Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Reviews Genetics
  • Review Article
  • Published:

Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes

Nature Reviews Geneticsvolume 5pages123–135 (2004)Cite this article

Key Points

  • Genome sequences show extensive tracts of mitochondrial and plastid DNA that are integrated in nuclear chromosomes. Evidence indicates that an active process of DNA translocation from organelles to the nucleus has been ongoing since the origin or organelles from free-living prokaryotes.

  • Movement of DNA from organelles to the nucleus occurs at very high rates. These rates have been measured experimentally for mitochondria in yeast and more recently for plastids using transgenic chloroplast technology in tobacco.

  • Phylogenetic analyses and genome comparisons show that influx of organellar DNA to the nucleus has had a marked quantitative impact on the gene content of eukaryotic chromosomes.

  • Translocated genes might be expressed to provide products that are targeted to all parts of the cell; there is no magic homing device that targets the products of transferred genes back to the organelle of their origin.

  • When a relocated gene becomes expressed as a product that provides a selectable advantage, the original, now duplicate copy (be it mitochondrial, plastid or nuclear) can undergo recombination, mutational decay or deletion.

  • Complete organelle genomes are cropping up in eukaryotic chromosomes, so why are any genes left in organelles at all? The two competing theories that stand in the foreground of this hotly debated issue (redox regulation and hydrophobicity) are contrasted.

  • Observations from genomes and from experimental transfers favour the view that bulk DNA from lysed organelles is the vector that is responsible for gene relocation, although in some groups of eukaryotes, RNA intermediates have been suggested to act as vectors as well.

  • DNA movement between genetic compartments has consequences for strategies of genetic manipulation that aim to sequester transgenes in organelles.

  • The downpour of organelle DNA into eukaryotic chromosomes is an unavoidable consequence of endosymbiosis. This mechanism of natural variation is unique to eukaryotic cells and was an important force in the genesis of eukaryotic genomes.

  • The impact of endosymbiotic gene transfer on eukaryotic chromosomes was probably greatest in the early phases of organelle origins, before the protein import machinery of mitochondria and chloroplasts had been invented.

Abstract

Genome sequences reveal that a deluge of DNA from organelles has constantly been bombarding the nucleus since the origin of organelles. Recent experiments have shown that DNA is transferred from organelles to the nucleus at frequencies that were previously unimaginable. Endosymbiotic gene transfer is a ubiquitous, continuing and natural process that pervades nuclear DNA dynamics. This relentless influx of organelle DNA has abolished organelle autonomy and increased nuclear complexity.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organellar DNA mobility and the genetic control of biogenesis of mitochondria and chloroplasts.
Figure 2: Reduction of the chloroplast genome over time.

Similar content being viewed by others

References

  1. Baur, E. Das Wesen und die Erblichkeitsverhältnisse der 'Varietates albomarginatae hort' vonPelargonium zonale.Z. Vererbungsl.1, 330–351 (1909).

    Google Scholar 

  2. Mereschkowsky, C. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche.Biol. Centralbl.25, 593–604 (1905). [English translationEur. J. Phycol.34, 287–295, 1999].The starting point of endosymbiotic theory. Outlines the reasoning that we still use today to explain the origin of plastids from cyanobacteria, a paper that was many decades ahead of its time.

    Google Scholar 

  3. Margulis, L.Origin of Eukaryotic Cells 349 (Yale Univ. Press, New Haven, 1970).The rediscovery of endosymbiotic theory after Wilson's 1928 condemnation of symbiosis as an evolutionary mechanism (see also reference 2).

    Google Scholar 

  4. Gray, M. W. & Doolittle, W. F. Has the endosymbiont hypothesis been proven?Microbol. Rev.46, 1–42 (1982).

    CAS  Google Scholar 

  5. Bogorad, L. Evolution of organelles and eukaryotic genomes.Science188, 891–898 (1975).

    Article CAS PubMed  Google Scholar 

  6. Ellis, R. J. Chloroplast proteins: synthesis, transport and assembly.Ann. Rev. Pl. Physiol.32, 111–137 (1981).

    Article CAS  Google Scholar 

  7. Weeden, N. F. Genetic and biochemical implications of the endosymbiotic origin of the chloroplast.J. Mol. Evol.17, 133–139 (1981).

    Article CAS PubMed  Google Scholar 

  8. Martin, W. & Herrmann, R. G. Gene transfer from organelles to the nucleus: how much, what happens, and why?Plant Physiol.118, 9–17 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  9. Simpson, C. L. & Stern, D. B. The treasure trove of algal chloroplast genomes. Surprises in architecture and gene content, and their functional implications.Plant Physiol.129, 957–966 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution.Science283, 1476–1481 (1999).

    Article CAS PubMed  Google Scholar 

  11. Lang, B. F., Gray, M. W. & Burger, G. Mitochondrial genome evolution and the origin of eukaryotes.Annu. Rev. Genet.33, 351–397 (1999).

    Article CAS PubMed  Google Scholar 

  12. Burger, G., Forget, L., Zhu, Y., Gray, M. W. & Lang, B. F. Unique mitochondrial genome architecture in unicellular relatives of animals.Proc. Natl Acad. Sci. USA100, 892–897 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  13. Embley, T. M. et al. Hydrogenosomes, mitochondria and early eukaryotic evolution.IUBMB Life55, 387–395 (2003).An incisive and up-to-date review that covers the biology and evolutionary significance of hydrogenosomes, the mitochondria that endosymbiotic theory nearly forgot.

    Article CAS PubMed  Google Scholar 

  14. Zhang, Z., Green, B. R. & Cavalier-Smith, T. Single gene circles in dinoflagellate chloroplast genomes.Nature400, 155–159 (1999).

    Article CAS PubMed  Google Scholar 

  15. Hannaert, V. et al. Plant-like traits associated with metabolism ofTrypanosoma parasites.Proc. Natl Acad. Sci. USA100, 1067–1071 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  16. Cavalier-Smith, T. Membrane heredity and early chloroplast evolution.Trends Plant Sci.5, 174–182 (2000).

    Article CAS PubMed  Google Scholar 

  17. Tielens, A. G., Rotte, C., van Hellemond, J. J. & Martin, W. Mitochondria as we don't know them.Trends Biochem. Sci.27, 564–572 (2002).

    Article CAS PubMed  Google Scholar 

  18. Tovar, J. et al. Mitochondrial remnant organelles ofGiardia function in iron-sulphur protein maturation.Nature426, 172–176 (2003).

    Article CAS PubMed  Google Scholar 

  19. Martin, W. et al. Evolutionary analysis ofArabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus.Proc. Natl Acad. Sci. USA99, 12246–12251 (2002).Shows that approximately 18% of the nuclear genes inArabidopsis come from the ancestral plastid genome.

    Article CAS PubMed PubMed Central  Google Scholar 

  20. Wu, M. et al. The genome sequence and evolution of the reproductive parasiteWolbachia pipientis wMel: a streamlined α-proteobacterium massively infected with mobile genetic elements.PLoS Biology (in the press).Incisive evolutionary insights into endosymbiont genome biology with a genome phylogeny for mitochondrial origin.

  21. Stern, D. B. & Lonsdale, D. M. Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common.Nature299, 698–702 (1982).The paper that initiated progress; showed that DNA was able to migrate between the genetic compartments of eukaryotes.

    Article CAS PubMed  Google Scholar 

  22. Jacobs, H. T. et al. Mitochondrial DNA sequences in the nuclear genome ofStrongylocentrotus purpuratus.J. Mol. Biol.165, 609–632 (1983).

    Article CAS PubMed  Google Scholar 

  23. Farrely, F. & Butow, R. A. Rearranged mitochondrial genes in the yeast nuclear genome.Nature301, 296–301 (1983).

    Article  Google Scholar 

  24. Timmis, J. N. & Scott, N. S. Spinach nuclear and chloroplast DNAs have homologous sequences.Nature305, 65–67 (1983).

    Article CAS  Google Scholar 

  25. Ellis, R. J. Promiscuous DNA — chloroplast genes inside plant mitochondria.Nature299, 678–679 (1982).

    Article CAS PubMed  Google Scholar 

  26. Lopez, J. V., Yuhki, N., Masuda, R., Modi, W. & O'Brien, S. J. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat.J. Mol. Evol.39, 174–190 (1994).

    CAS PubMed  Google Scholar 

  27. Bensasson, D., Zhang, D. X. & Hewitt, G. M. Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes.Mol. Biol. Evol.17, 406–415 (2000).

    Article CAS PubMed  Google Scholar 

  28. Mundy, N. I., Pissinatti, A. & Woodruff, D. S. Multiple nuclear insertions of mitochondrial cytochromeb sequences in callitrichine primates.Mol. Biol. Evol.17, 1075–1080 (2000).

    Article CAS PubMed  Google Scholar 

  29. Lu, X. M., Fu, Y. X. & Zhang, Y. P. Evolution of mitochondrial cytochromeb pseudogene in genusNycticebus.Mol. Biol. Evol.19, 2337–2341 (2002).

    Article CAS PubMed  Google Scholar 

  30. Williams, S. T. & Knowlton, N. Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genusAlpheus.Mol. Biol. Evol.18, 1484–1493 (2001).

    Article CAS PubMed  Google Scholar 

  31. Olson, L. E. & Yoder, A. D. Using secondary structure to identify ribosomal numts: cautionary examples from the human genome.Mol. Biol. Evol.19, 93–100 (2002).Together with reference 32, points out that numts are often mistaken for genuine mitochondrial DNA sequences.

    Article CAS PubMed  Google Scholar 

  32. Bensasson, D., Zhang, D., Hartl, D. L. & Hewitt, G. M. Mitochondrial pseudogenes: evolution's misplaced witnesses.Trends Ecol. Evol.16, 314–321 (2001).

    Article CAS PubMed  Google Scholar 

  33. Ricchetti, M., Fairhead, C. & Dujon, B. Mitochondrial DNA repairs double strand breaks in yeast chromosomes.Nature402, 96–100 (1999).The initial genome-wide survey for numts; indicates a role for recombination in numt integration.

    Article CAS PubMed  Google Scholar 

  34. Mourier, T., Hansen, A. J., Willerslev, E. & Arctander, P. The human genome project reveals a continuous transfer of large mitochondrial fragments to the nucleus.Mol. Biol. Evol.18, 1833–1837 (2001).

    Article CAS PubMed  Google Scholar 

  35. Tourmen, Y. et al. Structure and chromosomal distribution of human mitochondrial pseudogenes.Genomics80, 71–77 (2002).

    Article CAS PubMed  Google Scholar 

  36. Hazkani-Covo, E., Sorek, R. & Graur, D. Evolutionary dynamics of large numts in the human genome: rarity of independent insertions and abundance of post-insertion duplications.J. Mol. Evol.56, 169–174 (2003).A careful and detailed inspection of numt duplication dynamics during human and primate genome evolution.

    Article CAS PubMed  Google Scholar 

  37. Woischnik, M. & Moraes, C. T. Pattern of organisation of human mitochondrial pseudogenes in the nuclear genome.Genome Res.12, 885–893 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  38. Richly, E. & Leister, D. Numts in sequenced eukaryotic genomes.Mol. Biol. Evol. (in the press).

  39. Lin, X. Y. et al. Sequence and analysis of chromosome 2 of the plantArabidopsis thaliana.Nature402, 761–768 (1999).Reports a nearly complete,270-kb copy of the 367-kbArabidopsis mtDNA near the centromere.

    Article CAS PubMed  Google Scholar 

  40. Stupar, R. M. et al. Complex mtDNA constitutes an approximate 620-kb insertion onArabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats.Proc. Natl Acad. Sci. USA98, 5099–5103 (2001).Shows that the 270-kb copy in reference 39 is really the complete 367-kb circle.

    Article CAS PubMed PubMed Central  Google Scholar 

  41. The,Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plantArabidopsis thaliana.Nature408, 796–815 (2000).

  42. Yuan, Q. et al. Genome sequencing of 239-kb region of rice chromosome 10L reveals a high frequency of gene duplication and a large chloroplast DNA insertion.Mol. Genet. Genom.267, 713–720 (2002).First hints from genome sequences of large cpDNA chunks (>30 kb) that are integrated in nuclear chromosomes.

    Article CAS  Google Scholar 

  43. The Rice Chromosome 10 Sequencing Consortium. In-depth view of structure, activity, and evolution of rice chromosome 10.Science300, 1566–1569 (2003).Reports a nearly complete cpDNA genome chunk (130 kb) that is integrated in the nuclear chromosome.

  44. Shahmuradov, I. A., Akbarova, Y. Y., Solovyev, V. V. & Aliyev, J. A. Abundance of plastid DNA insertions in nuclear genomes of rice andArabidopsis.Plant Mol. Biol.52, 923–934 (2003).

    Article CAS PubMed  Google Scholar 

  45. Ayliffe, M. A. & Timmis, J. N. Tobacco nuclear DNA contains long tracts of homology to chloroplast DNA.Theor. Appl. Genet.85, 229–238 (1992).

    Article CAS PubMed  Google Scholar 

  46. Ayliffe, M. A. & Timmis, J. N. Plastid DNA sequence homologies in the tobacco nuclear genome.Mol. Gen. Genet.236, 105–112 (1992).

    CAS PubMed  Google Scholar 

  47. Boore, J. L. Animal mitochondrial genomes.Nucleic Acids Res.27, 1767–1780 (1999).

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Brennicke, A., Grohmann, L., Hiesel, R., Knoop, V. & Schuster, W. The mitochondrial genome on its way to the nucleus: different stages of gene transfer in higher plants.FEBS Lett.325, 140–145 (1993).

    Article CAS PubMed  Google Scholar 

  49. Adams, K. L. & Palmer, J. D. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus.Mol. Phylog. Evol.29, 380–395 (2003).A lucid review of flowering plant mitochondrial gene migration to the nucleus.

    Article CAS  Google Scholar 

  50. Adams, K. L., Daley, D. O., Qiu, Y. L., Whelan, J. & Palmer, J. D. Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants.Nature408, 354–357 (2000).

    Article CAS PubMed  Google Scholar 

  51. Adams, K. L, Qiu Y. -L., Stoutemyer, M. & Palmer J. D. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution.Proc. Natl Acad. Sci. USA99, 9905–9912 (2002).A broad survey of mitochondrial genome reduction that is accompanied by nuclear integration events in flowering plant evolution.

    Article CAS PubMed PubMed Central  Google Scholar 

  52. Henze, K. & Martin, W. How are mitochondrial genes transferred to the nucleus?Trends Genet.17, 383–387 (2001).

    Article CAS PubMed  Google Scholar 

  53. Thorsness, P. E. & Weber, E. R. Escape and migration of nucleic acids between chloroplasts, mitochondria, and the nucleus.Int. Rev. Cytol.165, 207–234 (1996).An excellent review that covers the mechanics of gene transfer from organelles to the nucleus in the pre-genome era.

    Article CAS PubMed  Google Scholar 

  54. Blanchard, J. L. & Lynch, M. Organellar genes — why do they end up in the nucleus?Trends Genet.16, 315–320 (2000).

    Article CAS PubMed  Google Scholar 

  55. Figueroa, P., Gomez, I., Holuigue, L., Araya, A. & Jordana, X. Transfer ofrps14 from the mitochondrion to the nucleus in maize implied integration within a gene encoding the iron-sulphur subunit of succinate dehydrogenase and expression by alternative splicing.Plant J.18, 601–609 (1999).Fortuitous recombination in the establishment of active gene transfers.

    Article CAS PubMed  Google Scholar 

  56. Kubo, N., Harada, K., Hirai, A. & Kadowaki, K. A single nuclear transcript encoding mitochondrial RPS14 and SSDHB of rice is processed by alternative splicing: common use of the same mitochondrial targeting signal for different proteins.Proc. Natl Acad. Sci. USA96, 9207–9211 (1999).The establishment of active gene transfers can involve the recruitment of pre-existing transit peptide regions.

    Article CAS PubMed PubMed Central  Google Scholar 

  57. Long, M., de Souza, S. J., Rosenberg, C. & Gilbert, W. Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor.Proc. Natl Acad. Sci. USA93, 7727–7731 (1996).Gene transfers can involve conversion of a pre-existing nuclear coding region for a cytosolic enzyme into a transit peptide.

    Article CAS PubMed PubMed Central  Google Scholar 

  58. Millen, R. S. et al. Many parallel losses ofinfA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus.Plant Cell13, 645–658 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  59. Martin, W. et al. Gene transfer to the nucleus and the evolution of chloroplasts.Nature393, 162–165 (1998).

    Article CAS PubMed  Google Scholar 

  60. Lang, B. F. et al. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature.Nature387, 493–497 (1997).The still unsurpassed mitchondrial genome in terms of gene content and streamlined organization.

    Article CAS PubMed  Google Scholar 

  61. Henze, K. et al. A nuclear gene of eubacterial origin inEuglena gracilis reflects cryptic endosymbioses during protist evolution.Proc. Natl Acad. Sci. USA92, 9122–9126 (1995).

    Article CAS PubMed PubMed Central  Google Scholar 

  62. Stibitz, T. B., Keeling, P. J., & Bhattacharya, D. Symbiotic origin of a novel actin gene in the cryptophytePyrenomonas helgolandii.Mol. Biol. Evol.17, 1731–1738 (2000).

    Article CAS PubMed  Google Scholar 

  63. Archibald, J. M., Rogers, M. B., Toop, M., Isheda, K. & Keeling, P. J. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing algaBigelowiella natans.Proc. Natl Acad. Sci. USA100, 7678–7683 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  64. Leister, D. Chloroplast research in the genomics age.Trends Genet.19, 47–56 (2003).

    Article CAS PubMed  Google Scholar 

  65. Gabaldón, T. & Huynen, M. A. Reconstruction of the proto-mitochondrial metabolism.Science301, 609 (2003).

    Article PubMed  Google Scholar 

  66. Martin, W. & Schnarrenberger, C. The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis.Curr. Genet.32, 1–18 (1997).

    Article CAS PubMed  Google Scholar 

  67. Gallois, J. L. et al. TheArabidopsis chloroplast ribosomal protein L21 is encoded by a nuclear gene of mitochondrial origin.Gene274, 179–185 (2001).

    Article CAS PubMed  Google Scholar 

  68. Adams, K. L. et al. Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts.Plant Cell14, 931–943 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  69. Brown, J. R. Ancient horizontal gene transfer.Nature Rev. Genet.4, 121–132 (2003).An incisive review of gene movement across genomes, including the role of endosymbiotic transfers.

    Article CAS PubMed  Google Scholar 

  70. Gil, R. et al. The genome sequence ofBlochmannia floridanus: comparative analysis of reduced genomes.Proc. Natl Acad. Sci. USA100, 9388–9393 (2003).Underscores how reductive evolution in endosymbiotic bacteria leads to massive gene losses through biochemical parasitism of the host.

    Article CAS PubMed PubMed Central  Google Scholar 

  71. Lister, D. L., Bateman, J. M., Purton, S. & Howe, C. J. DNA transfer from chloroplast to nucleus is much rarer inChlamydomonas than in tobacco.Gene316, 33–38 (2003).

    Article CAS PubMed  Google Scholar 

  72. Richly, E., Chinnery, P. F. & Leister, D. Evolutionary diversification of mitochondrial proteomes: implications for human disease.Trends Genet.19, 356–362 (2003).

    Article CAS PubMed  Google Scholar 

  73. Richly, E. & Leister, D. An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes ofArabidopsis and rice.Gene (in the press).

  74. Huh, W. -K. et al. Global analysis of protein localization in budding yeast.Nature425, 686–691 (2003).

    Article CAS PubMed  Google Scholar 

  75. Lange, B. M., Rujan, T., Martin, W. & Croteau, R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes.Proc. Natl Acad. Sci. USA97, 13172–13177 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  76. Schnarrenberger, C. & Martin, W. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants: a case study of endosymbiotic gene transfer.Eur. J. Biochem.269, 868–883 (2002).

    Article CAS PubMed  Google Scholar 

  77. Aravind, L., Anantharaman, V. & Iyer, L. M. Evolutionary connections between bacterial and eukaryotic signaling systems: a genomic perspective.Curr. Opin. Microbiol.6, 490–497 (2003).

    Article CAS PubMed  Google Scholar 

  78. Osteryoung, K. W. & Nunnari, J. The division of endosymbiotic organelles.Science302, 1698–1704 (2003).

    Article CAS PubMed  Google Scholar 

  79. McFadden, G. I. & Ralph, S. A. Dynamin: the endosymbiosis ring of power?Proc. Natl Acad. Sci. USA100, 3557–3559 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  80. Thorsness, P. E. & Fox, T. D. Escape of DNA from the mitochondria to the nucleus in the yeast,Saccharomyces cerevisiae.Nature346, 376–379 (1990).The initial experimental measurement of the frequency of transfer of DNA between genetic compartments.

    Article CAS PubMed  Google Scholar 

  81. Thorsness, P. E. & Fox, T. D. Nuclear mutations inSaccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus.Genetics134, 21–28 (1993).

    CAS PubMed PubMed Central  Google Scholar 

  82. Shafer, K. S., Hanekamp, T., White, K. H. & Thorsness, P. E. Mechanisms of mitochondrial DNA escape to the nucleus in the yeastSaccharomyces cerevisiae.Curr. Genet.36, 183–194 (1999).

    Article CAS PubMed  Google Scholar 

  83. Huang, C. Y., Ayliffe, M. A. & Timmis, J. N. Direct measurement of the transfer rate of chloroplast DNA into the nucleus.Nature422, 72–76 (2003).The initial experimental measurement of the frequency of integrative transfer of DNA between chloroplast and nucleus.

    Article CAS PubMed  Google Scholar 

  84. Stegemann, S., Hartmann, S., Ruf, S. & Bock, R. High-frequency gene transfer from the chloroplast genome to the nucleus.Proc. Natl Acad. Sci. USA100, 8828–8833 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  85. Campbell, C. L. & Thorsness, P. E. Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments.J. Cell Sci.111, 2455–2464 (1998).

    CAS PubMed  Google Scholar 

  86. Shay, J. W. & Werbin, H. New evidence for the insertion of mitochondrial DNA into the human genome: significance for cancer and aging.Mutat. Res.275, 227–235 (1992).

    Article CAS PubMed  Google Scholar 

  87. Turner, C. et al. Human genetic disease caused byde novo mitochondrial-nuclear DNA transfer.Hum. Genet.112, 303–309 (2003).

    PubMed  Google Scholar 

  88. Elo, A. et al. Nuclear genes that encode mitochondrial proteins for DNA and RNA metabolism are clustered in theArabidopsis genome.Plant Cell15, 1619–1631 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  89. Richly, E. et al. Covariations in the nuclear chloroplast transcriptome reveal a regulatory master-switch.EMBO Rep.4, 491–498 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  90. Allen, J. F. The function of genomes in bioenergetic organelles.Phil. Trans. Roy. Soc. B358, 19–38 (2003).A comprehensive treatment of competing views on the issue of why some genes remain within organelle genomes.

    Article CAS  Google Scholar 

  91. Pérez-Martínez, X. et al. Subunit II of cytochromec oxidase in chlamydomonad algae is a heterodimer encoded by two independent nuclear genes.J. Biol. Chem.276, 11302–11309 (2001)

    Article PubMed  Google Scholar 

  92. Daley, D. O. et al. Intracellular gene transfer: reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase.Proc. Natl Acad. Sci. USA99, 10510–15015 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  93. Pfannschmidt, T., Nilsson, A., & Allen, J. F. Photosynthetic control of chloroplast gene expression.Nature397, 625–628 (1999).

    Article CAS  Google Scholar 

  94. Naithani S., Saracco S. A., Butler C. A. & Fox T. D. Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane ofSaccharomyces cerevisiae.Mol. Biol. Cell14, 324–333 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  95. Doolittle, W. F. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes.Trends Genet.14, 307–311 (1998).

    Article CAS PubMed  Google Scholar 

  96. Race, H. L., Herrmann, R. G. & Martin, W. Why have organelles retained genomes?Trends Genet.15, 364–370 (1999).

    Article CAS PubMed  Google Scholar 

  97. Devos, K. M., Brown, J. K. M. & Bennetzen J. L. Genome size reduction through illegitimate recombination counteracts genome expansion inArabidopsis.Genome Res.12, 1075–1079 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  98. Martin, W. Gene transfers from organelles to the nucleus: frequent and in big chunks.Proc. Natl Acad. Sci. USA100, 8612–8614 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  99. Maliga, P. Engineering the plastid genome of higher plants.Curr. Opin. Plant Biol.5, 164–172 (2002).

    Article CAS PubMed  Google Scholar 

  100. Daniell, H. & Parkinson, C. L. Jumping genes and containment.Nature Biotechnol.21, 374–375 (2003).A challenge to the experimental data for gene transfer from chloroplasts by proponents of plastid transgene technology, rebutted head-to-head in reference 101.

    Article CAS  Google Scholar 

  101. Huang, C. Y., Ayliffe, M. A. & Timmis, J. N. Organelle evolution meets biotechnology.Nature Biotechnol.21, 489–490 (2003).

    Article CAS  Google Scholar 

  102. Martin, W. & Russell, M. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells.Phil. Trans. Roy. Soc. Lond. B358, 59–85 (2003).

    Article CAS  Google Scholar 

  103. Doolittle, W. F. et al. How big is the iceberg of which organellar genes in nuclear genomes are but the tip?Philos. Trans. Roy. Soc. Lond. B358, 39–57 (2003).

    Article CAS  Google Scholar 

  104. Woese, C., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains archaea, bacteria and eucarya.Proc. Natl Acad. Sci. USA87, 4576–4579 (1990).The current higher-level taxonomic model, with eukaryotes as sisters to archaebacteria.

    Article CAS PubMed PubMed Central  Google Scholar 

  105. Rivera, M. C., Jain, R., Moore, J. E. & Lake, J. A. Genomic evidence for two functionally distinct gene classes.Proc. Natl Acad. Sci. USA95, 6239–6244 (1998).A landmark paper that uncovers more eubacterial genes than archaebacterial genes in the yeast genome.

    Article CAS PubMed PubMed Central  Google Scholar 

  106. Penny, D., Foulds, L. R. & Hendy, M. D. Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences.Nature297, 197–200 (1982).

    Article CAS PubMed  Google Scholar 

  107. Cummings, M. P., Otto, S. P. & Wakeley, J. Sampling properties of DNA-sequence data in phylogenetic analysis.Mol. Biol. Evol.12, 814–822 (1995).

    CAS PubMed  Google Scholar 

  108. Embley, T. M. & Hirt, R. P. Early branching eukaryotes?Curr. Opin. Genet. Dev.8, 655–661 (1998).

    Article  Google Scholar 

  109. Rokas, A., Williams, B. L., King, N. & Carroll, S. B. Genome-scale approaches to resolving incongruence in molecular phylogenies.Nature425, 798–804 (2003).

    Article CAS PubMed  Google Scholar 

  110. Gogarten P. J., Doolittle W. F. & Lawrence J. G. Prokaryotic evolution in light of lateral gene transfer.Mol. Biol. Evol.19, 2226–2238 (2002).

    Article CAS PubMed  Google Scholar 

  111. Hedges, S. B. et al. A genomic timescale for the origin of eukaryotes.BMC Evol. Biol.1, 4 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  112. Hartman, H. & Fedorov, A. The origin of the eukaryotic cell: a genomic investigation.Proc. Natl Acad. Sci. USA99, 1420–1425 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  113. Stechmann, A. & Cavalier-Smith, T. Rooting the eukaryote tree by using a derived gene fusion.Science297, 89–91 (2002).A milestone relating to the issue of which eukaryotes might be the most ancient.

    Article CAS PubMed  Google Scholar 

  114. Kondo, N., Nikoh, N., Ijichi, N., Shimada, M. & Fukatsu, T. Genome fragment ofWolbachia endosymbiont transferred to X chromosome of host insect.Proc. Natl Acad. Sci. USA99, 14280–14285 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  115. Neupert, W. Protein import into mitochondria.Ann. Rev. Biochem.66, 683–717 (1997).

    Article  Google Scholar 

  116. Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote.Nature392, 37–41 (1998).

    Article CAS PubMed  Google Scholar 

  117. Soll, J. Protein import into chloroplasts.Curr. Opin. Plant. Biol.5, 529–535 (2002).

    Article CAS PubMed  Google Scholar 

  118. Bendich, A. J. & Drlica, K. Prokaryotic and eukaryotic chromosomes: what's the difference?BioEssays22, 481–486 (2000).An enlightening survey of chromosome attributes in prokaryotes and eukaryotes.

    Article CAS PubMed  Google Scholar 

  119. Birky, C. W. The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms and models.Annu. Rev. Genet.35, 125–148 (2001).

    Article CAS PubMed  Google Scholar 

  120. Martin, W., Hoffmeister, M., Rotte, C. & Henze, K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle.Biol. Chem.382, 1521–1539 (2001).

    Article CAS PubMed  Google Scholar 

  121. Butterfield, N. J.Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/ Neoproterozoic radiation of eukaryotes.Paleobiology26, 386–404 (2000).A fossil red algae of 1. 2 billion years of age anchors plant evolution in the Precambrian age.

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Limpert for help in preparing the manuscript, the Australian Research Council, the Australian–German Joint Research Cooperation Scheme and the Deutsche Forschungsgemeinschaft for financial support, and D. Leister for valuable discussions and permission to modify published figures. Countless individual report on numts, nupts and eukaryotic genes that were acquired from organelles are available; we apologize to all for having to focus on selected and more recent work.

Author information

Authors and Affiliations

  1. School of Molecular and Biomedical Science, The University of Adelaide, South Australia, 5005, Australia

    Jeremy N. Timmis & Chun Y. Huang

  2. CSIRO Plant Industry, GPO Box 1600, Australian Capital Territory, 2601, Australia

    Michael A. Ayliffe

  3. Institute of Botany III, University of Düsseldorf, Düsseldorf, 40225, Germany

    William Martin

Authors
  1. Jeremy N. Timmis

    You can also search for this author inPubMed Google Scholar

  2. Michael A. Ayliffe

    You can also search for this author inPubMed Google Scholar

  3. Chun Y. Huang

    You can also search for this author inPubMed Google Scholar

  4. William Martin

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJeremy N. Timmis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

CYANOBACTERIA

The group of pigmented, photosynthetic bacteria that contains the endosymbiont ancestors of chloroplasts.

α-PROTEOBACTERIA

A subgroup of gram-negative bacteria, often called the purple bacteria, that are thought to be the endosymbiont ancestors of mitochondria.

DISOMIC

The condition in which there are two sets of similar (homologous) chromosomes, such that there are two alleles for each gene locus. These homologous chromosomes pair at meiosis and their segregation and transmission results in Mendelian inheritance.

HAPLOID

The condition in which there is only a single chromosome, or set of chromosomes, such that all loci are represented by only a single allele.

CYTOPLASMIC ORGANELLES

Here, confined to mean mitochondria and plastids.

PROMISCUOUS DNA

DNA that is present in more than one genetic compartment of the eukaryotic cell.

ARCHAEBACTERIA

An ancient group of organisms that have ribosomes and cell membranes that distinguish them from eubacteria. They sometimes show environmentally extreme ecology.

NUMT

An acronym to describe nuclear integrants of mitochondrial DNA.

INTEGRANT

Here, used to describe nuclear tracts of DNA that resemble plastid DNA or mitochondrial DNA.

NUPT

An acronym to describe nuclear integrants of plastid DNA.

TRANSIT PEPTIDE

A peptide sequence, often at the N-terminus of a precursor protein, that directs a gene product to its specific cellular destination.

MUTATIONAL DECAY

The process that describes the random changes that might occur in a DNA sequence in the absence of selection pressure.

PROTIST

A single-celled eukaryote.

PHYLOGENETICS

Reconstruction of the evolutionary relationships between sequences using any of a variety of inference methods.

PRODUCT SPECIFICITY COROLLARY

The situation in which the product of a gene that is donated by a cytoplasmic organelle to the nucleus is expected to be returned to that organelle.

EPISOME

A unit of genetic material that is composed of a series of genes that sometimes has an independent existence in a host cell and at other times is integrated into a chromosome of the cell, replicating itself along with the chromosome.

BIOLISTIC TRANSFORMATION

A commonly used transformation method in which metal beads are coated with gene contructs and shot into cells.

LEAF EXPLANTS

Small sterile sections of leaf or other plant tissue from which whole plants might sometimes be regenerated.

UNIPARENTAL INHERITANCE

The mode of inheritance that generally characterizes the genes of cytoplasmic organelles in which only one of the two sexual partners contributes to the offspring.

TRANSPLASTOME

The condition of a plastid genome after the insertion of non-native genes.

MT STRAIN

One of the two mating types (the other is mt+) ofChlamydomonas reinhardtii; one of each is required to form a zygote.

RNA EDITING

Changes in the RNA sequence after transcription is completed. Examples include modification of C to U or of A to I by deamination, or insertion and/or deletion of particular bases.

PROMOTER TRAP

A genetic engineering technique that involves randomly inserting into the genome constructs that encode an easily detectable marker, such as GFP, but contain no promoter sequences. Marker expression is only detected when the construct lands near an endogenous genomic promoter.

Rights and permissions

About this article

Cite this article

Timmis, J., Ayliffe, M., Huang, C.et al. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes.Nat Rev Genet5, 123–135 (2004). https://doi.org/10.1038/nrg1271

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp