- Article
- Published:
Replay of rule-learning related neural patterns in the prefrontal cortex during sleep
Nature Neurosciencevolume 12, pages919–926 (2009)Cite this article
13kAccesses
36Altmetric
Abstract
Slow-wave sleep (SWS) is important for memory consolidation. During sleep, neural patterns reflecting previously acquired information are replayed. One possible reason for this is that such replay exchanges information between hippocampus and neocortex, supporting consolidation. We recorded neuron ensembles in the rat medial prefrontal cortex (mPFC) to study memory trace reactivation during SWS following learning and execution of cross-modal strategy shifts. In general, reactivation of learning-related patterns occurred in distinct, highly synchronized transient bouts, mostly simultaneous with hippocampal sharp wave/ripple complexes (SPWRs), when hippocampal ensemble reactivation and cortico-hippocampal interaction is enhanced. During sleep following learning of a new rule, mPFC neural patterns that appeared during response selection replayed prominently, coincident with hippocampal SPWRs. This was learning dependent, as the patterns appeared only after rule acquisition. Therefore, learning, or the resulting reliable reward, influenced which patterns were most strongly encoded and successively reactivated in the hippocampal/prefrontal network.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Malenka, R.C. & Nicoll, R.A. Long-term potentiation-a decade of progress?Science285, 1870–1874 (1999).
Marr, D. Simple memory: a theory for archicortex.Phil. Trans. R. Soc. Lond. B262, 23–81 (1971).
McClelland, J.L., McNaughton, B.L. & O'Reilly, R.C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory.Psychol. Rev.102, 419–457 (1995).
Dudai, Y. The neurobiology of consolidations or how stable is the engram?Annu. Rev. Psychol.55, 51–86 (2004).
Squire, L.R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans.Psychol. Rev.99, 195–231 (1992).
Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A. & Rosenbaum, R.S. The cognitive neuroscience of remote episodic, semantic and spatial memory.Curr. Opin. Neurobiol.16, 179–190 (2006).
Winocur, G., Moscovitch, M. & Sekeres, M. Memory consolidation or transformation: context manipulation and hippocampal representations of memory.Nat. Neurosci.10, 555–557 (2007).
Tse, D. et al. Schemas and memory consolidation.Science316, 76–82 (2007).
Marshall, L., Helgadóttir, H., Mölle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory.Nature444, 610–613 (2006).
Walker, M.P. & Stickgold, R. Sleep, memory, and plasticity.Annu. Rev. Psychol.57, 139–166 (2006).
Wagner, U., Gais, S., Haider, H., Verleger, R. & Born, J. Sleep inspires insight.Nature427, 352–355 (2004).
Wilson, M.A. & McNaughton, B.L. Reactivation of hippocampal ensemble memories during sleep.Science265, 676–679 (1994).
Nádasdy, Z., Hirase, H., Czurko, A., Csicsvari, J. & Buzsáki, G. Replay and time compression of recurring spike sequences in the hippocampus.J. Neurosci.19, 9497–9507 (1999).
Kudrimoti, H.S., Barnes, C.A. & McNaughton, B.L. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience and EEG dynamics.J. Neurosci.19, 4090–4101 (1999).
Hoffman, K.L. & McNaughton, B.L. Coordinated reactivation of distributed memory traces in primate neocortex.Science297, 2070–2073 (2002).
Ji, D. & Wilson, M.A. Coordinated memory replay in the visual cortex and hippocampus during sleep.Nat. Neurosci.10, 100–107 (2007).
Euston, D.R., Tatsuno, M. & McNaughton, B.L. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep.Science318, 1147–1150 (2007).
O'Neill, J., Senior, T.J., Allen, K., Huxter, J.R. & Csicsvari, J. Reactivation of experience-dependent cell assembly patterns in the hippocampus.Nat. Neurosci.11, 209–215 (2008).
Siapas, A.G. & Wilson, M.A. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep.Neuron21, 1123–1128 (1998).
Sirota, A., Csicsvari, J., Buhl, D. & Buzsáki, G. Communication between neocortex and hippocampus during sleep in rodents.Proc. Natl. Acad. Sci. USA100, 2065–2069 (2003).
Battaglia, F.P., Sutherland, G.R. & McNaughton, B.L. Hippocampal sharp wave bursts coincide with neocortical 'up-state' transitions.Learn. Mem.11, 697–704 (2004).
Isomura, Y. et al. Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations.Neuron52, 871–882 (2006).
Hahn, T.T., Sakmann, B. & Mehta, M.R. Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states.Nat. Neurosci.9, 1359–1361 (2006).
Buzsáki, G. Two-stage model of memory trace formation: a role for 'noisy' brain states.Neuroscience31, 551–570 (1989).
Buzsáki, G. Hippocampal sharp waves: their origin and significance.Brain Res.398, 242–252 (1986).
Steriade, M., Nuñez, A. & Amzica, F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components.J. Neurosci.13, 3252–3265 (1993).
Frankland, P.W. & Bontempi, B. The organization of recent and remote memories.Nat. Rev. Neurosci.6, 119–130 (2005).
Gais, S. et al. Sleep transforms the cerebral trace of declarative memories.Proc. Natl. Acad. Sci. USA104, 18778–18783 (2007).
Jay, T.M. & Witter, M.P. Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport ofPhaseolus vulgaris leucoagglutinin.J. Comp. Neurol.313, 574–586 (1991).
Jay, T.M., Burette, F. & Laroche, S. NMDA receptor–dependent long-term potentiation in the hippocampal afferent fibre system to the prefrontal cortex in the rat.Eur. J. Neurosci.7, 247–250 (1995).
Takashima, A. et al. Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study.Proc. Natl. Acad. Sci. USA103, 756–761 (2006).
Floresco, S.B., Braaksma, D.N. & Phillips, A.G. Thalamic-cortical-striatal circuitry subserves working memory during delayed responding on a radial arm maze.J. Neurosci.19, 11061–11071 (1999).
Jones, M.W. & Wilson, M.A. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task.PLoS Biol.3, e402 (2005).
Pasupathy, A. & Miller, E.K. Different time courses of learning-related activity in the prefrontal cortex and striatum.Nature433, 873–876 (2005).
Baeg, E.H. et al. Learning-induced enduring changes in functional connectivity among prefrontal cortical neurons.J. Neurosci.27, 909–918 (2007).
Birrell, J.M. & Brown, V.J. Medial frontal cortex mediates perceptual attentional set shifting in the rat.J. Neurosci.20, 4320–4324 (2000).
Beggs, J.M. & Plenz, D. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures.J. Neurosci.24, 5216–5229 (2004).
Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory.Science319, 1543–1546 (2008).
Dégenètais, E., Thierry, A.M., Glowinski, J. & Gioanni, Y. Synaptic influence of hippocampus on pyramidal cells of the rat prefrontal cortex: anin vivo intracellular recording study.Cereb. Cortex13, 782–792 (2003).
Amzica, F. & Steriade, M. Electrophysiological correlates of sleep delta waves.Electroencephalogr. Clin. Neurophysiol.107, 69–83 (1998).
Steriade, M. Neuronal substrates of spike-wave seizures and hypsarrhythmia in corticothalamic systems.Adv. Neurol.97, 149–154 (2006).
Baeg, E.H. et al. Dynamics of population code for working memory in the prefrontal cortex.Neuron40, 177–188 (2003).
Seamans, J.K., Floresco, S.B. & Phillips, A.G. D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat.J. Neurosci.18, 1613–1621 (1998).
Lee, I. & Kesner, R.P. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory.Nat. Neurosci.5, 162–168 (2002).
Steriade, M. Grouping of brain rhythms in corticothalamic systems.Neuroscience137, 1087–1106 (2006).
Harris, K.D., Henze, D.A., Csicsvari, J., Hirase, H. & Buzsáki, G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements.J. Neurophysiol.84, 401–414 (2000).
Hazan, L., Zugaro, M. & Buzsáki, G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization.J. Neurosci. Methods155, 207–216 (2006).
Marčenko, V.A. & Pastur, L.A. Distribution of eigenvalues for some sets of random matrices.Math USSR SB1, 457–483 (1967).
Sengupta, A.M. & Mitra, P.P. Distributions of singular values for some random matrices.Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics60, 3389–3392 (1999).
Fitzpatrick, S. & Scott, A. Quick simultaneous confidence intervals for multinomial proportions.J. Am. Stat. Assoc.82, 875–878 (1987).
Acknowledgements
We thank P. Tierney for valuable discussions and help with the surgical procedures, J.-M. Deniau, Y. Gioanni, A.-M. Thierry, M.B. Zugaro, M. Cencini and A. Aubry for interesting discussions, S. Doutremer for histology, D. Hopkins and N. Quenech'du for the anatomical reconstructions, V. Douchamps for help with the experiments, K. Gothard, K. Hoffman and A. Treves for critical readings of an earlier version of the manuscript, and A Berthoz for support throughout the project. This work was supported by Fondation Fyssen (F.P.B.), Fondation pour la Recherche Medicale (A.P.), and European Community contracts FP6-IST 027819 (Integrating Cognition, Emotion and Autonomy), FP6-IST-027140 (Bayesian Approach to Cognitive Systems) and FP6-IST-027017 (NeuroProbes).
Author information
Authors and Affiliations
Laboratoire de Physiologie de la Perception et de l'Action, Collège de France, Centre National de la Recherche Scientifique, Paris, France
Adrien Peyrache, Mehdi Khamassi, Karim Benchenane, Sidney I Wiener & Francesco P Battaglia
Institut des Systèmes Intelligents et de Robotique, Université Pierre et Marie Curie – Paris 6, Centre National de la Recherche Scientifique, Paris, France
Mehdi Khamassi
Center for Neuroscience, Swammerdam Institute for Life Sciences, Faculty of Science, Universiteit van Amsterdam, Amsterdam, The Netherlands
Francesco P Battaglia
- Adrien Peyrache
You can also search for this author inPubMed Google Scholar
- Mehdi Khamassi
You can also search for this author inPubMed Google Scholar
- Karim Benchenane
You can also search for this author inPubMed Google Scholar
- Sidney I Wiener
You can also search for this author inPubMed Google Scholar
- Francesco P Battaglia
You can also search for this author inPubMed Google Scholar
Contributions
S.I.W., F.P.B. and M.K. designed the experiment, F.P.B., M.K. and A.P. performed the experiments, A.P., F.P.B. and K.B. designed the analysis techniques, A.P. analyzed the data, and F.P.B., A.P. and S.I.W. wrote the paper.
Corresponding author
Correspondence toSidney I Wiener.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–13, Supplementary Table 1 and Supplementary Discussion (PDF 9430 kb)
Rights and permissions
About this article
Cite this article
Peyrache, A., Khamassi, M., Benchenane, K.et al. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep.Nat Neurosci12, 919–926 (2009). https://doi.org/10.1038/nn.2337
Received:
Accepted:
Published:
Issue Date:
This article is cited by
The generative grammar of the brain: a critique of internally generated representations
- George Dragoi
Nature Reviews Neuroscience (2024)
From cognitive maps to spatial schemas
- Delaram Farzanfar
- Hugo J. Spiers
- R. Shayna Rosenbaum
Nature Reviews Neuroscience (2023)
CA3 hippocampal synaptic plasticity supports ripple physiology during memory consolidation
- Hajer El Oussini
- Chun-Lei Zhang
- Yann Humeau
Nature Communications (2023)
Controlling neuronal assemblies: a fundamental function of respiration-related brain oscillations in neuronal networks
- Shani Folschweiller
- Jonas-Frederic Sauer
Pflügers Archiv - European Journal of Physiology (2023)
Preconfigured dynamics in the hippocampus are guided by embryonic birthdate and rate of neurogenesis
- Roman Huszár
- Yunchang Zhang
- György Buzsáki
Nature Neuroscience (2022)