Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Medicine
  • Review Article
  • Published:

Clonal evolution in leukemia

Nature Medicinevolume 23pages1135–1145 (2017)Cite this article

Subjects

Abstract

Human leukemias are liquid malignancies characterized by diffuse infiltration of the bone marrow by transformed hematopoietic progenitors. The accessibility of tumor cells obtained from peripheral blood or through bone marrow aspirates, together with recent advances in cancer genomics and single-cell molecular analysis, have facilitated the study of clonal populations and their genetic and epigenetic evolution over time with unprecedented detail. The results of these analyses challenge the classic view of leukemia as a clonal homogeneous diffuse tumor and introduce a more complex and dynamic scenario. In this review, we present current concepts on the role of clonal evolution in lymphoid and myeloid leukemia as a driver of tumor initiation, disease progression and relapse. We also discuss the implications of these concepts in our understanding of the evolutionary mechanisms involved in leukemia transformation and therapy resistance.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

9,800 Yen / 30 days

cancel any time

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different modes of clonal evolution in leukemias.
Figure 2: Clonal hematopoiesis in aging, bone marrow failure syndromes and therapy-related leukemias.
Figure 3: Contribution of epigenetics to clonal evolution in leukemia.
Figure 4: Clinical implications of the clonal evolution of leukemia.

Similar content being viewed by others

ArticleOpen access02 September 2024

References

  1. Nowell, P.C. The clonal evolution of tumor cell populations.Science194, 23–28 (1976).

    Article CAS PubMed  Google Scholar 

  2. Merlo, L.M., Pepper, J.W., Reid, B.J. & Maley, C.C. Cancer as an evolutionary and ecological process.Nat. Rev. Cancer6, 924–935 (2006).

    Article CAS PubMed  Google Scholar 

  3. Burrell, R.A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution.Nature501, 338–345 (2013).

    Article CAS PubMed  Google Scholar 

  4. Greaves, M. Evolutionary determinants of cancer.Cancer Discov.5, 806–820 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  5. Puente, X.S. & López-Otín, C. The evolutionary biography of chronic lymphocytic leukemia.Nat. Genet.45, 229–231 (2013).

    Article CAS PubMed  Google Scholar 

  6. Landau, D.A., Carter, S.L., Getz, G. & Wu, C.J. Clonal evolution in hematological malignancies and therapeutic implications.Leukemia28, 34–43 (2014).

    Article CAS PubMed  Google Scholar 

  7. Greaves, M. Leukaemia 'firsts' in cancer research and treatment.Nat. Rev. Cancer16, 163–172 (2016).

    Article PubMed CAS  Google Scholar 

  8. Dick, J.E. Stem cell concepts renew cancer research.Blood112, 4793–4807 (2008).

    Article CAS PubMed  Google Scholar 

  9. Jan, M. & Majeti, R. Clonal evolution of acute leukemia genomes.Oncogene32, 135–140 (2013).

    Article CAS PubMed  Google Scholar 

  10. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.Science250, 1233–1238 (1990).

    Article CAS PubMed  Google Scholar 

  11. Song, W.J. et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia.Nat. Genet.23, 166–175 (1999).

    Article CAS PubMed  Google Scholar 

  12. Smith, M.L., Cavenagh, J.D., Lister, T.A. & Fitzgibbon, J. Mutation of CEBPA in familial acute myeloid leukemia.N. Engl. J. Med.351, 2403–2407 (2004).

    Article CAS PubMed  Google Scholar 

  13. Hahn, C.N. et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia.Nat. Genet.43, 1012–1017 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  14. Noris, P. et al. ANKRD26-related thrombocytopenia and myeloid malignancies.Blood122, 1987–1989 (2013).

    Article CAS PubMed  Google Scholar 

  15. Polprasert, C. et al. Inherited and somatic defects in DDX41 in myeloid neoplasms.Cancer Cell27, 658–670 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  16. Shah, S. et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia.Nat. Genet.45, 1226–1231 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  17. Zhang, M.Y. et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy.Nat. Genet.47, 180–185 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  18. Moriyama, T. et al. Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study.Lancet Oncol.16, 1659–1666 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Greaves, M.F., Maia, A.T., Wiemels, J.L. & Ford, A.M. Leukemia in twins: lessons in natural history.Blood102, 2321–2333 (2003).

    Article CAS PubMed  Google Scholar 

  20. Sanjuan-Pla, A. et al. Revisiting the biology of infant t(4;11)/MLL-AF4+ B-cell acute lymphoblastic leukemia.Blood126, 2676–2685 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Hong, D. et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia.Science319, 336–339 (2008).

    Article CAS PubMed  Google Scholar 

  22. Greaves, M. Infection, immune responses and the aetiology of childhood leukaemia.Nat. Rev. Cancer6, 193–203 (2006).

    Article CAS PubMed  Google Scholar 

  23. Jacobs, K.B. et al. Detectable clonal mosaicism and its relationship to aging and cancer.Nat. Genet.44, 651–658 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  24. Laurie, C.C. et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer.Nat. Genet.44, 642–650 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.N. Engl. J. Med.371, 2477–2487 (2014).

    Article PubMed PubMed Central CAS  Google Scholar 

  26. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes.N. Engl. J. Med.371, 2488–2498 (2014).

    Article PubMed PubMed Central CAS  Google Scholar 

  27. Busque, L. et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis.Nat. Genet.44, 1179–1181 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia.Nature469, 356–361 (2011).

    Article CAS PubMed  Google Scholar 

  29. Li, A.H., Rosenquist, R., Forestier, E., Lindh, J. & Roos, G. Detailed clonality analysis of relapsing precursor B acute lymphoblastic leukemia: implications for minimal residual disease detection.Leuk. Res.25, 1033–1045 (2001).

    Article CAS PubMed  Google Scholar 

  30. de Haas, V. et al. Quantification of minimal residual disease in children with oligoclonal B-precursor acute lymphoblastic leukemia indicates that the clones that grow out during relapse already have the slowest rate of reduction during induction therapy.Leukemia15, 134–140 (2001).

    Article CAS PubMed  Google Scholar 

  31. Notta, F. et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells.Nature469, 362–367 (2011).

    Article CAS PubMed  Google Scholar 

  32. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing.Nature481, 506–510 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  33. Jan, M. et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia.Sci. Transl. Med.4, 149ra118 (2012).

    Article PubMed PubMed Central CAS  Google Scholar 

  34. Paguirigan, A.L. et al. Single-cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia.Sci. Transl. Med.7, 281re2 (2015).

    Article PubMed PubMed Central CAS  Google Scholar 

  35. Puente, X.S. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia.Nature526, 519–524 (2015).

    Article CAS PubMed  Google Scholar 

  36. Landau, D.A. et al. Mutations driving CLL and their evolution in progression and relapse.Nature526, 525–530 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  37. Makishima, H. et al. Dynamics of clonal evolution in myelodysplastic syndromes.Nat. Genet.49, 204–212 (2017).

    Article CAS PubMed  Google Scholar 

  38. Mossner, M. et al. Mutational hierarchies in myelodysplastic syndromes dynamically adapt and evolve upon therapy response and failure.Blood128, 1246–1259 (2016).

    Article CAS PubMed  Google Scholar 

  39. Miyamoto, T., Weissman, I.L. & Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation.Proc. Natl. Acad. Sci. USA97, 7521–7526 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  40. Shlush, L.I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia.Nature506, 328–333 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Damm, F. et al. Acquired initiating mutations in early hematopoietic cells of CLL patients.Cancer Discov.4, 1088–1101 (2014).

    Article CAS PubMed  Google Scholar 

  42. Kikushige, Y. et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia.Cancer Cell20, 246–259 (2011).

    Article CAS PubMed  Google Scholar 

  43. Chung, S.S. et al. Hematopoietic stem cell origin of BRAFV600E mutations in hairy cell leukemia.Sci. Transl. Med.6, 238ra71 (2014).

    Article PubMed PubMed Central CAS  Google Scholar 

  44. Sperling, A.S., Gibson, C.J. & Ebert, B.L. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia.Nat. Rev. Cancer17, 5–19 (2017).

    Article CAS PubMed  Google Scholar 

  45. Walter, M.J. et al. Clonal architecture of secondary acute myeloid leukemia.N. Engl. J. Med.366, 1090–1098 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  46. Green, M.R. et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation.Proc. Natl. Acad. Sci. USA112, E1116–E1125 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  47. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies.Nat. Med.20, 1472–1478 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  48. Corces-Zimmerman, M.R., Hong, W.J., Weissman, I.L., Medeiros, B.C. & Majeti, R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission.Proc. Natl. Acad. Sci. USA111, 2548–2553 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  49. Horiike, S. et al. Distinct genetic involvement of the TP53 gene in therapy-related leukemia and myelodysplasia with chromosomal losses of Nos 5 and/or 7 and its possible relationship to replication error phenotype.Leukemia13, 1235–1242 (1999).

    Article CAS PubMed  Google Scholar 

  50. Side, L.E. et al. RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7.Genes Chromosom. Cancer39, 217–223 (2004).

    Article CAS PubMed  Google Scholar 

  51. Wong, T.N. et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia.Nature518, 552–555 (2015).

    Article CAS PubMed  Google Scholar 

  52. Takahashi, K. et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study.Lancet Oncol.18, 100–111 (2017).

    Article PubMed  Google Scholar 

  53. Gibson, C.J. et al. Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma.J. Clin. Oncol.35, 1598–1605 (2017).

    Article CAS PubMed PubMed Central  Google Scholar 

  54. Young, N.S., Calado, R.T. & Scheinberg, P. Current concepts in the pathophysiology and treatment of aplastic anemia.Blood108, 2509–2519 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  55. Socié, G., Rosenfeld, S., Frickhofen, N., Gluckman, E. & Tichelli, A. Late clonal diseases of treated aplastic anemia.Semin. Hematol.37, 91–101 (2000).

    Article PubMed  Google Scholar 

  56. Yoshizato, T. et al. Somatic mutations and clonal hematopoiesis in aplastic anemia.N. Engl. J. Med.373, 35–47 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  57. Maciejewski, J.P., Risitano, A., Sloand, E.M., Nunez, O. & Young, N.S. Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia.Blood99, 3129–3135 (2002).

    Article CAS PubMed  Google Scholar 

  58. Dumitriu, B. et al. Telomere attrition and candidate gene mutations preceding monosomy 7 in aplastic anemia.Blood125, 706–709 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  59. Katagiri, T. et al. Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia.Blood118, 6601–6609 (2011).

    Article CAS PubMed  Google Scholar 

  60. Afable, M.G. II et al. SNP array-based karyotyping: differences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes.Blood117, 6876–6884 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  61. Hillmen, P., Lewis, S.M., Bessler, M., Luzzatto, L. & Dacie, J.V. Natural history of paroxysmal nocturnal hemoglobinuria.N. Engl. J. Med.333, 1253–1258 (1995).

    Article CAS PubMed  Google Scholar 

  62. Ogawa, S. Clonal hematopoiesis in acquired aplastic anemia.Blood128, 337–347 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  63. Quentin, S. et al. Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions.Blood117, e161–e170 (2011).

    Article CAS PubMed  Google Scholar 

  64. Horwitz, M., Benson, K.F., Person, R.E., Aprikyan, A.G. & Dale, D.C. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis.Nat. Genet.23, 433–436 (1999).

    Article CAS PubMed  Google Scholar 

  65. Klein, C. et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease).Nat. Genet.39, 86–92 (2007).

    Article CAS PubMed  Google Scholar 

  66. Devriendt, K. et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia.Nat. Genet.27, 313–317 (2001).

    Article CAS PubMed  Google Scholar 

  67. Bonilla, M.A. et al. Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis.N. Engl. J. Med.320, 1574–1580 (1989).

    Article CAS PubMed  Google Scholar 

  68. Rosenberg, P.S. et al. Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy.Br. J. Haematol.150, 196–199 (2010).

    CAS PubMed PubMed Central  Google Scholar 

  69. Germeshausen, M., Ballmaier, M. & Welte, K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: Results of a long-term survey.Blood109, 93–99 (2007).

    Article CAS PubMed  Google Scholar 

  70. Skokowa, J. et al. Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis.Blood123, 2229–2237 (2014).

    Article CAS PubMed  Google Scholar 

  71. Papaemmanuil, E. et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes.Blood122, 3616–3627, quiz 3699 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  72. Ortmann, C.A. et al. Effect of mutation order on myeloproliferative neoplasms.N. Engl. J. Med.372, 601–612 (2015).

    Article PubMed PubMed Central CAS  Google Scholar 

  73. Cortés, J.R. & Palomero, T. The curious origins of angioimmunoblastic T-cell lymphoma.Curr. Opin. Hematol.23, 434–443 (2016).

    Article PubMed CAS  Google Scholar 

  74. Shaknovich, R., De, S. & Michor, F. Epigenetic diversity in hematopoietic neoplasms.Biochim. Biophys. Acta1846, 477–484 (2014).

    CAS PubMed  Google Scholar 

  75. Guièze, R. & Wu, C.J. Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia.Blood126, 445–453 (2015).

    Article PubMed PubMed Central CAS  Google Scholar 

  76. Li, S., Mason, C.E. & Melnick, A. Genetic and epigenetic heterogeneity in acute myeloid leukemia.Curr. Opin. Genet. Dev.36, 100–106 (2016).

    Article PubMed PubMed Central CAS  Google Scholar 

  77. Kulis, M. et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia.Nat. Genet.44, 1236–1242 (2012).

    Article CAS PubMed  Google Scholar 

  78. Figueroa, M.E. et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia.Cancer Cell17, 13–27 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  79. Milani, L. et al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia.Blood115, 1214–1225 (2010).

    Article CAS PubMed  Google Scholar 

  80. Geng, H. et al. Integrative epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia.Cancer Discov.2, 1004–1023 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  81. Li, S. et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia.Nat. Med.22, 792–799 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  82. Pan, H. et al. Epigenomic evolution in diffuse large B-cell lymphomas.Nat. Commun.6, 6921 (2015).

    Article CAS PubMed  Google Scholar 

  83. Sandoval, J. et al. Genome-wide DNA methylation profiling predicts relapse in childhood B-cell acute lymphoblastic leukaemia.Br. J. Haematol.160, 406–409 (2013).

    Article CAS PubMed  Google Scholar 

  84. Landau, D.A. et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia.Cancer Cell26, 813–825 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  85. Oakes, C.C. et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia.Nat. Genet.48, 253–264 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  86. Heller, G. et al. Next-generation sequencing identifies major DNA methylation changes during progression of Ph+ chronic myeloid leukemia.Leukemia30, 1861–1868 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  87. Feinberg, A.P., Koldobskiy, M.A. & Göndör, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression.Nat. Rev. Genet.17, 284–299 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  88. Greenblatt, S.M. & Nimer, S.D. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia.Leukemia28, 1396–1406 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  89. Roberts, K.G. & Mullighan, C.G. Genomics in acute lymphoblastic leukaemia: insights and treatment implications.Nat. Rev. Clin. Oncol.12, 344–357 (2015).

    Article CAS PubMed  Google Scholar 

  90. Woods, B.A. & Levine, R.L. The role of mutations in epigenetic regulators in myeloid malignancies.Immunol. Rev.263, 22–35 (2015).

    Article CAS PubMed  Google Scholar 

  91. Shen, H. & Laird, P.W. Interplay between the cancer genome and epigenome.Cell153, 38–55 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  92. Oakes, C.C. et al. Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia.Cancer Discov.4, 348–361 (2014).

    Article CAS PubMed  Google Scholar 

  93. Amabile, G. et al. Dissecting the role of aberrant DNA methylation in human leukaemia.Nat. Commun.6, 7091 (2015).

    Article PubMed  Google Scholar 

  94. Shih, A.H. et al. Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia.Cancer Cell27, 502–515 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  95. Zhang, X. et al. DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells.Nat. Genet.48, 1014–1023 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  96. Pasqualucci, L. et al. Expression of the AID protein in normal and neoplastic B cells.Blood104, 3318–3325 (2004).

    Article CAS PubMed  Google Scholar 

  97. Gorre, M.E. & Sawyers, C.L. Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia.Curr. Opin. Hematol.9, 303–307 (2002).

    Article PubMed  Google Scholar 

  98. Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment.Blood100, 1014–1018 (2002).

    Article CAS PubMed  Google Scholar 

  99. Branford, S., Melo, J.V. & Hughes, T.P. Selecting optimal second-line tyrosine kinase inhibitor therapy for chronic myeloid leukemia patients after imatinib failure: does the BCR-ABL mutation status really matter?Blood114, 5426–5435 (2009).

    Article CAS PubMed  Google Scholar 

  100. Cortes, J. et al. Dynamics of BCR-ABL kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors.Blood110, 4005–4011 (2007).

    Article CAS PubMed  Google Scholar 

  101. Woyach, J.A. et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib.N. Engl. J. Med.370, 2286–2294 (2014).

    Article PubMed PubMed Central CAS  Google Scholar 

  102. Liu, T.M. et al. Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation.Blood126, 61–68 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  103. Burger, J.A. et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition.Nat. Commun.7, 11589 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  104. Ahn, I.E. et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia.Blood129, 1469–1479 (2017).

    Article CAS PubMed PubMed Central  Google Scholar 

  105. Smith, C.C. et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia.Nature485, 260–263 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  106. Goto, E. et al. Missense mutations in PML-RARA are critical for the lack of responsiveness to arsenic trioxide treatment.Blood118, 1600–1609 (2011).

    Article CAS PubMed  Google Scholar 

  107. Maus, M.V., Grupp, S.A., Porter, D.L. & June, C.H. Antibody-modified T cells: CARs take the front seat for hematologic malignancies.Blood123, 2625–2635 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  108. Davila, M.L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia.Sci. Transl. Med.6, 224ra25 (2014).

    Article PubMed PubMed Central CAS  Google Scholar 

  109. Lee, D.W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial.Lancet385, 517–528 (2015).

    Article CAS PubMed  Google Scholar 

  110. Maude, S.L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia.N. Engl. J. Med.371, 1507–1517 (2014).

    Article PubMed PubMed Central CAS  Google Scholar 

  111. Restifo, N.P., Smyth, M.J. & Snyder, A. Acquired resistance to immunotherapy and future challenges.Nat. Rev. Cancer16, 121–126 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  112. Chung, E.Y. et al. CD19 is a major B cell receptor-independent activator of MYC-driven B-lymphomagenesis.J. Clin. Invest.122, 2257–2266 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  113. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy.Cancer Discov.5, 1282–1295 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  114. Jacoby, E. et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity.Nat. Commun.7, 12320 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  115. Gardner, R. et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy.Blood127, 2406–2410 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  116. Rayes, A., McMasters, R.L. & O'Brien, M.M. Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy.Pediatr. Blood Cancer63, 1113–1115 (2016).

    Article CAS PubMed  Google Scholar 

  117. Armstrong, S.A. et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia.Nat. Genet.30, 41–47 (2002).

    Article CAS PubMed  Google Scholar 

  118. Evans, A.G. et al. Evolution to plasmablastic lymphoma evades CD19-directed chimeric antigen receptor T cells.Br. J. Haematol.171, 205–209 (2015).

    Article CAS PubMed  Google Scholar 

  119. Mullighan, C.G. et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia.Science322, 1377–1380 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  120. Bardini, M. et al. Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement.Leukemia29, 38–50 (2015).

    Article CAS PubMed  Google Scholar 

  121. Oshima, K. et al. Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia.Proc. Natl. Acad. Sci. USA113, 11306–11311 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  122. Mullighan, C.G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia.Nature471, 235–239 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  123. Ma, X. et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia.Nat. Commun.6, 6604 (2015).

    Article CAS PubMed  Google Scholar 

  124. Meyer, J.A. et al. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia.Nat. Genet.45, 290–294 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  125. Tzoneva, G. et al. Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL.Nat. Med.19, 368–371 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  126. Li, B. et al. Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL.Nat. Med.21, 563–571 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  127. Ariës, I.M. et al. Towards personalized therapy in pediatric acute lymphoblastic leukemia: RAS mutations and prednisolone resistance.Haematologica100, e132–e136 (2015).

    Article PubMed PubMed Central  Google Scholar 

  128. Jones, C.L. et al. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia.Blood126, 2202–2212 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  129. Estey, E., Keating, M.J., Pierce, S. & Stass, S. Change in karyotype between diagnosis and first relapse in acute myelogenous leukemia.Leukemia9, 972–976 (1995).

    CAS PubMed  Google Scholar 

  130. Raghavan, M. et al. Segmental uniparental disomy is a commonly acquired genetic event in relapsed acute myeloid leukemia.Blood112, 814–821 (2008).

    Article CAS PubMed  Google Scholar 

  131. Parkin, B. et al. Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia.Blood121, 369–377 (2013).

    Article CAS PubMed PubMed Central  Google Scholar 

  132. Sood, R. et al. Somatic mutational landscape of AML with inv(16) or t(8;21) identifies patterns of clonal evolution in relapse leukemia.Leukemia30, 501–504 (2016).

    Article CAS PubMed  Google Scholar 

  133. Krönke, J. et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia.Blood122, 100–108 (2013).

    Article PubMed CAS  Google Scholar 

  134. Nadeu, F. et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia.Blood127, 2122–2130 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  135. Pui, C.H. et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study.Lancet Oncol.16, 465–474 (2015).

    Article PubMed PubMed Central  Google Scholar 

  136. Kim, J.Y. & Gatenby, R.A. Quantitative clinical imaging methods for monitoring intratumoral evolution.Methods Mol. Biol.1513, 61–81 (2017).

    Article CAS PubMed  Google Scholar 

  137. Batlevi, C.L., Matsuki, E., Brentjens, R.J. & Younes, A. Novel immunotherapies in lymphoid malignancies.Nat. Rev. Clin. Oncol.13, 25–40 (2016).

    Article CAS PubMed  Google Scholar 

  138. Notta, F. et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny.Science351, aab2116 (2016).

    Article PubMed CAS  Google Scholar 

  139. Sun, J. et al. Clonal dynamics of native haematopoiesis.Nature514, 322–327 (2014).

    Article CAS PubMed PubMed Central  Google Scholar 

  140. Busque, L. et al. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age.Blood88, 59–65 (1996).

    Article CAS PubMed  Google Scholar 

  141. Kwok, B. et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance.Blood126, 2355–2361 (2015).

    Article CAS PubMed PubMed Central  Google Scholar 

  142. Young, A.L., Challen, G.A., Birmann, B.M. & Druley, T.E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults.Nat. Commun.7, 12484 (2016).

    Article CAS PubMed PubMed Central  Google Scholar 

  143. Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond.Nat. Rev. Genet.13, 484–492 (2012).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Mittelbrunn (CBM-Hospital 12 de Octubre, Madrid, Spain), X.S. Puente (Universidad de Oviedo, Oviedo, Spain), P. Menéndez (J. Carreras Leukemia Research Institute, Barcelona, Spain), R. Rabadán (Columbia University, New York, New York, USA), J. Soulier (Université Paris Diderot, Paris, France) and all members of our labs for their helpful comments on the manuscript. A.A.F. is supported by grants from the National Cancer Institute (NCI) of the National Institutes of Health (NIH), the Leukemia & Lymphoma Society, the Chemotherapy Foundation and the Rally Foundation. C.L.-O. is supported by grants from European Union (DeAge, ERC-Advanced Grant), Ministerio de Economía y Competitividad SAF2014-52413-R, Instituto de Salud Carlos III (RTICC), CIBERONC, Plan Feder, and EDP Foundation. The generous support by J.I. Cabrera is also acknowledged.

Author information

Authors and Affiliations

  1. Department of Pediatrics, Columbia University, New York, New York, USA

    Adolfo A Ferrando

  2. Department of Pathology and Cell Biology, Columbia University, New York, New York, USA

    Adolfo A Ferrando

  3. Institute for Cancer Genetics, Columbia University, New York, New York, USA

    Adolfo A Ferrando

  4. Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain

    Carlos López-Otín

  5. Centro de Investigación Biomédica en Red de Cáncer, Spain

    Carlos López-Otín

Authors
  1. Adolfo A Ferrando
  2. Carlos López-Otín

Corresponding authors

Correspondence toAdolfo A Ferrando orCarlos López-Otín.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrando, A., López-Otín, C. Clonal evolution in leukemia.Nat Med23, 1135–1145 (2017). https://doi.org/10.1038/nm.4410

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing: Cancer

Sign up for theNature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly.Sign up for Nature Briefing: Cancer

[8]ページ先頭

©2009-2026 Movatter.jp