Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Neuroscience
  • Brief Communication
  • Published:

Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities

Nature Neurosciencevolume 15pages1111–1113 (2012)Cite this article

Subjects

Abstract

Cognitive abilities decline in normal aging, yet the underlying molecular mechanisms are poorly understood. We found that aging was associated with a decrease in the expression of the DNA methyltransferase Dnmt3a2 in the hippocampus and that rescuing Dnmt3a2 levels restored cognitive functions. Moreover, we found thatDnmt3a2 is an activity-regulated immediate early gene that is partly dependent on nuclear calcium signaling and that hippocampal Dnmt3a2 levels determine cognitive abilities in both young adult and aged mice.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Restoring the Dnmt3a2 levels in the hippocampus of aged mice rescues cognitive ability.
Figure 2: Reducing hippocampal Dnmt3a2 levels in young adult mice impairs memory formation.

Similar content being viewed by others

References

  1. Klose, R.J. & Bird, A.P.Trends Biochem. Sci.31, 89–97 (2006).

    Article CAS  Google Scholar 

  2. Suzuki, M.M. & Bird, A.Nat. Rev. Genet.9, 465–476 (2008).

    Article CAS  Google Scholar 

  3. Guo, J.U. et al.Nat. Neurosci.14, 1345–1351 (2011).

    Article CAS  Google Scholar 

  4. Miller, C.A. & Sweatt, J.D.Neuron53, 857–869 (2007).

    Article CAS  Google Scholar 

  5. Feng, J. et al.Nat. Neurosci.13, 423–430 (2010).

    Article CAS  Google Scholar 

  6. Monsey, M.S., Ota, K.T., Akingbade, I.F., Hong, E.S. & Schafe, G.E.PLoS ONE6, e19958 (2011).

    Article CAS  Google Scholar 

  7. Vanyushin, B.F., Nemirovsky, L.E., Klimenko, V.V., Vasiliev, V.K. & Belozersky, A.N.Gerontologia19, 138–152 (1973).

    Article CAS  Google Scholar 

  8. Wilson, V.L., Smith, R.A., Ma, S. & Cutler, R.G.J. Biol. Chem.262, 9948–9951 (1987).

    CAS  Google Scholar 

  9. Fuke, C. et al.Ann. Hum. Genet.68, 196–204 (2004).

    Article CAS  Google Scholar 

  10. Chen, T., Ueda, Y., Xie, S. & Li, E.J. Biol. Chem.277, 38746–38754 (2002).

    Article CAS  Google Scholar 

  11. Kotini, A.G., Mpakali, A. & Agalioti, T.Mol. Cell. Biol.31, 1577–1592 (2011).

    Article CAS  Google Scholar 

  12. Kang, Y.K. et al.FEBS Lett.498, 1–5 (2001).

    Article CAS  Google Scholar 

  13. Erickson, C.A. & Barnes, C.A.Exp. Gerontol.38, 61–69 (2003).

    Article CAS  Google Scholar 

  14. Chahrour, M. et al.Science320, 1224–1229 (2008).

    Article CAS  Google Scholar 

  15. Zhang, S.J. et al.PLoS Genet.5, e1000604 (2009).

    Article  Google Scholar 

  16. Bading, H. & Greenberg, M.E.Science253, 912–914 (1991).

    Article CAS  Google Scholar 

  17. Hardingham, G.E., Chawla, S., Johnson, C.M. & Bading, H.Nature385, 260–265 (1997).

    Article CAS  Google Scholar 

  18. Klugmann, M. et al.Mol. Cell. Neurosci.28, 347–360 (2005).

    Article CAS  Google Scholar 

  19. Sholl, D.A.J. Anat.87, 387–406 (1953).

    CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Bünzli-Ehret for her help with the preparation of hippocampal cultures and U. Weiss for the western blot experiments. We thank D. Tkachev and M. Klugmann for their contributions at the initial stages of this project and the tools that they provided. We thank A.M. Hagenston for comments on the manuscript. This work was supported by the Alexander von Humboldt Foundation (Wolfgang Paul Prize to H.B.), an ERC Advanced Grant (to H.B.), the Sonderforschungsbereich (SFB) 488 and SFB 636 of the Deutsche Forschungsgemeinschaft. H.B. is a member of the Excellence Cluster CellNetworks at Heidelberg University. A.M.M.O. is recipient of a Postdoctoral Fellowship by the Foundation for Science and Technology, Portugal.

Author information

Authors and Affiliations

  1. Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany

    Ana M M Oliveira, Thekla J Hemstedt & Hilmar Bading

Authors
  1. Ana M M Oliveira
  2. Thekla J Hemstedt
  3. Hilmar Bading

Contributions

A.M.M.O. and H.B. conceived the project and designed the experiments. A.M.M.O. and T.J.H. performed the experiments. A.M.M.O. and H.B. wrote the manuscript.

Corresponding author

Correspondence toHilmar Bading.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 21445 kb)

Rights and permissions

About this article

Cite this article

Oliveira, A., Hemstedt, T. & Bading, H. Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities.Nat Neurosci15, 1111–1113 (2012). https://doi.org/10.1038/nn.3151

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

DNA methylation in cognition comes of age

  • Susan C Su
  • Li-Huei Tsai
Nature NeuroscienceNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp