Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Neuroscience
  • Perspective
  • Published:

Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction

Nature Neurosciencevolume 8pages1450–1457 (2005)Cite this article

Abstract

Genetic variation may partially underlie complex personality and physiological traits—such as impulsivity, risk taking and stress responsivity—as well as a substantial proportion of vulnerability to addictive diseases. Furthermore, personality and physiological traits themselves may differentially affect the various stages of addiction, defined chronologically as initiation of drug use, regular drug use, addiction/dependence and potentially relapse. Here we focus on recent approaches to the study of genetic variation in these personality and physiological traits, and their influence on and interaction with addictive diseases.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diverse contribution of genetic influences to initial drug use, abuse and addiction.
Figure 2: Stress causes increased mRNA synthesis and release of hypothalamic corticotropin releasing factor (CRF) into the portal circulation, which acts on CRFR1 receptors in the anterior pituitary.

Similar content being viewed by others

References

  1. Kreek, M.J., LaForge, K.S. & Butelman, E. Pharmacotherapy of addictions.Nat. Rev. Drug Discov.1, 710–726 (2002).

    Article CAS  Google Scholar 

  2. Kreek, M.J., Bart, G., Lilly, C., LaForge, K.S. & Nielsen, D.A. Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments.Pharmacol. Rev.57, 1–26 (2005).

    Article CAS  Google Scholar 

  3. Kosten, T.A. et al. Miserendino, M.J. & Haile, C.N., DeCaprio, J.L., Jatlow, P.I., Nestler, E.J. Acquisition and maintenance of intravenous cocaine self-administration in Lewis and Fischer inbred rat strains.Brain Res.778, 418–429 (1997).

    Article CAS  Google Scholar 

  4. Tsuang, M.T. et al. Co-occurrence of abuse of different drugs in men: the role of drug-specific and shared vulnerabilities.Arch. Gen. Psychiatry55, 967–972 (1998).

    Article CAS  Google Scholar 

  5. Kendler, K.S., Jacobson, K.C., Prescott, C.A. & Neale, M.C. Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins.Am. J. Psychiatry160, 687–695 (2003).

    Article  Google Scholar 

  6. Tsuang, M.T. et al. Genetic and environmental influences on transitions in drug use.Behav. Genet.29, 473–479 (1999).

    Article CAS  Google Scholar 

  7. Foroud, T. et al. Alcoholism susceptibility loci: Confirmation studies in a replicate sample and further mapping.Alcohol. Clin. Exp. Res.24, 933–945 (2000).

    Article CAS  Google Scholar 

  8. Edenberg, H.J. et al. Variations in GABRA2, encoding the α2 subunit of the GABAA receptor, are associated with alcohol dependence and with brain oscillations in the beta frequency.Am. J. Hum. Genet.74, 705–714 (2004).

    Article CAS  Google Scholar 

  9. Wang, J.C. et al. Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome.Hum. Mol. Genet.13, 1903–1911 (2004).

    Article CAS  Google Scholar 

  10. Ott, J. Issues in association analysis: error control in case-control association studies for disease gene discovery.Hum. Hered.58, 171–174 (2004).

    Article  Google Scholar 

  11. Kreek, M.J., Nielsen, D.A. & LaForge, K.S. Genes associated with addiction: alcoholism, opiate and cocaine addiction.Neuromolecular Med.5, 85–108 (2004).

    Article CAS  Google Scholar 

  12. Nielsen, D.A. et al. A tryptophan hydroxylase gene marker for suicidality and alcoholism.Arch. Gen. Psychiatry55, 593–602 (1998).

    Article CAS  Google Scholar 

  13. Coccaro, E.F. et al. Familial correlates of reduced central serotonergic system function in patients with personality disorders.Arch. Gen. Psychiatry51, 318–324 (1994).

    Article CAS  Google Scholar 

  14. Nielsen, D.A. et al. Suicidality and 5-hydroxyindoleacetic acid concentration associated with a tryptophan hydroxylase polymorphism.Arch. Gen. Psychiatry51, 34–38 (1994).

    Article CAS  Google Scholar 

  15. Limosin, F. et al. Association between dopamine receptor D3 gene BalI polymorphism and cognitive impulsiveness in alcohol-dependent men.Eur. Psychiatry20, 304–306 (2005).

    Article CAS  Google Scholar 

  16. Lusher, J.M., Chandler, C. & Ball, D. Dopamine D4 receptor gene (DRD4) is associated with novelty seeking (NS) and substance abuse: the saga continues.Mol. Psychiatry6, 497–499 (2001).

    Article CAS  Google Scholar 

  17. Schinka, J.A., Letsch, E.A. & Crawford, F.C. DRD4 and novelty seeking: results of meta-analyses.Am. J. Med. Genet. B Neuropsychiatr. For. Genet.114, 643–648 (2002).

    Article CAS  Google Scholar 

  18. Primus, R.J. et al. II. Localization and characterization of dopamine D4 binding sites in rat and human brain by use of the novel, D4 receptor-selective ligand [3H]NGD 94–1.J. Pharmacol. Exp. Ther.282, 1020–1027 (1997).

    CAS PubMed  Google Scholar 

  19. Uhl, G., Blum, K., Noble, E. & Smith, S. Substance abuse vulnerability and D2 receptor genes.Trends Neurosci.16, 83–88 (1993).

    Article CAS  Google Scholar 

  20. Gelernter, J., Goldman, D. & Risch, N. The A1 allele at the D2 dopamine receptor gene and alcoholism: a reappraisal.J. Am. Med. Assoc.269, 1673–1677 (1993).

    Article CAS  Google Scholar 

  21. Neville, M.J., Johnstone, E.C. & Walton, R.T. Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1.Hum. Mutat.23, 540–545 (2004).

    Article CAS  Google Scholar 

  22. Rounsaville, B.J., Weissman, M.M., Crits-Christoph, K., Wilber, C. & Kleber, H. Diagnosis and symptoms of depression in opiate addicts. Course and relationship to treatment outcome.Arch. Gen. Psychiatry39, 151–156 (1982).

    Article CAS  Google Scholar 

  23. Levin, F. & Kleber, H. Attention deficit hyperactivity disorder and substance abuse: relationships and implications for treatment.Harv. Rev. Psychiatry2, 246–258 (1995).

    Article CAS  Google Scholar 

  24. Kreek, M.J. Medical safety, side effects and toxicity of methadone.Proceedings of the Fourth National Conference on Methadone Treatment, National Association for the Prevention of Addiction to Narcotics (NAPAN)-NIMH, 171–174 (1972).

    Google Scholar 

  25. Kreek, M.J. Opiates, opioids and addiction.Mol. Psychiatry1, 232–254 (1996).

    CAS PubMed  Google Scholar 

  26. Schluger, J.H., Borg, L., Ho, A. & Kreek, M.J. Altered HPA axis responsivity to metyrapone testing in methadone maintained former heroin addicts with ongoing cocaine addiction.Neuropsychopharmacology24, 568–575 (2001).

    Article CAS  Google Scholar 

  27. O'Malley, S.S., Krishnan-Sarin, S., Farren, C., Sinha, R. & Kreek, M.J. Naltrexone decreases craving and alcohol self-administration in alcohol dependent subjects and activates the hypothalamo-pituitary-adrenocortical axis.Psychopharmacology (Berl.)160, 19–29 (2002).

    Article CAS  Google Scholar 

  28. Zhou, Y. et al. Corticotropin-releasing factor and type 1 corticotropin-releasing factor receptor messenger RNAs in rat brain and pituitary during 'binge'-pattern cocaine administration and chronic withdrawal.J. Pharmacol. Exp. Ther.279, 351–358 (1996).

    CAS PubMed  Google Scholar 

  29. Sinha, R. et al. Hypothalamic-pituitary-adrenal axis and sympatho-adreno-medullary responses during stress-induced and drug cue-induced cocaine craving states.Psychopharmacology (Berl.)170, 62–72 (2003).

    Article CAS  Google Scholar 

  30. Bond, C. et al. Single nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: Possible implications for opiate addiction.Proc. Natl. Acad. Sci. USA95, 9608–9613 (1998).

    Article CAS  Google Scholar 

  31. LaForge, K.S., Yuferov, V. & Kreek, M.J. Opioid receptor and peptide gene polymorphisms: potential implications for addictions.Eur. J. Pharmacol.410, 249–268 (2000).

    Article CAS  Google Scholar 

  32. Bart, G. et al. Substantial attributable risk related to a functional mu-opioid receptor gene polymorphism in association with heroin addiction in central Sweden.Mol. Psychiatry9, 547–549 (2004).

    Article CAS  Google Scholar 

  33. Bart, G. et al. Increased attributable risk related to a functional mu-opioid receptor gene polymorphism in association with alcohol dependence in central Sweden.Neuropsychopharmacology30, 417–422 (2005).

    Article CAS  Google Scholar 

  34. Lachman, H.M. et al. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders.Pharmacogenetics6, 243–250 (1996).

    Article CAS  Google Scholar 

  35. Oswald, L.M., McCaul, M., Choi, L., Yang, X. & Wand, G.S. Catechol-O-methyltransferase polymorphism alters hypothalamic-pituitary-adrenal axis responses to naloxone: a preliminary report.Biol. Psychiatry55, 102–105 (2004).

    Article CAS  Google Scholar 

  36. Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children.Science297, 851–854 (2002).

    Article CAS  Google Scholar 

  37. Caspi, A., Sugden, K. & Moffitt, T.E. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene.Science301, 386–389 (2003).

    Article CAS  Google Scholar 

  38. Hu, X. et al. An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk.Alcohol. Clin. Exp. Res.29, 8–16 (2005).

    Article CAS  Google Scholar 

  39. Gelernter, J. et al. Genomewide linkage scan for cocaine dependence and related traits: significant linkages for a cocaine-related trait and cocaine-induced paranoia.Am. J. Med. Genet. B Neuropsychiatr. For. Genet.136, 45–52 (2005).

    Article  Google Scholar 

  40. Uhl, G.R., Liu, Q.R. & Naiman, D. Substance abuse vulnerability loci: converging genome scanning data.Trends Genet.18, 420–425 (2002).

    Article CAS  Google Scholar 

  41. Uhl, G. Molecular genetics of substance abuse vulnerability: remarkable recent convergence of genome scan results.Ann. NY Acad. Sci.1025, 1–13 (2004).

    Article CAS  Google Scholar 

  42. Yuferov, V. et al. Redefinition of the human kappa opioid receptor(OPRK1) structure and association of haplotypes with opiate addiction.Pharmacogenetics14, 793–804 (2004).

    Article CAS  Google Scholar 

  43. Vandenbergh, D.J., Rodriguez, L.A., Miller, I.T., Uhl, G.R. & Lachman, H.M. High-activity catechol-O-methyltransferase allele is more prevalent in polysubstance abusers.Am. J. Med. Genet.74, 439–442 (1997).

    Article CAS  Google Scholar 

  44. Horowitz, R. et al. Confirmation of an excess of the high enzyme activity COMT val allele in heroin addicts in a family-based haplotype relative risk study.Am. J. Med. Genet.96, 599–603 (2000).

    Article CAS  Google Scholar 

  45. Li, T. et al. Association analysis of theDRD4 andCOMT genes in methamphetamine abuse.Am. J. Med. Genet. B Neuropsychiatr. For. Genet.129, 120–124 (2004).

    Article  Google Scholar 

  46. Cubells, J.F. et al. A haplotype at DBH, associated with low plasma dopamine-β-hydroxylase activity, also associates with cocaine-induced paranoia.Mol. Psychiatry5, 56–63 (2000).

    Article CAS  Google Scholar 

  47. Comings, D.E. et al. Cannabinoid receptor gene (CNR1): Association with IV drug use.Mol. Psychiatry2, 161–168 (1997).

    Article CAS  Google Scholar 

  48. Schmidt, L.G. et al. Association of a CB1 cannabinoid receptor gene (CNR1) polymorphism with severe alcohol dependence.Drug Alcohol Depend.65, 221–224 (2002).

    Article CAS  Google Scholar 

  49. Zhang, P-W. et al. Human cannabinoid receptor 1: 5′ exons, candidate regulatory regions, polymorphisms, haplotypes and association with polysubstance abuse.Mol. Psychiatry9, 916–931 (2004).

    Article CAS  Google Scholar 

  50. Sipe, J.C., Chiang, K., Gerber, A.L., Beutler, E. & Cravatt, B.F. A missense mutation in human fatty acid amide hydrolase associated with problem drug use.Proc. Natl. Acad. Sci. USA99, 8394–8399 (2002).

    Article CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health-National Institute on Drug Abuse (NIH-NIDA) Research Scientist Award Grant K05-DA00049; NIH-NIDA Research Center Grant P60-DA05130; NIH-GCRC General Research Center Grant MOI-RR00102; and the New York State Office of Alcoholism and Substance Abuse (OASAS). Thanks to K. Lavoie for assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

  1. the Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York, USA

    Mary Jeanne Kreek, David A Nielsen, Eduardo R Butelman & K Steven LaForge

Authors
  1. Mary Jeanne Kreek
  2. David A Nielsen
  3. Eduardo R Butelman
  4. K Steven LaForge

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

About this article

Cite this article

Kreek, M., Nielsen, D., Butelman, E.et al. Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction.Nat Neurosci8, 1450–1457 (2005). https://doi.org/10.1038/nn1583

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp