Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Methods
  • Brief Communication
  • Published:

Smart-seq2 for sensitive full-length transcriptome profiling in single cells

Nature Methodsvolume 10pages1096–1098 (2013)Cite this article

Subjects

Abstract

Single-cell gene expression analyses hold promise for characterizing cellular heterogeneity, but current methods compromise on either the coverage, the sensitivity or the throughput. Here, we introduce Smart-seq2 with improved reverse transcription, template switching and preamplification to increase both yield and length of cDNA libraries generated from individual cells. Smart-seq2 transcriptome libraries have improved detection, coverage, bias and accuracy compared to Smart-seq libraries and are generated with off-the-shelf reagents at lower cost.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Improvements in cDNA library yield and length.
Figure 2: Sensitive full-length transcriptome profiling in single cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

Sequence Read Archive

References

  1. Maruyama, K. & Sugano, S.Gene138, 171–174 (1994).

    Article CAS  Google Scholar 

  2. Carninci, P. & Hayashizaki, Y.Methods Enzymol.303, 19–44 (1999).

    Article CAS  Google Scholar 

  3. Das, M., Harvey, I., Chu, L.L., Sinha, M. & Pelletier, J.Physiol. Genomics6, 57–80 (2001).

    Article CAS  Google Scholar 

  4. Tang, F. et al.Nat. Methods6, 377–382 (2009).

    Article CAS  Google Scholar 

  5. Sasagawa, Y. et al.Genome Biol.14, R31 (2013).

    Article  Google Scholar 

  6. Zhu, Y.Y., Machleder, E.M., Chenchik, A., Li, R. & Siebert, P.D.Biotechniques30, 892–897 (2001).

    Article CAS  Google Scholar 

  7. Ramsköld, D. et al.Nat. Biotechnol.30, 777–782 (2012).

    Article  Google Scholar 

  8. Islam, S. et al.Genome Res.7, 1160–1167 (2011).

    Article  Google Scholar 

  9. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I.Cell Rep.2, 666–673 (2012).

    Article CAS  Google Scholar 

  10. Plessy, C. et al.Nat. Methods7, 528–534 (2010).

    Article CAS  Google Scholar 

  11. Petersen, M. & Wengel, J.Trends Biotechnol.21, 74–81 (2003).

    Article CAS  Google Scholar 

  12. Rees, W.A., Yager, T.D., Korte, J. & Von Hippel, P.H.Biochemistry32, 137–144 (1993).

    Article CAS  Google Scholar 

  13. Huang, L., Lee, J., Sitaraman, K. & Gallego, A.Life Technologies Focus22:1, 6–7 (2000).

    Google Scholar 

  14. SMARTer. Ultra Low RNA Kit for Illumina Sequencing, Protocol PT5163–1, version PR0X3693 (Clontech Laboratories, 2011).

  15. Dobin, A. et al.Bioinformatics29, 15–21 (2013).

    Article CAS  Google Scholar 

  16. Ramsköld, D., Wang, E.T., Burge, C.B. & Sandberg, R.PLoS Comput. Biol.5, e1000598 (2009).

    Article  Google Scholar 

  17. Quail, M.A. et al.Nat. Methods9, 10–11 (2011).

    Article  Google Scholar 

  18. Shalek, A.K. et al.Nature498, 236–240 (2013).

    Article CAS  Google Scholar 

  19. Kim, D. et al.Genome Biol.14, R36 (2013).

    Article  Google Scholar 

  20. Trapnell, C. et al.Nat. Biotechnol.28, 511–515 (2010).

    Article CAS  Google Scholar 

  21. Bengtsson, M., Ståhlberg, A., Rorsman, P. & Kubista, M.Genome Res.15, 1388–1392 (2005).

    Article CAS  Google Scholar 

  22. Wang, L., Wang, S. & Li, W.Bioinformatics28, 2184–2185 (2012).

    Article CAS  Google Scholar 

  23. Tang, F. et al.Cell Stem Cell6, 468–478 (2010).

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Topcic and N. Volakakis for providing cells, D. Ramsköld for contributing code and the members of the Sandberg laboratory for constructive comments on the work. This work was supported by European Research Council Starting Grant 243066 (R.S.), Swedish Foundation for Strategic Research FFL4 (R.S.) and Swedish Research Council grants 2008-4562 (R.S.) and 2010-6844 (Å.K.B.).

Author information

Authors and Affiliations

  1. Ludwig Institute for Cancer Research, Stockholm, Sweden

    Simone Picelli, Åsa K Björklund, Omid R Faridani, Sven Sagasser, Gösta Winberg & Rickard Sandberg

  2. Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden

    Åsa K Björklund, Sven Sagasser, Gösta Winberg & Rickard Sandberg

Authors
  1. Simone Picelli
  2. Åsa K Björklund
  3. Omid R Faridani
  4. Sven Sagasser
  5. Gösta Winberg
  6. Rickard Sandberg

Contributions

S.P. developed the protocol, picked cells, generated cDNA and sequencing libraries, and wrote the manuscript; Å.K.B. performed computational analyses, prepared figures and wrote the manuscript; O.R.F. conceived and designed LNA-based oligos; S.S. picked cells; G.W. contributed to protocol development. R.S. designed the study and wrote the manuscript.

Corresponding author

Correspondence toRickard Sandberg.

Ethics declarations

Competing interests

The Ludwig Institute for Cancer Research has submitted a patent application on LNA-based template switching.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 1532 kb)

Supplementary Table 1

Listing and analyses of cDNA yield and length from purified RNA (XLSX 110 kb)

Supplementary Table 2

Listing of all TSO sequences tested (XLSX 54 kb)

Supplementary Table 3

Tables of cDNA library yield and length starting with 262 individual human and mouse cells (XLSX 79 kb)

Supplementary Table 4

Detailing variants of the Smartseq2 protocol (XLSX 45 kb)

Supplementary Table 5

Cost calculations for cells prepared using SMARTer or Smart-seq2 (XLSX 12 kb)

Rights and permissions

About this article

Cite this article

Picelli, S., Björklund, Å., Faridani, O.et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells.Nat Methods10, 1096–1098 (2013). https://doi.org/10.1038/nmeth.2639

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Full-length RNA-seq from single cells using Smart-seq2

  • Simone Picelli
  • Omid R Faridani
  • Rickard Sandberg
Nature ProtocolsProtocol

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp