Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Neuroscience
  • Article
  • Published:

Epigenetic inheritance of a cocaine-resistance phenotype

Nature Neurosciencevolume 16pages42–47 (2013)Cite this article

Subjects

Abstract

We delineated a heritable phenotype resulting from the self-administration of cocaine in rats. We observed delayed acquisition and reduced maintenance of cocaine self-administration in male, but not female, offspring of sires that self-administered cocaine. Brain-derived neurotrophic factor (Bdnf) mRNA and BDNF protein were increased in the medial prefrontal cortex (mPFC), and there was an increased association of acetylated histone H3 withBdnf promoters in only the male offspring of cocaine-experienced sires. Administration of a BDNF receptor antagonist (the TrkB receptor antagonist ANA-12) reversed the diminished cocaine self-administration in male cocaine-sired rats. In addition, the association of acetylated histone H3 withBdnf promoters was increased in the sperm of sires that self-administered cocaine. Collectively, these findings indicate that voluntary paternal ingestion of cocaine results in epigenetic reprogramming of the germline, having profound effects on mPFC gene expression and resistance to cocaine reinforcement in male offspring.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cocaine self-administration by the F0 sires.
Figure 2: Reduced cocaine intake in male cocaine-sired rats.
Figure 3: Decreased reinforcing effectiveness of cocaine in male cocaine-sired rats.
Figure 4: Increased mPFC BDNF protein and mRNA in male cocaine-sired rats.
Figure 5: Pretreatment with the TrkB antagonist ANA-12 normalized the acquisition of cocaine self-administration in male CocSired rats.
Figure 6: Increased spermBdnf promoter acetylation in cocaine-exposed sires.

Similar content being viewed by others

References

  1. Anway, M.D., Cupp, A.S., Uzumcu, M. & Skinner, M.K. Epigenetic transgenerational actions of endocrine disruptors and male fertility.Science308, 1466–1469 (2005).

    Article CAS  Google Scholar 

  2. Dunn, G.A. & Bale, T.L. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice.Endocrinology150, 4999–5009 (2009).

    Article CAS  Google Scholar 

  3. Champagne, F.A. Epigenetic influence of social experiences across the lifespan.Dev. Psychobiol.52, 299–311 (2010).

    Article CAS  Google Scholar 

  4. Carone, B.R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals.Cell143, 1084–1096 (2010).

    Article CAS  Google Scholar 

  5. Ng, S.F. et al. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring.Nature467, 963–966 (2010).

    Article CAS  Google Scholar 

  6. Morgan, C.P. & Bale, T.L. Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage.J. Neurosci.31, 11748–11755 (2011).

    Article CAS  Google Scholar 

  7. Kaati, G., Bygren, L.O. & Edvinsson, S. Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period.Eur. J. Hum. Genet.10, 682–688 (2002).

    Article CAS  Google Scholar 

  8. Pembrey, M.E. et al. Sex-specific, male-line transgenerational responses in humans.Eur. J. Hum. Genet.14, 159–166 (2006).

    Article  Google Scholar 

  9. Byrnes, E.M. Transgenerational consequences of adolescent morphine exposure in female rats: effects on anxiety-like behaviors and morphine sensitization in adult offspring.Psychopharmacology (Berl.)182, 537–544 (2005).

    Article CAS  Google Scholar 

  10. Byrnes, J.J., Babb, J.A., Scanlan, V.F. & Byrnes, E.M. Adolescent opioid exposure in female rats: transgenerational effects on morphine analgesia and anxiety-like behavior in adult offspring.Behav. Brain Res.218, 200–205 (2011).

    Article CAS  Google Scholar 

  11. Novikova, S.I. et al. Maternal cocaine administration in mice alters DNA methylation and gene expression in hippocampal neurons of neonatal and prepubertal offspring.PLoS One3, e1919 (2008).

    Article  Google Scholar 

  12. He, F., Lidow, I.A. & Lidow, M.S. Consequences of paternal cocaine exposure in mice.Neurotoxicol. Teratol.28, 198–209 (2006).

    Article CAS  Google Scholar 

  13. Abel, E.L., Moore, C., Waselewsky, D., Zajac, C. & Russell, L.D. Effects of cocaine hydrochloride on reproductive function and sexual behavior of male rats and on the behavior of their offspring.J. Androl.10, 17–27 (1989).

    Article CAS  Google Scholar 

  14. Burley, N. The differential-allocation hypothesis: an experimental test.Am. Nat.132, 611–628 (1988).

    Article  Google Scholar 

  15. Sheldon, T.A. & Smith, P.C. Equity in the allocation of health care resources.Health Econ.9, 571–574 (2000).

    Article CAS  Google Scholar 

  16. Drickamer, L.C., Gowaty, P.A. & Holmes, C.M. Free female mate choice in house mice affects reproductive success and offspring viability and performance.Anim. Behav.59, 371–378 (2000).

    Article CAS  Google Scholar 

  17. Gowaty, P.A. et al. The hypothesis of reproductive compensation and its assumptions about mate preferences and offspring viability.Proc. Natl. Acad. Sci. USA104, 15023–15027 (2007).

    Article CAS  Google Scholar 

  18. Alter, M.D. et al. Paternal transmission of complex phenotypes in inbred mice.Biol. Psychiatry66, 1061–1066 (2009).

    Article  Google Scholar 

  19. Martini, M. & Valverde, O. A single episode of maternal deprivation impairs the motivation for cocaine in adolescent mice.Psychopharmacology (Berl.)219, 149–158 (2012).

    Article CAS  Google Scholar 

  20. Sadri-Vakili, G. et al. Cocaine-induced chromatin remodeling increases brain-derived neurotrophic factor transcription in the rat medial prefrontal cortex, which alters the reinforcing efficacy of cocaine.J. Neurosci.30, 11735–11744 (2010).

    Article CAS  Google Scholar 

  21. Berglind, W.J. et al. A BDNF infusion into the medial prefrontal cortex suppresses cocaine seeking in rats.Eur. J. Neurosci.26, 757–766 (2007).

    Article  Google Scholar 

  22. Pierce, R.C. & Bari, A.A. The role of neurotrophic factors in psychostimulant-induced behavioral and neuronal plasticity.Rev. Neurosci.12, 95–110 (2001).

    Article CAS  Google Scholar 

  23. Cazorla, M. et al. Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice.J. Clin. Invest.121, 1846–1857 (2011).

    Article CAS  Google Scholar 

  24. Sakuma, Y. Gonadal steroid action and brain sex differentiation in the rat.J. Neuroendocrinol.21, 410–414 (2009).

    Article CAS  Google Scholar 

  25. Koob, G.F. The role of CRF and CRF-related peptides in the dark side of addiction.Brain Res.1314, 3–14 (2010).

    Article CAS  Google Scholar 

  26. McElligott, Z.A. & Winder, D.G. Modulation of glutamatergic synaptic transmission in the bed nucleus of the stria terminalis.Prog. Neuropsychopharmacol. Biol. Psychiatry33, 1329–1335 (2009).

    Article CAS  Google Scholar 

  27. Chung, W.C., Swaab, D.F. & De Vries, G.J. Apoptosis during sexual differentiation of the bed nucleus of the stria terminalis in the rat brain.J. Neurobiol.43, 234–243 (2000).

    Article CAS  Google Scholar 

  28. Becker, J.B. & Hu, M. Sex differences in drug abuse.Front. Neuroendocrinol.29, 36–47 (2008).

    Article CAS  Google Scholar 

  29. Anker, J.J. & Carroll, M.E. Females are more vulnerable to drug abuse than males: evidence from preclinical studies and the role of ovarian hormones.Curr. Top. Behav. Neurosci.8, 73–96 (2011).

    Article CAS  Google Scholar 

  30. Quinones-Jenab, V. & Jenab, S. Progesterone attenuates cocaine-induced responses.Horm. Behav.58, 22–32 (2010).

    Article CAS  Google Scholar 

  31. Kendler, K.S., Jacobson, K.C., Prescott, C.A. & Neale, M.C. Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins.Am. J. Psychiatry160, 687–695 (2003).

    Article  Google Scholar 

  32. Tsuang, M.T. et al. Co-occurrence of abuse of different drugs in men: the role of drug-specific and shared vulnerabilities.Arch. Gen. Psychiatry55, 967–972 (1998).

    Article CAS  Google Scholar 

  33. Merikangas, K.R. et al. Familial transmission of substance use disorders.Arch. Gen. Psychiatry55, 973–979 (1998).

    Article CAS  Google Scholar 

  34. Goldman, D., Oroszi, G. & Ducci, F. The genetics of addictions: uncovering the genes.Nat. Rev. Genet.6, 521–532 (2005).

    Article CAS  Google Scholar 

  35. Graham, D.L. et al. Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse.Nat. Neurosci.10, 1029–1037 (2007).

    Article CAS  Google Scholar 

  36. Whitfield, T.W. Jr., Shi, X., Sun, W.L. & McGinty, J.F. The suppressive effect of an intra-prefrontal cortical infusion of BDNF on cocaine-seeking is Trk receptor and extracellular signal-regulated protein kinase mitogen-activated protein kinase dependent.J. Neurosci.31, 834–842 (2011).

    Article CAS  Google Scholar 

  37. Maze, I. & Nestler, E.J. The epigenetic landscape of addiction.Ann. NY Acad. Sci.1216, 99–113 (2011).

    Article CAS  Google Scholar 

  38. Misra, A.L., Giri, V.V., Patel, M.N., Alluri, V.R. & Mule, S.J. Disposition and metabolism of [3H] cocaine in acutely and chronically treated monkeys.Drug Alcohol Depend.2, 261–272 (1977).

    Article CAS  Google Scholar 

  39. Li, H., George, V.K., Crossland, W.J., Anderson, G.F. & Dhabuwala, C.B. Characterization of cocaine binding sites in the rat testes.J. Urol.158, 962–965 (1997).

    Article CAS  Google Scholar 

  40. Guerrero-Bosagna, C., Settles, M., Lucker, B. & Skinner, M.K. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome.PLoS ONE5, e13100 (2010).

    Article  Google Scholar 

  41. Steger, K., Cavalcanti, M.C. & Schuppe, H.C. Prognostic markers for competent human spermatozoa: fertilizing capacity and contribution to the embryo.Int. J. Androl.34, 513–527 (2011).

    Article CAS  Google Scholar 

  42. Anway, M.D., Cupp, A.S., Uzumcu, M. & Skinner, M.K. Epigenetic transgenerational actions of endocrine disruptors and male fertility.Science308, 1466–1469 (2005).

    Article CAS  Google Scholar 

  43. Champagne, D.L. et al. Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress.J. Neurosci.28, 6037–6045 (2008).

    Article CAS  Google Scholar 

  44. Weaver, I.C. et al. Epigenetic programming by maternal behavior.Nat. Neurosci.7, 847–854 (2004).

    Article CAS  Google Scholar 

  45. Chen, W.G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2.Science302, 885–889 (2003).

    Article CAS  Google Scholar 

  46. Martinowich, K. et al. DNA methylation–related chromatin remodeling in activity-dependent BDNF gene regulation.Science302, 890–893 (2003).

    Article CAS  Google Scholar 

  47. Sadri-Vakili, G. et al. Cocaine-induced chromatin remodeling increases brain-derived neurotrophic factor transcription in the rat medial prefrontal cortex, which alters the reinforcing efficacy of cocaine.J. Neurosci.30, 11735–11744 (2010).

    Article CAS  Google Scholar 

  48. Chen-Plotkin, A.S. et al. Decreased association of the transcription factor Sp1 with genes downregulated in Huntington's disease.Neurobiol. Dis.22, 233–241 (2006).

    Article CAS  Google Scholar 

  49. Braveman, M.W., Chen-Plotkin, A.S., Yohrling, G.J. & Cha, J.H. Chromatin immunoprecipitation technique for study of transcriptional dysregulation in intact mouse brain.Methods Mol. Biol.277, 261–276 (2004).

    CAS PubMed  Google Scholar 

  50. Sadri-Vakili, G. et al. Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models.Hum. Mol. Genet.16, 1293–1306 (2007).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Schassburger, T. Hopkins, B. Kimmey, S. Friedman, A. Lee, S. Darnell and G. Sangrey for technical assistance, and L. Briand for advice on experimental design. This work was supported by grants from the US National Institutes of Health (R01s DA15214, DA22339, DA33641, K02 DA18678, K01 DA30445, F31 DA31535, T32s DA28874 and MH86599).

Author information

Author notes
  1. Ghazaleh Sadri-Vakili and R Christopher Pierce: These authors contributed equally to this work.

Authors and Affiliations

  1. Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA

    Fair M Vassoler, Samantha L White, Heath D Schmidt & R Christopher Pierce

  2. MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, Massachusetts, USA

    Ghazaleh Sadri-Vakili

Authors
  1. Fair M Vassoler

    You can also search for this author inPubMed Google Scholar

  2. Samantha L White

    You can also search for this author inPubMed Google Scholar

  3. Heath D Schmidt

    You can also search for this author inPubMed Google Scholar

  4. Ghazaleh Sadri-Vakili

    You can also search for this author inPubMed Google Scholar

  5. R Christopher Pierce

    You can also search for this author inPubMed Google Scholar

Contributions

F.M.V., S.L.W., H.D.S. and G.S.-V. performed experiments. F.M.V. and R.C.P. analyzed the data, prepared the figures and wrote the first draft of the manuscript. All authors designed experiments and edited the manuscript.

Corresponding author

Correspondence toR Christopher Pierce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 201 kb)

Rights and permissions

About this article

Cite this article

Vassoler, F., White, S., Schmidt, H.et al. Epigenetic inheritance of a cocaine-resistance phenotype.Nat Neurosci16, 42–47 (2013). https://doi.org/10.1038/nn.3280

Download citation

Access through your institution
Buy or subscribe

Associated content

Forgiving the sins of the fathers

  • Michael D Scofield
  • Peter W Kalivas
Nature NeuroscienceNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp