Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Immunology
  • Review Article
  • Published:

Foamy macrophages and the progression of the human tuberculosis granuloma

Nature Immunologyvolume 10pages943–948 (2009)Cite this article

Abstract

The progression of tuberculosis from a latent, subclinical infection to active disease that culminates in the transmission of infectious bacilli is determined locally at the level of the granuloma. This progression takes place even in the face of a robust immune response that, although it contains infection, is unable to eliminate the bacterium. The factors or environmental conditions that influence this progression remain to be determined. Recent advances have indicated that pathogen-induced dysregulation of host lipid synthesis and sequestration serves a critical role in this transition. The foamy macrophage seems to be a key participant in both sustaining persistent bacteria and contributing to the tissue pathology that leads to cavitation and the release of infectious bacilli.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progression of the human tuberculosis granuloma.
Figure 2: In lesions from patients with tuberculosis, foamy macrophages are located mainly in the interface region surrounding central necrosis.
Figure 3: Vesicles containing Mtb-derived cell wall lipids are released from infected macrophages.
Figure 4: In foamy macrophages, tubercle bacilli–containing phagosomes have 'privileged' contact with cellular lipid bodies.
Figure 5: Model for caseum accumulation and granuloma progression.

Similar content being viewed by others

References

  1. Parrish, N.M., Dick, J.D. & Bishai, W.R. Mechanisms of latency inMycobacterium tuberculosis.Trends Microbiol.6, 107–112 (1998).

    Article CAS PubMed  Google Scholar 

  2. Rohde, K., Yates, R.M., Purdy, G.E. & Russell, D.G.Mycobacterium tuberculosis and the environment within the phagosome.Immunol. Rev.219, 37–54 (2007).

    Article CAS PubMed  Google Scholar 

  3. Sturgill-Koszycki, S. et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase.Science263, 678–681 (1994).

    Article CAS PubMed  Google Scholar 

  4. Gohn, A.Der primäre Lungenherd bei der Tuberkulose der Kinder (The Primary Lung Lesion in Infant TB) (Urbach and Scharzenburg, Berlin and Vienna, 1912).

    Google Scholar 

  5. Saunders, B.M. & Cooper, A.M. Restraining mycobacteria role of granulomas in mycobacterial infections.Immunol. Cell Biol.78, 334–341 (2000).

    Article CAS PubMed  Google Scholar 

  6. Russell, D.G. Who puts the tubercle in tuberculosis?Nat. Rev. Microbiol.5, 39–47 (2007).

    Article CAS PubMed  Google Scholar 

  7. Davis, J.M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection.Cell136, 37–49 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  8. North, R.J. & Jung, Y.J. Immunity to tuberculosis.Annu. Rev. Immunol.22, 599–623 (2004).

    Article CAS PubMed  Google Scholar 

  9. Cardona, P.J. et al. Widespread bronchogenic dissemination makes DBA/2 mice more susceptible than C57BL/6 mice to experimental aerosol infection withMycobacterium tuberculosis.Infect. Immun.71, 5845–5854 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Cardona, P.J. et al. Evolution of granulomas in lungs of mice infected aerogenically withMycobacterium tuberculosis.Scand. J. Immunol.52, 156–163 (2000).

    Article CAS PubMed  Google Scholar 

  11. Algood, H.M., Lin, P.L. & Flynn, J.L. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis.Clin. Infect. Dis.41 Suppl 3, S189–S193 (2005).

    Article CAS PubMed  Google Scholar 

  12. Kindler, V., Sappino, A.P., Grau, G.E., Piguet, P.F. & Vassalli, P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection.Cell56, 731–740 (1989).

    Article CAS PubMed  Google Scholar 

  13. Roach, D.R. et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection.J. Immunol.168, 4620–4627 (2002).

    Article CAS PubMed  Google Scholar 

  14. Saunders, B.M. & Britton, W.J. Life and death in the granuloma: immunopathology of tuberculosis.Immunol. Cell Biol.85, 103–111 (2007).

    Article PubMed  Google Scholar 

  15. Gil, O. et al. Intragranulomatous necrosis in lungs of mice infected by aerosol withMycobacterium tuberculosis is related to bacterial load rather than to any one cytokine or T cell type.Microbes Infect.8, 628–636 (2006).

    Article CAS PubMed  Google Scholar 

  16. Casadevall, A. & Pirofski, L.A. The damage-response framework of microbial pathogenesis.Nat. Rev. Microbiol.1, 17–24 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  17. Lipman, M. & Breen, R. Immune reconstitution inflammatory syndrome in HIV.Curr. Opin. Infect. Dis.19, 20–25 (2006).

    Article PubMed  Google Scholar 

  18. Gordon, S.B. & Mwandumba, H. inClinical Tuberculosis (eds. Davis, P.D., Barnes, P.F. & Gordon, S.B.) 145–162 (Hodder and Stoughton, London, 2008).

    Google Scholar 

  19. Milic-Emili, J. Ventilation Distribution.Physiologic Basis of Respiratory Disease (eds. Hamid, Q., Shannon, J. & Martin, J.) 133–141 (BC Decker, Hamilton, Ontario, Canada, 2005).

    Google Scholar 

  20. Park, M.K., Myers, R.A. & Marzella, L. Oxygen tensions and infections: modulation of microbial growth, activity of antimicrobial agents, and immunologic responses.Clin. Infect. Dis.14, 720–740 (1992).

    Article CAS PubMed  Google Scholar 

  21. Chackerian, A.A., Alt, J.M., Perera, T.V., Dascher, C.C. & Behar, S.M. Dissemination ofMycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity.Infect. Immun.70, 4501–4509 (2002).

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Wolf, A.J. et al. Initiation of the adaptive immune response toMycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs.J. Exp. Med.205, 105–115 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  23. Flynn, J.L. & Chan, J. Immunology of tuberculosis.Annu. Rev. Immunol.19, 93–129 (2001).

    Article CAS PubMed  Google Scholar 

  24. Elvang, T. et al. CD4 and CD8 T cell responses to theM. tuberculosis Ag85B–TB10.4 promoted by adjuvanted subunit, adenovector or heterologous prime boost vaccination.PLoS ONE4, e5139 (2009).

    Article PubMed PubMed Central  Google Scholar 

  25. Lazarevic, V. & Flynn, J. CD8+ T cells in tuberculosis.Am. J. Respir. Crit. Care Med.166, 1116–1121 (2002).

    Article PubMed  Google Scholar 

  26. Winau, F. et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis.Immunity24, 105–117 (2006).

    Article CAS PubMed  Google Scholar 

  27. Rees, R.J. & Hart, P.D. Analysis of the host-parasite equilibrium in chronic murine tuberculosis by total and viable bacillary counts.Br. J. Exp. Pathol.42, 83–88 (1961).

    CAS PubMed PubMed Central  Google Scholar 

  28. Munoz-Elias, E.J. et al. Replication dynamics ofMycobacterium tuberculosis in chronically infected mice.Infect. Immun.73, 546–551 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  29. Andersen, P. Host responses and antigens involved in protective immunity toMycobacterium tuberculosis.Scand. J. Immunol.45, 115–131 (1997).

    Article CAS PubMed  Google Scholar 

  30. Alatas, F. et al. Vascular endothelial growth factor levels in active pulmonary tuberculosis.Chest125, 2156–2159 (2004).

    Article CAS PubMed  Google Scholar 

  31. Saita, N., Fujiwara, N., Yano, I., Soejima, K. & Kobayashi, K. Trehalose 6,6′-dimycolate (cord factor) ofMycobacterium tuberculosis induces corneal angiogenesis in rats.Infect. Immun.68, 5991–5997 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  32. Caceres, N. et al. Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models.Tuberculosis89, 175–182 (2009).

    Article CAS PubMed  Google Scholar 

  33. D'Avila, H. et al.Mycobacterium bovis bacillus Calmette-Guerin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo.J. Immunol.176, 3087–3097 (2006).

    Article CAS PubMed  Google Scholar 

  34. Ordway, D., Henao-Tamayo, M., Orme, I.M. & Gonzalez-Juarrero, M. Foamy macrophages within lung granulomas of mice infected withMycobacterium tuberculosis express molecules characteristic of dendritic cells and antiapoptotic markers of the TNF receptor-associated factor family.J. Immunol.175, 3873–3881 (2005).

    Article CAS PubMed  Google Scholar 

  35. Peyron, P. et al. Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir forM. tuberculosis persistence.PLoS Pathog.4, e1000204 (2008).

    Article PubMed PubMed Central  Google Scholar 

  36. Ulrichs, T. et al. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung.J. Pathol.204, 217–228 (2004).

    Article PubMed  Google Scholar 

  37. Ulrichs, T. et al. Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma.J. Infect. Dis.192, 89–97 (2005).

    Article PubMed  Google Scholar 

  38. Kaplan, G. et al.Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity.Infect. Immun.71, 7099–7108 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  39. Hunter, R.L., Jagannath, C. & Actor, J.K. Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs.Tuberculosis (Edinb.)87, 267–278 (2007).

    Article  Google Scholar 

  40. Dhillon, J., Dickinson, J.M., Sole, K. & Mitchison, D.A. Preventive chemotherapy of tuberculosis in Cornell model mice with combinations of rifampin, isoniazid, and pyrazinamide.Antimicrob. Agents Chemother.40, 552–555 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  41. Galkina, E. & Ley, K. Immune and inflammatory mechanisms of atherosclerosis.Annu. Rev. Immunol.27, 165–197 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  42. Kalayoglu, M.V. & Byrne, G.I. Induction of macrophage foam cell formation byChlamydia pneumoniae.J. Infect. Dis.177, 725–729 (1998).

    Article CAS PubMed  Google Scholar 

  43. Portugal, L.R. et al. Influence of low-density lipoprotein (LDL) receptor on lipid composition, inflammation and parasitism duringToxoplasma gondii infection.Microbes Infect.10, 276–284 (2008).

    Article CAS PubMed  Google Scholar 

  44. D'Avila, H., Maya-Monteiro, C.M. & Bozza, P.T. Lipid bodies in innate immune response to bacterial and parasite infections.Int. Immunopharmacol.8, 1308–1315 (2008).

    Article CAS PubMed  Google Scholar 

  45. Silva, A.R. et al. Lipid bodies in oxidized LDL-induced foam cells are leukotriene-synthesizing organelles: a MCP-1/CCL2 regulated phenomenon.Biochim Biophys Acta (2009).

  46. Baldan, A., Gomes, A.V., Ping, P. & Edwards, P.A. Loss of ABCG1 results in chronic pulmonary inflammation.J. Immunol.180, 3560–3568 (2008).

    Article CAS PubMed  Google Scholar 

  47. Beatty, W.L. et al. Trafficking and release of mycobacterial lipids from infected macrophages.Traffic1, 235–247 (2000).

    Article CAS PubMed  Google Scholar 

  48. Beatty, W.L., Ullrich, H.J. & Russell, D.G. Mycobacterial surface moieties are released from infected macrophages by a constitutive exocytic event.Eur. J. Cell Biol.80, 31–40 (2001).

    Article CAS PubMed  Google Scholar 

  49. Rhoades, E.R., Geisel, R.E., Butcher, B.A., McDonough, S. & Russell, D.G. Cell wall lipids fromMycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components.Tuberculosis85, 159–176 (2005).

    Article CAS PubMed  Google Scholar 

  50. Geisel, R.E., Sakamoto, K., Russell, D.G. & Rhoades, E.R. In vivo activity of released cell wall lipids ofMycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates.J. Immunol.174, 5007–5015 (2005).

    Article CAS PubMed  Google Scholar 

  51. Puissegur, M.P. et al. Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, ADAM9- and beta1 integrin-mediated pathway.J. Immunol.178, 3161–3169 (2007).

    Article CAS PubMed  Google Scholar 

  52. Bowdish, D.M. et al. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis.PLoS Pathog.5, e1000474 (2009).

    Article PubMed PubMed Central  Google Scholar 

  53. Rhoades, E. et al. Identification and macrophage-activating activity of glycolipids released from intracellularMycobacterium bovis BCG.Mol. Microbiol.48, 875–888 (2003).

    Article CAS PubMed  Google Scholar 

  54. Cocchiaro, J.L., Kumar, Y., Fischer, E.R., Hackstadt, T. & Valdivia, R.H. Cytoplasmic lipid droplets are translocated into the lumen of theChlamydia trachomatis parasitophorous vacuole.Proc. Natl. Acad. Sci. USA105, 9379–9384 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  55. Neyrolles, O. et al. Is adipose tissue a place forMycobacterium tuberculosis persistence?PLoS ONE1, e43 (2006).

    Article PubMed PubMed Central  Google Scholar 

  56. McKinney, J.D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase.Nature406, 735–738 (2000).

    Article CAS PubMed  Google Scholar 

  57. Pandey, A.K. & Sassetti, C.M. Mycobacterial persistence requires the utilization of host cholesterol.Proc. Natl. Acad. Sci. USA105, 4376–4380 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  58. Yang, X., Nesbitt, N.M., Dubnau, E., Smith, I. & Sampson, N.S. Cholesterol metabolism increases the metabolic pool of propionate inMycobacterium tuberculosis.Biochemistry48, 3819–3821 (2009).

    Article CAS PubMed  Google Scholar 

  59. Munoz-Elias, E.J., Upton, A.M., Cherian, J. & McKinney, J.D. Role of the methylcitrate cycle inMycobacterium tuberculosis metabolism, intracellular growth, and virulence.Mol. Microbiol.60, 1109–1122 (2006).

    Article CAS PubMed  Google Scholar 

  60. Gan, H. et al.Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence.Nat. Immunol.9, 1189–1197 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  61. Velmurugan, K. et al.Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.PLoS Pathog.3, e110 (2007).

    Article PubMed PubMed Central  Google Scholar 

  62. Keane, J. et al. Infection byMycobacterium tuberculosis promotes human alveolar macrophage apoptosis.Infect. Immun.65, 298–304 (1997).

    CAS PubMed PubMed Central  Google Scholar 

  63. Lee, J., Hartman, M. & Kornfeld, H. Macrophage apoptosis in tuberculosis.Yonsei Med. J.50, 1–11 (2009).

    Article PubMed PubMed Central  Google Scholar 

  64. Divangahi, M. et al.Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair.Nat. Immunol.10, 899–906 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. de Chastellier and J.-F. Emile for the electron microscopy and histology inFigures 1 and3. Supported by the European Union Framework Programme (Consortiums StopLATENT-TB Health-2007-200999 to P.-J.C.), the Bill and Melinda Gates Foundation Grand Challenges in Global Health (D.G.R., and GC12#82 to P.-J.C.), Institut National de la Santé et de la Recherche Médicale (Programme Interface to F.A.), Agence Nationale de la Recherche (ANR-06-MIME-A05115KS and ANR-06-MIME-037-01 to F.A.), the US Public Health Services (D.G.R.) and the US National Institutes of Health (HL055936 and AI064430 to D.G.R.).

Author information

Authors and Affiliations

  1. Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA

    David G Russell & Mi-Jeong Kim

  2. Unitat de Tuberculosi Experimental, Institut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Catalonia, Spain

    Pere-Joan Cardona

  3. Centro Investigaciones Biomédicas en Red Enfermedades Respiratorias, Palma de Mallorca, Spain

    Pere-Joan Cardona

  4. Institut National de la Santé et de la Recherche Médicale, Unité 892, Institut de Recherche Thérapeutique, Nantes, France

    Sophie Allain & Frédéric Altare

Authors
  1. David G Russell
  2. Pere-Joan Cardona
  3. Mi-Jeong Kim
  4. Sophie Allain
  5. Frédéric Altare

Corresponding authors

Correspondence toDavid G Russell orFrédéric Altare.

Rights and permissions

About this article

Cite this article

Russell, D., Cardona, PJ., Kim, MJ.et al. Foamy macrophages and the progression of the human tuberculosis granuloma.Nat Immunol10, 943–948 (2009). https://doi.org/10.1038/ni.1781

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp