Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Medicine
  • Article
  • Published:

Epidermal growth factor regulates hematopoietic regeneration after radiation injury

Nature Medicinevolume 19pages295–304 (2013)Cite this article

Subjects

Abstract

The mechanisms that regulate hematopoietic stem cell (HSC) regeneration after myelosuppressive injury are not well understood. We identified epidermal growth factor (EGF) to be highly enriched in the bone marrow serum of mice bearing deletion ofBak andBax in TIE2-expressing cells inTie2Cre;Bak1−/−;Baxflox/– mice. These mice showed radioprotection of the HSC pool and 100% survival after a lethal dose of total-body irradiation (TBI). Bone marrow HSCs from wild-type mice expressed functional EGF receptor (EGFR), and systemic administration of EGF promoted the recovery of the HSC poolin vivo and improved the survival of mice after TBI. Conversely, administration of erlotinib, an EGFR antagonist, decreased both HSC regeneration and the survival of mice after TBI. Mice with EGFR deficiency in VAV-expressing hematopoietic cells also had delayed recovery of bone marrow stem and progenitor cells after TBI. Mechanistically, EGF reduced radiation-induced apoptosis of HSCs and mediated this effect through repression of the proapoptotic protein PUMA. Our findings show that EGFR signaling regulates HSC regeneration after myelosuppressive injury.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TIE2-expressing bone marrow endothelial cells produce EGF, and EGF mediates HSC regeneration after irradiation.
Figure 2: Systemic administration of EGF promotes HSC regenerationin vivo.
Figure 3: Erlotinib treatment inhibits HSC regenerationin vivo after TBI.
Figure 4: Deficiency of EGFR inhibits hematopoietic progenitor cell regeneration.
Figure 5: EGF promotes HSC cycling and survival after irradiation.
Figure 6: Pharmacological modulation of EGFR signaling alters mice survival after TBI.

Similar content being viewed by others

References

  1. Kiel, M.J., Yilmaz, O.H., Iwashita, T., Terhorst, C. & Morrison, S.J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells.Cell121, 1109–1121 (2005).

    Article CAS PubMed  Google Scholar 

  2. Chute, J.P., Muramoto, G.G., Fung, J. & Oxford, C. Soluble factors elaborated by human brain endothelial cells induce the concomitant expansion of purified human BM CD34+CD38 cells and SCID-repopulating cells.Blood105, 576–583 (2005).

    Article CAS PubMed  Google Scholar 

  3. Himburg, H.A. et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells.Nat. Med.16, 475–482 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  4. Salter, A.B. et al. Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitutionin vivo.Blood113, 2104–2107 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  5. Butler, J.M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells.Cell Stem Cell6, 251–264 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  6. Hooper, A.T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells.Cell Stem Cell4, 263–274 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  7. Montfort, M.J., Olivares, C.R., Mulcahy, J.M. & Fleming, W.H. Adult blood vessels restore host hematopoiesis following lethal irradiation.Exp. Hematol.30, 950–956 (2002).

    Article PubMed  Google Scholar 

  8. Ding, L., Saunders, T.L., Enikolopov, G. & Morrison, S.J. Endothelial and perivascular cells maintain haematopoietic stem cells.Nature481, 457–462 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  9. Chute, J.P. et al.Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow.Blood100, 4433–4439 (2002).

    Article CAS PubMed  Google Scholar 

  10. Chute, J.P., Fung, J., Muramoto, G. & Erwin, R.Ex vivo culture rescues hematopoietic stem cells with long-term repopulating capacity following harvest from lethally irradiated mice.Exp. Hematol.32, 308–317 (2004).

    Article PubMed  Google Scholar 

  11. Muramoto, G.G., Chen, B., Cui, X., Chao, N.J. & Chute, J.P. Vascular endothelial cells produce soluble factors that mediate the recovery of human hematopoietic stem cells after radiation injury.Biol. Blood Marrow Transplant.12, 530–540 (2006).

    Article PubMed  Google Scholar 

  12. Chute, J.P. et al. Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of lethally irradiated mice.Blood109, 2365–2372 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  13. Kirsch, D.G. et al. p53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis.Science327, 593–596 (2010).

    Article CAS PubMed  Google Scholar 

  14. Doan, P.L. et al. Tie2+ bone marrow endothelial cells regulate hematopoietic stem cell regeneration following radiation injury.Stem Cells published online, doi:10.1002/stem.1275 (6 November 2012).

    Article CAS PubMed  Google Scholar 

  15. Yoder, M.C. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals.Blood109, 1801–1809 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  16. Guo, S. et al. MicroRNA miR-125a controls hematopoietic stem cell number.Proc. Natl. Acad. Sci. USA107, 14229–14234 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  17. Boehrer, S. et al. Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study.Blood111, 2170–2180 (2008).

    Article CAS PubMed  Google Scholar 

  18. Boehrer, S. et al. Erlotinib antagonizes constitutive activation of SRC family kinases and mTOR in acute myeloid leukemia.Cell Cycle10, 3168–3175 (2011).

    Article CAS PubMed  Google Scholar 

  19. Sordella, R., Bell, D.W., Haber, D.A. & Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways.Science305, 1163–1167 (2004).

    Article CAS PubMed  Google Scholar 

  20. Yang, W. et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation.Nature480, 118–122 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Minder, P., Bayha, E., Becker-Pauly, C. & Sterchi, E.E. Meprinalpha transactivates the epidermal growth factor receptor (EGFR) via ligand shedding, thereby enhancing colorectal cancer cell proliferation and migration.J. Biol. Chem.287, 35201–35211 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Cao, C. et al. Gα(i1) and Gα(i3) are required for epidermal growth factor–mediated activation of the Akt-mTORC1 pathway.Sci. Signal.2, ra17 (2009).

    PubMed PubMed Central  Google Scholar 

  23. Kriegs, M. et al. The epidermal growth factor receptor modulates DNA double-strand break repair by regulating non-homologous end-joining.DNA Repair (Amst.)9, 889–897 (2010).

    Article CAS  Google Scholar 

  24. Shao, L. et al. Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation.Blood115, 4707–4714 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Yu, H. et al. Deletion of Puma protects hematopoietic stem cells and confers long-term survival in response to high-dose gamma-irradiation.Blood115, 3472–3480 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Appelbaum, F.R. Hematopoietic-cell transplantation at 50.N. Engl. J. Med.357, 1472–1475 (2007).

    Article CAS PubMed  Google Scholar 

  27. Chen, B.J. et al. Growth hormone mitigates against lethal irradiation and enhances hematologic and immune recovery in mice and nonhuman primates.PLoS ONE5, e11056 (2010).

    Article PubMed PubMed Central CAS  Google Scholar 

  28. Waselenko, J.K. et al. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group.Ann. Intern. Med.140, 1037–1051 (2004).

    Article PubMed  Google Scholar 

  29. Liang, Y., Van Zant, G. & Szilvassy, S.J. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells.Blood106, 1479–1487 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  30. Norddahl, G.L. et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging.Cell Stem Cell8, 499–510 (2011).

    Article CAS PubMed  Google Scholar 

  31. Elledge, S.J. Cell cycle checkpoints: preventing an identity crisis.Science274, 1664–1672 (1996).

    Article CAS PubMed  Google Scholar 

  32. Levine, A.J. p53, the cellular gatekeeper for growth and division.Cell88, 323–331 (1997).

    Article CAS PubMed  Google Scholar 

  33. Strasser, A., Harris, A.W., Jacks, T. & Cory, S. DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2.Cell79, 329–339 (1994).

    Article CAS PubMed  Google Scholar 

  34. Quelle, F.W. et al. Cytokine rescue of p53-dependent apoptosis and cell cycle arrest is mediated by distinct Jak kinase signaling pathways.Genes Dev.12, 1099–1107 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Hérodin, F., Bourin, P., Mayol, J.F., Lataillade, J.J. & Drouet, M. Short-term injection of antiapoptotic cytokine combinations soon after lethal gamma-irradiation promotes survival.Blood101, 2609–2616 (2003).

    Article PubMed CAS  Google Scholar 

  36. Zsebo, K.M. et al. Radioprotection of mice by recombinant rat stem cell factor.Proc. Natl. Acad. Sci. USA89, 9464–9468 (1992).

    Article CAS PubMed PubMed Central  Google Scholar 

  37. Sinclair, W.K. Cyclic x-ray responses in mammalian cellsin vitro.Radiat. Res.33, 620–643 (1968).

    Article CAS PubMed  Google Scholar 

  38. Na Nakorn, T., Traver, D., Weissman, I.L. & Akashi, K. Myeloerythroid-restricted progenitors are sufficient to confer radioprotection and provide the majority of day 8 CFU-S.J. Clin. Invest.109, 1579–1585 (2002).

    Article PubMed PubMed Central  Google Scholar 

  39. Bill, H.M. et al. Epidermal growth factor receptor-dependent regulation of integrin-mediated signaling and cell cycle entry in epithelial cells.Mol. Cell Biol.24, 8586–8599 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  40. Ekert, P.G. et al. Cell death provoked by loss of interleukin-3 signaling is independent of Bad, Bim, and PI3 kinase, but depends in part on Puma.Blood108, 1461–1468 (2006).

    Article CAS PubMed  Google Scholar 

  41. Jeffers, J.R. et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways.Cancer Cell4, 321–328 (2003).

    Article CAS PubMed  Google Scholar 

  42. Coloff, J.L. et al. Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells.J. Biol. Chem.286, 5921–5933 (2011).

    Article CAS PubMed  Google Scholar 

  43. Leibowitz, B.J. et al. Uncoupling p53 functions in radiation-induced intestinal damage via PUMA and p21.Mol. Cancer Res.9, 616–625 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  44. Prigent, S.A. & Gullick, W.J. Identification of c-erbB-3 binding sites for phosphatidylinositol 3′-kinase and SHC using an EGF receptor/c-erbB-3 chimera.EMBO J.13, 2831–2841 (1994).

    Article CAS PubMed PubMed Central  Google Scholar 

  45. Dittmann, K. et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase.J. Biol. Chem.280, 31182–31189 (2005).

    Article CAS PubMed  Google Scholar 

  46. Rodemann, H.P., Dittmann, K. & Toulany, M. Radiation-induced EGFR-signaling and control of DNA-damage repair.Int. J. Radiat. Biol.83, 781–791 (2007).

    Article CAS PubMed  Google Scholar 

  47. Cardó-Vila, M. et al. From combinatorial peptide selection to drug prototype (II): targeting the epidermal growth factor receptor pathway.Proc. Natl. Acad. Sci. USA107, 5118–5123 (2010).

    Article PubMed PubMed Central  Google Scholar 

  48. Ji, H. et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis andin vivo sensitivity to EGFR-targeted therapies.Cancer Cell9, 485–495 (2006).

    Article CAS PubMed  Google Scholar 

  49. Aguirre, A., Rubio, M.E. & Gallo, V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal.Nature467, 323–327 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  50. Natarajan, A., Wagner, B. & Sibilia, M. The EGF receptor is required for efficient liver regeneration.Proc. Natl. Acad. Sci. USA104, 17081–17086 (2007).

    Article CAS PubMed PubMed Central  Google Scholar 

  51. Shih, C.C. et al. Identification of a candidate human neurohematopoietic stem-cell population.Blood98, 2412–2422 (2001).

    Article CAS PubMed  Google Scholar 

  52. Pain, B. et al. EGF-R as a hemopoietic growth factor receptor: the c-erbB product is present in chicken erythrocytic progenitors and controls their self-renewal.Cell65, 37–46 (1991).

    Article CAS PubMed  Google Scholar 

  53. von Rüden, T. & Wagner, E.F. Expression of functional human EGF receptor on murine bone marrow cells.EMBO J.7, 2749–2756 (1988).

    Article PubMed PubMed Central  Google Scholar 

  54. Takahashi, T. et al. A potential molecular approach toex vivo hematopoietic expansion with recombinant epidermal growth factor receptor–expressing adenovirus vector.Blood91, 4509–4515 (1998).

    Article CAS PubMed  Google Scholar 

  55. Ryan, M.A. et al. Pharmacological inhibition of EGFR signaling enhances G-CSF–induced hematopoietic stem cell mobilization.Nat. Med.16, 1141–1146 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  56. Chan, G., Nogalski, M.T. & Yurochko, A.D. Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility.Proc. Natl. Acad. Sci. USA106, 22369–22374 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  57. Dooley, D.C. et al. Basic fibroblast growth factor and epidermal growth factor downmodulate the growth of hematopoietic cells in long-term stromal cultures.J. Cell Physiol.165, 386–397 (1995).

    Article CAS PubMed  Google Scholar 

  58. Zhang, C.C. & Lodish, H.F. Murine hematopoietic stem cells change their surface phenotype duringex vivo expansion.Blood105, 4314–4320 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  59. Hashimoto, M. et al. Fibroblast growth factor 1 regulates signaling via the glycogen synthase kinase-3β pathway. Implications for neuroprotection.J. Biol. Chem.277, 32985–32991 (2002).

    Article CAS PubMed  Google Scholar 

  60. Shen, H. et al. An acute negative bystander effect of gamma-irradiated recipients on transplanted hematopoietic stem cells.Blood119, 3629–3637 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  61. Lee, T.C. & Threadgill, D.W. Generation and validation of mice carrying a conditional allele of the epidermal growth factor receptor.Genesis47, 85–92 (2009).

    Article CAS PubMed  Google Scholar 

  62. Georgiades, P. et al. VavCre transgenic mice: a tool for mutagenesis in hematopoietic and endothelial lineages.Genesis34, 251–256 (2002).

    Article CAS PubMed  Google Scholar 

  63. de Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre.Eur. J. Immunol.33, 314–325 (2003).

    Article CAS PubMed  Google Scholar 

  64. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice.Curr. Biol.4, 1–7 (1994).

    Article CAS PubMed  Google Scholar 

  65. Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa.Science302, 1036–1038 (2003).

    Article CAS PubMed  Google Scholar 

  66. Till, J.E. & McCulloch, E. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells.Radiat. Res.14, 213–222 (1961).

    Article CAS PubMed  Google Scholar 

  67. Jordan, C.T., Yamasaki, G. & Minamoto, D. High-resolution cell cycle analysis of defined phenotypic subsets within primitive human hematopoietic cell populations.Exp. Hematol.24, 1347–1355 (1996).

    CAS PubMed  Google Scholar 

  68. Chute, J.P. et al. Preincubation with endothelial cell monolayers increases gene transfer efficiency into human bone marrow CD34+CD38 progenitor cells.Hum. Gene Ther.11, 2515–2528 (2000).

    Article CAS PubMed  Google Scholar 

  69. Bungartz, G., Land, H., Scadden, D.T. & Emerson, S.G. NF-Y is necessary for hematopoietic stem cell (HSC) proliferation and survival.Blood119, 1380–1389 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  70. Lehr, H.A., Mankoff, D.A., Corwin, D., Santeusanio, G. & Gown, A.M. Application of photoshop-based image analysis to quantification of hormone receptor expression in breast cancer.J. Histochem. Cytochem.45, 1559–1565 (1997).

    Article CAS PubMed  Google Scholar 

  71. Lehr, H.A., van der Loos, C.M., Teeling, P. & Gown, A.M. Complete chromogen separation and analysis in double immunohistochemical stains using Photoshop-based image analysis.J. Histochem. Cytochem.47, 119–126 (1999).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Heart, Lung and Blood Institute grant HL-086998-01 (J.P.C.), National Institute of Allergy and Infectious Diseases (NIAID) grant AI-067798-06 (J.P.C.) and a pilot project from the NIAID Centers for Medical Countermeasures grant AI-067798-01 (D.G.K.). P.L.D. was supported by US National Institutes of Health training grant T32 HL0070757-33, the Barton Haynes Award and a Duke Cancer Center Seed Grant (Duke University).

Author information

Authors and Affiliations

  1. Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Durham, North Carolina, USA

    Phuong L Doan, Heather A Himburg, Katherine Helms, J Lauren Russell, Emma Fixsen, Jeffrey R Harris, Divino Deoliviera, Nelson J Chao & John P Chute

  2. Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA

    Mamle Quarmyne, David G Kirsch & John P Chute

  3. Department of Radiation Oncology, Duke University, Durham, North Carolina, USA

    Julie M Sullivan & David G Kirsch

  4. Department of Immunology, Duke University, Durham, North Carolina, USA

    Nelson J Chao

Authors
  1. Phuong L Doan
  2. Heather A Himburg
  3. Katherine Helms
  4. J Lauren Russell
  5. Emma Fixsen
  6. Mamle Quarmyne
  7. Jeffrey R Harris
  8. Divino Deoliviera
  9. Julie M Sullivan
  10. Nelson J Chao
  11. David G Kirsch
  12. John P Chute

Contributions

P.L.D. performed experiments, analyzed data and wrote the paper. H.A.H., K.H. and J.L.R. performed experiments and analyzed data. E.F., M.Q., J.R.H. and D.D. performed experiments. J.M.S. provided reagents. N.J.C. analyzed data and wrote the paper. D.G.K. designed experiments, analyzed data and wrote the paper. J.P.C. conceived of the study, designed experiments, analyzed the data and wrote the paper.

Corresponding author

Correspondence toJohn P Chute.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 225 kb)

Rights and permissions

About this article

Cite this article

Doan, P., Himburg, H., Helms, K.et al. Epidermal growth factor regulates hematopoietic regeneration after radiation injury.Nat Med19, 295–304 (2013). https://doi.org/10.1038/nm.3070

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp