cell24, 59–69 (1981).

    CAS PubMed  Google Scholar 

  11. Ambros, V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch inC. elegans.Cell57, 49–57 (1989).

    CAS PubMed  Google Scholar 

  12. Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematodeCaenorhabditis elegans.Science226, 409–416 (1984).

    CAS PubMed  Google Scholar 

  13. Lee, R. C., Feinbaum, R. L. & Ambros, V. TheC. elegans heterochronic genelin-4 encodes small RNAs with antisense complementarity tolin-14.Cell75, 843–854 (1993).Described the identification of the first microRNA,lin-4, and reported the sequence complementarity betweenlin-4 and the 3′ UTR of thelin-14 mRNA.

    CAS PubMed  Google Scholar 

  14. Wightman, B., Burglin, T. R., Gatto, J., Arasu, P. & Ruvkun, G. Negative regulatory sequences in thelin-14 3'-untranslated region are necessary to generate a temporal switch duringCaenorhabditis elegans development.Genes Dev.5, 1813–1824 (1991).

    CAS PubMed  Google Scholar 

  15. Ruvkun, G. & Giusto, J. TheCaenorhabditis elegans heterochronic genelin-14 encodes a nuclear protein that forms a temporal developmental switch.Nature338, 313–319 (1989).

    CAS PubMed  Google Scholar 

  16. Olsen, P. H. & Ambros, V. Thelin-4 regulatory RNA controls developmental timing inCaenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation.Dev. Biol.216, 671–680 (1999).

    CAS PubMed  Google Scholar 

  17. Ha, I., Wightman, B. & Ruvkun, G. A bulgedlin-4/lin-14 RNA duplex is sufficient forCaenorhabditis elegans lin-14 temporal gradient formation.Genes Dev.10, 3041–3050 (1996).

    CAS PubMed  Google Scholar 

  18. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic genelin-14 bylin-4 mediates temporal pattern formation inC. elegans.Cell75, 855–862 (1993).Described the translational repression of LIN-14 bylin-4 during temporal regulation of larval development. This was the first functional characterization of a microRNA.

    CAS PubMed  Google Scholar 

  19. Moss, E. G., Lee, R. C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing inC. elegans and is regulated by thelin-4 RNA.Cell88, 637–646 (1997).

    CAS PubMed  Google Scholar 

  20. Reinhart, B. J. et al. The 21-nucleotidelet-7 RNA regulates developmental timing inCaenorhabditis elegans.Nature403, 901–906 (2000).

    Article CAS PubMed  Google Scholar 

  21. Lin, S. Y. et al. TheC. elegans hunchback homolog,hbl-1, controls temporal patterning and is a probable microRNA target.Dev. Cell4, 639–650 (2003).

    CAS PubMed  Google Scholar 

  22. Abrahante, J. E. et al. TheCaenorhabditis elegans hunchback-like genelin-57/hbl-1 controls developmental time and is regulated by microRNAs.Dev. Cell4, 625–637 (2003).

    CAS PubMed  Google Scholar 

  23. Slack, F. J. et al. Thelin-41 RBCC gene acts in theC. elegans heterochronic pathway between thelet-7 regulatory RNA and the LIN-29 transcription factor.Mol. Cell5, 659–669 (2000).

    Article CAS PubMed  Google Scholar 

  24. Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. TheC. elegans microRNAlet-7 binds to imperfectlet-7 complementary sites from thelin-41 3′ UTR.Genes Dev.18, 132–137 (2004).

    CAS PubMed PubMed Central  Google Scholar 

  25. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse.Curr. Biol.12, 735–739 (2002).

    Article CAS PubMed  Google Scholar 

  26. Sempere, L. F. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation.Genome Biol.5, R13 (2004).

    PubMed PubMed Central  Google Scholar 

  27. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression oflet-7 heterochronic regulatory RNA.Nature408, 86–89 (2000).

    CAS PubMed  Google Scholar 

  28. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing.Nature425, 415–419 (2003).Described the identification of Drosha and characterizes its function in processing pri-miRNA into pre-miRNA.

    CAS PubMed  Google Scholar 

  29. Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization.EMBO J.21, 4663–4670 (2002).

    CAS PubMed PubMed Central  Google Scholar 

  30. Hannon, G. J. RNA interference.Nature418, 244–251 (2002).

    CAS PubMed  Google Scholar 

  31. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature411, 494–498 (2001).

    CAS PubMed  Google Scholar 

  32. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs.Genes Dev.15, 188–200 (2001).

    CAS PubMed PubMed Central  Google Scholar 

  33. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals.Cell101, 25–33 (2000).

    CAS PubMed  Google Scholar 

  34. Baulcombe, D. Viruses and gene silencing in plants.Arch. Virol.15 (Suppl.), 189–201 (1999).

    CAS  Google Scholar 

  35. Aufsatz, W., Mette, M. F., van der Winden, J., Matzke, A. J. & Matzke, M. RNA-directed DNA methylation inArabidopsis.Proc. Natl Acad. Sci. USA99 (Suppl 4), 16499–16506 (2002).

    CAS PubMed PubMed Central  Google Scholar 

  36. Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA.EMBO J.19, 5194–5201 (2000).

    CAS PubMed PubMed Central  Google Scholar 

  37. Grewal, S. I. & Moazed, D. Heterochromatin and epigenetic control of gene expression.Science301, 798–802 (2003).

    CAS PubMed  Google Scholar 

  38. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi.Science297, 1833–1837 (2002).

    CAS PubMed  Google Scholar 

  39. Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H.Mut-7 ofC. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD.Cell99, 133–141 (1999).

    CAS PubMed  Google Scholar 

  40. Tabara, H. et al. Therde-1 gene, RNA interference, and transposon silencing inC. elegans.Cell99, 123–132 (1999).

    CAS PubMed  Google Scholar 

  41. Chen, X. A MicroRNA as a translational repressor ofAPETALA2 inArabidopsis flower development.Science303, 2022–2025 (2004).

    CAS PubMed  Google Scholar 

  42. Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage ofScarecrow-like mRNA targets directed by a class ofArabidopsis miRNA.Science297, 2053–2056 (2002).

    CAS PubMed  Google Scholar 

  43. Rhoades, M. W. et al. Prediction of plant microRNA targets.Cell110, 513–520 (2002).The first bioinfomatic effort to predict microRNA targets on the basis of sequence complementarity between plant miRNAs and their putative targets. It has guided functional studies of several miRNAs.

    CAS PubMed  Google Scholar 

  44. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage ofHOXB8 mRNA.Science304, 594–596 (2004).

    CAS PubMed  Google Scholar 

  45. Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs.Genes Dev.17, 438–442 (2003).

    CAS PubMed PubMed Central  Google Scholar 

  46. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference.Nature409, 363–366 (2001).Described the identification of Dicer and characterized its function in processing long dsRNAs into small interfering RNAs.

    CAS PubMed  Google Scholar 

  47. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of thelet-7 small temporal RNA.Science293, 834–838 (2001).

    CAS PubMed  Google Scholar 

  48. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi.Science293, 1146–1150 (2001).Described the purification of the RISC, and the identification of Argonaute 2 as a key component.

    CAS PubMed  Google Scholar 

  49. Caudy, A. A., Myers, M., Hannon, G. J. & Hammond, S. M. Fragile X-related protein and VIG associate with the RNA interference machinery.Genes Dev.16, 2491–2496 (2002).

    CAS PubMed PubMed Central  Google Scholar 

  50. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs.Genes Dev.16, 720–728 (2002).

    CAS PubMed PubMed Central  Google Scholar 

  51. Dostie, J., Mourelatos, Z., Yang, M., Sharma, A. & Dreyfuss, G. Numerous microRNPs in neuronal cells containing novel microRNAs.RNA9, 180–186 (2003).

    CAS PubMed PubMed Central  Google Scholar 

  52. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A. & Tuschl, T. New microRNAs from mouse and human.RNA9, 175–179 (2003).

    CAS PubMed PubMed Central  Google Scholar 

  53. Zeng, Y. & Cullen, B. R. Sequence requirements for micro RNA processing and function in human cells.RNA9, 112–123 (2003).

    CAS PubMed PubMed Central  Google Scholar 

  54. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors.Science303, 95–98 (2004).

    CAS PubMed  Google Scholar 

  55. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that controlC. elegans developmental timing.Cell106, 23–34 (2001).

    CAS PubMed  Google Scholar 

  56. Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing inC. elegans.Genes Dev.15, 2654–2659 (2001).

    CAS PubMed PubMed Central  Google Scholar 

  57. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of theDrosophila Argonaute 2 PAZ domain.Nature426, 465–469 (2003).

    CAS PubMed  Google Scholar 

  58. Song, J. J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes.Nature Struct. Biol.10, 1026–1032 (2003).

    CAS PubMed  Google Scholar 

  59. Yan, K. S. et al. Structure and conserved RNA binding of the PAZ domain.Nature426, 468–474 (2003).

    PubMed  Google Scholar 

  60. Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing.Nature Struct. Mol. Biol.11, 214–218 (2004).

    CAS  Google Scholar 

  61. Blaszczyk, J. et al. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage.Structure (Camb).9, 1225–1236 (2001).

    CAS  Google Scholar 

  62. Papp, I. et al. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors.Plant Physiol.132, 1382–1390 (2003).

    CAS PubMed PubMed Central  Google Scholar 

  63. Park, W., Li, J., Song, R., Messing, J. & Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism inArabidopsis thaliana.Curr. Biol.12, 1484–1495 (2002).

    CAS PubMed PubMed Central  Google Scholar 

  64. Timmons, L. The long and short of siRNAs.Mol. Cell10, 435–437 (2002).

    CAS PubMed  Google Scholar 

  65. Schauer, S. E., Jacobsen, S. E., Meinke, D. W. & Ray, A.DICER-LIKE1: blind men and elephants inArabidopsis development.Trends Plant Sci.7, 487–491 (2002).

    CAS PubMed  Google Scholar 

  66. Pham, J. W., Pellino, J. L., Lee, Y. S., Carthew, R. W. & Sontheimer, E. J. A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi inDrosophila.Cell117, 83–94 (2004).

    CAS PubMed  Google Scholar 

  67. Lee, Y. S. et al. Distinct roles forDrosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways.Cell117, 69–81 (2004).

    CAS PubMed  Google Scholar 

  68. Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway.Nature Neurosci.7, 113–117 (2004).

    CAS PubMed  Google Scholar 

  69. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of theDrosophila RNAi pathway.Science301, 1921–1925 (2003).

    CAS PubMed  Google Scholar 

  70. Pellino, J. L. & Sontheimer, E. J. R2D2 leads the silencing trigger to mRNA's death star.Cell115, 132–133 (2003).

    CAS PubMed  Google Scholar 

  71. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex.Cell115, 199–208 (2003).

    CAS PubMed  Google Scholar 

  72. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias.Cell115, 209–216 (2003).This paper, together with reference 71, characterized the regulatory mechanism of the asymmetric assembly of siRNA/miRNA into the RISC complex.

    CAS PubMed  Google Scholar 

  73. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M.Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic genehid inDrosophila.Cell113, 25–36 (2003).

    CAS PubMed  Google Scholar 

  74. Hake, S. MicroRNAs: a role in plant development.Curr. Biol.13, R851–R852 (2003).

    CAS PubMed  Google Scholar 

  75. Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis.Genes Dev.16, 2733–2742 (2002).

    CAS PubMed  Google Scholar 

  76. Caudy, A. A. et al. A micrococcal nuclease homologue in RNAi effector complexes.Nature425, 411–414 (2003).

    CAS PubMed  Google Scholar 

  77. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles inCaenorhabditis elegans.Science294, 858–862 (2001).

    CAS PubMed  Google Scholar 

  78. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs.Science294, 853–858 (2001).

    CAS PubMed  Google Scholar 

  79. Lee, R. C. & Ambros, V. An extensive class of small RNAs inCaenorhabditis elegans.Science294, 862–864 (2001).This paper, together with references 77 and 78, was among the first cloning efforts to identify large numbers of miRNAs from worm, fly and mammals.

    CAS PubMed  Google Scholar 

  80. Kim, J. et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons.Proc. Natl Acad. Sci. USA101, 360–365 (2004).

    CAS PubMed  Google Scholar 

  81. Griffiths-Jones, S. The microRNA Registry.Nucleic Acids Res.32 (Database issue), D109–D111 (2004).

    CAS PubMed PubMed Central  Google Scholar 

  82. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants.Genes Dev.16, 1616–1626 (2002).

    CAS PubMed PubMed Central  Google Scholar 

  83. Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B. & Bartel, D. P. Vertebrate microRNA genes.Science299, 1540 (2003).

    CAS PubMed  Google Scholar 

  84. Lim, L. P. et al. The microRNAs ofCaenorhabditis elegans.Genes Dev.17, 991–1008 (2003).

    CAS PubMed PubMed Central  Google Scholar 

  85. Sempere, L. F., Sokol, N. S., Dubrovsky, E. B., Berger, E. M. & Ambros, V. Temporal regulation of microRNA expression inDrosophila melanogaster mediated by hormonal signals and broad-complex gene activity.Dev. Biol.259, 9–18 (2003).

    CAS PubMed  Google Scholar 

  86. Houbaviy, H. B., Murray, M. F. & Sharp, P. A. Embryonic stem cell-specific microRNAs.Dev. Cell5, 351–358 (2003).

    CAS PubMed  Google Scholar 

  87. Aravin, A. A. et al. The small RNA profile duringDrosophila melanogaster development.Dev. Cell5, 337–350 (2003).

    CAS PubMed  Google Scholar 

  88. Metzler, M., Wilda, M., Busch, K., Viehmann, S. & Borkhardt, A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma.Genes Chromosomes Cancer39, 167–169 (2004).

    CAS PubMed  Google Scholar 

  89. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc. Natl Acad. Sci. USA101, 2999–3004 (2004).

    CAS PubMed PubMed Central  Google Scholar 

  90. Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K. & Kosik, K. S. A microRNA array reveals extensive regulation of microRNAs during brain development.RNA9, 1274–1281 (2003).

    CAS PubMed PubMed Central  Google Scholar 

  91. Knight, S. W. & Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development inCaenorhabditis elegans.Science293, 2269–2271 (2001).

    CAS PubMed PubMed Central  Google Scholar 

  92. Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E. & Plasterk, R. H. The microRNA-producing enzyme Dicer1 is essential for zebrafish development.Nature Genet.35, 217–218 (2003).

    CAS PubMed  Google Scholar 

  93. Bernstein, E. et al. Dicer is essential for mouse development.Nature Genet.35, 215–217 (2003).

    CAS PubMed  Google Scholar 

  94. Moussian, B., Schoof, H., Haecker, A., Jurgens, G. & Laux, T. Role of theZWILLE gene in the regulation of central shoot meristem cell fate duringArabidopsis embryogenesis.EMBO J.17, 1799–1809 (1998).

    CAS PubMed PubMed Central  Google Scholar 

  95. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal.Genes Dev.12, 3715–3727 (1998).

    CAS PubMed PubMed Central  Google Scholar 

  96. Hipfner, D. R., Weigmann, K. & Cohen, S. M. TheBantam gene regulatesDrosophila growth.Genetics161, 1527–1537 (2002).

    CAS PubMed PubMed Central  Google Scholar 

  97. Xu, P., Vernooy, S. Y., Guo, M. & Hay, B. A. TheDrosophila microRNA mir-14 suppresses cell death and is required for normal fat metabolism.Curr. Biol.13, 790–795 (2003).

    CAS PubMed  Google Scholar 

  98. Palatnik, J. F. et al. Control of leaf morphogenesis by microRNAs.Nature425, 257–263 (2003).

    CAS PubMed  Google Scholar 

  99. Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation.Science303, 83–86 (2004).

    CAS PubMed  Google Scholar 

  100. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets.Cell115, 787–798 (2003).

    CAS PubMed  Google Scholar 

  101. Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification ofDrosophila microRNA targets.PLoS Biol.1, E60 (2003).

    PubMed PubMed Central  Google Scholar 

  102. Calin, G. A. et al. Frequent deletions and down-regulation of micro- RNA genesmiR15 andmiR16 at 13q14 in chronic lymphocytic leukemia.Proc. Natl Acad. Sci. USA99, 15524–15529 (2002).

    CAS PubMed PubMed Central  Google Scholar 

  103. Michael, M. Z., O'Connor, S. M., van Holst Pellekaan, N. G., Young, G. P. & James, R. J. Reduced accumulation of specific microRNAs in colorectal neoplasia.Mol. Cancer Res.1, 882–891 (2003).

    CAS PubMed  Google Scholar 

  104. Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants.Genes Dev.17, 49–63 (2003).

    CAS PubMed PubMed Central  Google Scholar 

  105. Emery, J. F. et al. Radial patterning ofArabidopsis shoots by class III HD-ZIP and KANADI genes.Curr. Biol.13, 1768–1774 (2003).

    CAS PubMed  Google Scholar 

  106. Juarez, M. T., Kui, J. S., Thomas, J., Heller, B. A. & Timmermans, M. C. microRNA-mediated repression ofrolled leaf1 specifies maize leaf polarity.Nature428, 84–88 (2004).

    CAS PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. M. Silva, A. M. Denli, L. E. Palmer, J. Liu, P. J. Paddison and E. P. Murchson for stimulating discussions and helpful input. We also thank J. C. Duffy for help with the figures. We are particularly grateful to M. A. Carmell and Z. Xuan, who provided valuable comments and suggestions in the preparation of this manuscript. G.J.H. is supported by an Innovator Award from the US Army Breast Cancer Research Program and by grants from the National Institutes of Health. L.H. is a Helen Hay Whitney Fellow.

Author information

Authors and Affiliations

  1. Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, 11724, New York, USA

    Lin He & Gregory J. Hannon

Authors
  1. Lin He

    You can also search for this author inPubMed Google Scholar

  2. Gregory J. Hannon

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toGregory J. Hannon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

RNA INTERFERENCE

(RNAi). A form of post-transcriptional gene silencing, in which dsRNA induces degradation of the homologous mRNA, mimicking the effect of the reduction, or loss, of gene activity.

BOOTSTRAP SAMPLING

As applied to molecular phylogenies, nucleotide or amino-acid sites are sampled randomly, with replacement, and a new tree is constructed. This is repeated many times and the frequency of appearance of a particular node among the bootstrap trees is viewed as a support (confidence) value for deciding on the significance of that node.

S2 CELL

A cell line that is isolated from dissociatedDrosophila melanogaster embryos. The cell line is phagocytic, which might contribute to its susceptibility to RNAi.

POLYSOME

A functional unit of protein synthesis that consists of several ribosomes that are attached along the length of a single molecule of mRNA.

MERISTEM

The undifferentiated tissue at the tips of stems and roots in which new cell division is concentrated.

P-ELEMENTS

A family of transposable elements that are widely used as the basis of tools for mutating and manipulating theDrosophila genome.

WING DISC

A sac-like structure of a mature third instar fly larva, which will give rise to the adult wing.

INFLORESCENCE TISSUE

The reproductive backbone that displays the flowers.

Rights and permissions

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp