Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Physics
  • Article
  • Published:

A toolbox for lattice-spin models with polar molecules

Nature Physicsvolume 2pages341–347 (2006)Cite this article

Abstract

There is growing interest in states of matter with topological order. These are characterized by highly stable ground states robust to perturbations that preserve the topology, and which support excitations with so-called anyonic statistics. Topologically ordered states can arise in two-dimensional lattice-spin models, which were proposed as the basis for a new class of quantum computation. Here, we show that the relevant hamiltonians for such spin lattice models can be systematically engineered with polar molecules stored in optical lattices, where the spin is represented by a single-valence electron of a heteronuclear molecule. The combination of microwave excitation with dipole–dipole interactions and spin–rotation couplings enables building a complete toolbox for effective two-spin interactions with designable range, spatial anisotropy and coupling strengths significantly larger than relevant decoherence rates. Finally, we illustrate two models: one with an energy gap providing for error-resilient qubit encoding, and another leading to topologically protected quantum memory.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example anisotropic spin models that can be simulated with polar molecules trapped in optical lattices.
Figure 2: Movre–Pichler potentials for a pair of molecules as a function of their separationr.
Figure 3: Design and verification of noise-protected ground states arising from a simulation ofHspin(I).
Figure 4: Implementation of spin modelHspin(II).

Similar content being viewed by others

References

  1. Levin, M. A. & Wen, X. G. String-net condensation: A physical mechanism for topological phases.Phys. Rev. B71, 045110 (2005).

    Article ADS  Google Scholar 

  2. Hermele, M., Fisher, M. P. A. & Balents, L. Pyrochlore photons: TheU(1) spin liquid in aS=1/2 three-dimensional frustrated magnet.Phys. Rev. B69, 064404 (2004).

    Article ADS  Google Scholar 

  3. Einarsson, T. Fractional statistics on a torus.Phys. Rev. Lett.64, 1995–1998 (1990).

    Article ADS MathSciNet  Google Scholar 

  4. Jaksch, D. & Zoller, P. The cold atom Hubbard toolbox.Ann. Phys.315, 52–79 (2005).

    Article ADS  Google Scholar 

  5. Büchler, H. P., Hermele, M., Huber, S. D., Fisher, M. P. A. & Zoller, P. Atomic quantum simulator for lattice gauge theories and ring exchange models.Phys. Rev. Lett.95, 040402 (2005).

    Article ADS  Google Scholar 

  6. Santos, L. et al. Atomic quantum gases in kagomé lattices.Phys. Rev. Lett.93, 030601 (2004).

    Article ADS  Google Scholar 

  7. Special Issue on Ultracold Polar Molecules: Formation and Collisions.Eur. Phys. J. D31, 149–444 (2004).

  8. Duoçot, B., Feigel’man, M. V., Ioffe, L. B. & Ioselevich, A. S. Protected qubits and Chern-Simons theories in Josephson junction arrays.Phys. Rev. B71, 024505 (2005).

    Article ADS  Google Scholar 

  9. Kitaev, A. Anyons in an exactly solved model and beyond.Ann. Phys.321, 2–111 (2006).

    Article ADS MathSciNet  Google Scholar 

  10. Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory.J. Math. Phys.43, 4452–4505 (2002).

    Article ADS MathSciNet  Google Scholar 

  11. Duan, L. M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in optical lattices.Phys. Rev. Lett.91, 090402 (2003).

    Article ADS  Google Scholar 

  12. Sage, J. M., Sainis, S., Bergeman, T. & DeMille, D. Optical production of ultracold polar molecules.Phys. Rev. Lett.94, 203001 (2005).

    Article ADS  Google Scholar 

  13. Jaksch, D., Venturi, V., Cirac, J. I., Williams, C. J. & Zoller, P. Creation of a molecular condensate by dynamically melting a Mott insulator.Phys. Rev. Lett.89, 040402 (2002).

    Article ADS  Google Scholar 

  14. Brennen, G. K., Deutsch, I. H. & Williams, C. J. Quantum logic for trapped atoms via molecular hyperfine interactions.Phys. Rev. A65, 022313 (2002).

    Article ADS  Google Scholar 

  15. Friedrich, B. & Herschbach, D. Alignment and trapping of molecules in intense laser fields.Phys. Rev. Lett.74, 4623–4626 (1995).

    Article ADS  Google Scholar 

  16. DeMille, D. Quantum computation with trapped polar molecules.Phys. Rev. Lett.88, 067901 (2002).

    Article ADS  Google Scholar 

  17. Kotochigova, S., Tiesinga, E. & Julienne, P. S. Photoassociative formation of ultracold polar KRb molecules.Eur. Phys. J. D31, 189–194 (2004).

    Article ADS  Google Scholar 

  18. Movre, M. & Pichler, G. Resonant interaction and self-broadening of alkali resonance lines I. Adiabatic potential curves.J. Phys. B10, 2631–2638 (1977).

    Article ADS  Google Scholar 

Download references

Acknowledgements

A.M. thanks W. Ernst, and P.Z. thanks T. Calarco, L. Faoro, M. Lukin, and D. Petrov for helpful discussions. This work was supported by the Austrian Science Foundation, the European Union, OLAQUI, SCALA and the Institute for Quantum Information.

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics, University of Innsbruck, and Institute for Quantum Optics and Quantum Information of the Austrian Academy of Science, 6020 Innsbruck, Austria

    A. Micheli, G. K. Brennen & P. Zoller

Authors
  1. A. Micheli

    You can also search for this author inPubMed Google Scholar

  2. G. K. Brennen

    You can also search for this author inPubMed Google Scholar

  3. P. Zoller

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toA. Micheli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

About this article

Cite this article

Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules.Nature Phys2, 341–347 (2006). https://doi.org/10.1038/nphys287

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Polar molecules in topological order

  • Maciej Lewenstein
Nature PhysicsNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp