- Review Article
- Published:
Foamy macrophages and the progression of the human tuberculosis granuloma
Nature Immunologyvolume 10, pages943–948 (2009)Cite this article
10kAccesses
728Citations
24Altmetric
Abstract
The progression of tuberculosis from a latent, subclinical infection to active disease that culminates in the transmission of infectious bacilli is determined locally at the level of the granuloma. This progression takes place even in the face of a robust immune response that, although it contains infection, is unable to eliminate the bacterium. The factors or environmental conditions that influence this progression remain to be determined. Recent advances have indicated that pathogen-induced dysregulation of host lipid synthesis and sequestration serves a critical role in this transition. The foamy macrophage seems to be a key participant in both sustaining persistent bacteria and contributing to the tissue pathology that leads to cavitation and the release of infectious bacilli.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Parrish, N.M., Dick, J.D. & Bishai, W.R. Mechanisms of latency inMycobacterium tuberculosis.Trends Microbiol.6, 107–112 (1998).
Rohde, K., Yates, R.M., Purdy, G.E. & Russell, D.G.Mycobacterium tuberculosis and the environment within the phagosome.Immunol. Rev.219, 37–54 (2007).
Sturgill-Koszycki, S. et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase.Science263, 678–681 (1994).
Gohn, A.Der primäre Lungenherd bei der Tuberkulose der Kinder (The Primary Lung Lesion in Infant TB) (Urbach and Scharzenburg, Berlin and Vienna, 1912).
Saunders, B.M. & Cooper, A.M. Restraining mycobacteria role of granulomas in mycobacterial infections.Immunol. Cell Biol.78, 334–341 (2000).
Russell, D.G. Who puts the tubercle in tuberculosis?Nat. Rev. Microbiol.5, 39–47 (2007).
Davis, J.M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection.Cell136, 37–49 (2009).
North, R.J. & Jung, Y.J. Immunity to tuberculosis.Annu. Rev. Immunol.22, 599–623 (2004).
Cardona, P.J. et al. Widespread bronchogenic dissemination makes DBA/2 mice more susceptible than C57BL/6 mice to experimental aerosol infection withMycobacterium tuberculosis.Infect. Immun.71, 5845–5854 (2003).
Cardona, P.J. et al. Evolution of granulomas in lungs of mice infected aerogenically withMycobacterium tuberculosis.Scand. J. Immunol.52, 156–163 (2000).
Algood, H.M., Lin, P.L. & Flynn, J.L. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis.Clin. Infect. Dis.41 Suppl 3, S189–S193 (2005).
Kindler, V., Sappino, A.P., Grau, G.E., Piguet, P.F. & Vassalli, P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection.Cell56, 731–740 (1989).
Roach, D.R. et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection.J. Immunol.168, 4620–4627 (2002).
Saunders, B.M. & Britton, W.J. Life and death in the granuloma: immunopathology of tuberculosis.Immunol. Cell Biol.85, 103–111 (2007).
Gil, O. et al. Intragranulomatous necrosis in lungs of mice infected by aerosol withMycobacterium tuberculosis is related to bacterial load rather than to any one cytokine or T cell type.Microbes Infect.8, 628–636 (2006).
Casadevall, A. & Pirofski, L.A. The damage-response framework of microbial pathogenesis.Nat. Rev. Microbiol.1, 17–24 (2003).
Lipman, M. & Breen, R. Immune reconstitution inflammatory syndrome in HIV.Curr. Opin. Infect. Dis.19, 20–25 (2006).
Gordon, S.B. & Mwandumba, H. inClinical Tuberculosis (eds. Davis, P.D., Barnes, P.F. & Gordon, S.B.) 145–162 (Hodder and Stoughton, London, 2008).
Milic-Emili, J. Ventilation Distribution.Physiologic Basis of Respiratory Disease (eds. Hamid, Q., Shannon, J. & Martin, J.) 133–141 (BC Decker, Hamilton, Ontario, Canada, 2005).
Park, M.K., Myers, R.A. & Marzella, L. Oxygen tensions and infections: modulation of microbial growth, activity of antimicrobial agents, and immunologic responses.Clin. Infect. Dis.14, 720–740 (1992).
Chackerian, A.A., Alt, J.M., Perera, T.V., Dascher, C.C. & Behar, S.M. Dissemination ofMycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity.Infect. Immun.70, 4501–4509 (2002).
Wolf, A.J. et al. Initiation of the adaptive immune response toMycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs.J. Exp. Med.205, 105–115 (2008).
Flynn, J.L. & Chan, J. Immunology of tuberculosis.Annu. Rev. Immunol.19, 93–129 (2001).
Elvang, T. et al. CD4 and CD8 T cell responses to theM. tuberculosis Ag85B–TB10.4 promoted by adjuvanted subunit, adenovector or heterologous prime boost vaccination.PLoS ONE4, e5139 (2009).
Lazarevic, V. & Flynn, J. CD8+ T cells in tuberculosis.Am. J. Respir. Crit. Care Med.166, 1116–1121 (2002).
Winau, F. et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis.Immunity24, 105–117 (2006).
Rees, R.J. & Hart, P.D. Analysis of the host-parasite equilibrium in chronic murine tuberculosis by total and viable bacillary counts.Br. J. Exp. Pathol.42, 83–88 (1961).
Munoz-Elias, E.J. et al. Replication dynamics ofMycobacterium tuberculosis in chronically infected mice.Infect. Immun.73, 546–551 (2005).
Andersen, P. Host responses and antigens involved in protective immunity toMycobacterium tuberculosis.Scand. J. Immunol.45, 115–131 (1997).
Alatas, F. et al. Vascular endothelial growth factor levels in active pulmonary tuberculosis.Chest125, 2156–2159 (2004).
Saita, N., Fujiwara, N., Yano, I., Soejima, K. & Kobayashi, K. Trehalose 6,6′-dimycolate (cord factor) ofMycobacterium tuberculosis induces corneal angiogenesis in rats.Infect. Immun.68, 5991–5997 (2000).
Caceres, N. et al. Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models.Tuberculosis89, 175–182 (2009).
D'Avila, H. et al.Mycobacterium bovis bacillus Calmette-Guerin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo.J. Immunol.176, 3087–3097 (2006).
Ordway, D., Henao-Tamayo, M., Orme, I.M. & Gonzalez-Juarrero, M. Foamy macrophages within lung granulomas of mice infected withMycobacterium tuberculosis express molecules characteristic of dendritic cells and antiapoptotic markers of the TNF receptor-associated factor family.J. Immunol.175, 3873–3881 (2005).
Peyron, P. et al. Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir forM. tuberculosis persistence.PLoS Pathog.4, e1000204 (2008).
Ulrichs, T. et al. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung.J. Pathol.204, 217–228 (2004).
Ulrichs, T. et al. Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma.J. Infect. Dis.192, 89–97 (2005).
Kaplan, G. et al.Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity.Infect. Immun.71, 7099–7108 (2003).
Hunter, R.L., Jagannath, C. & Actor, J.K. Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs.Tuberculosis (Edinb.)87, 267–278 (2007).
Dhillon, J., Dickinson, J.M., Sole, K. & Mitchison, D.A. Preventive chemotherapy of tuberculosis in Cornell model mice with combinations of rifampin, isoniazid, and pyrazinamide.Antimicrob. Agents Chemother.40, 552–555 (1996).
Galkina, E. & Ley, K. Immune and inflammatory mechanisms of atherosclerosis.Annu. Rev. Immunol.27, 165–197 (2009).
Kalayoglu, M.V. & Byrne, G.I. Induction of macrophage foam cell formation byChlamydia pneumoniae.J. Infect. Dis.177, 725–729 (1998).
Portugal, L.R. et al. Influence of low-density lipoprotein (LDL) receptor on lipid composition, inflammation and parasitism duringToxoplasma gondii infection.Microbes Infect.10, 276–284 (2008).
D'Avila, H., Maya-Monteiro, C.M. & Bozza, P.T. Lipid bodies in innate immune response to bacterial and parasite infections.Int. Immunopharmacol.8, 1308–1315 (2008).
Silva, A.R. et al. Lipid bodies in oxidized LDL-induced foam cells are leukotriene-synthesizing organelles: a MCP-1/CCL2 regulated phenomenon.Biochim Biophys Acta (2009).
Baldan, A., Gomes, A.V., Ping, P. & Edwards, P.A. Loss of ABCG1 results in chronic pulmonary inflammation.J. Immunol.180, 3560–3568 (2008).
Beatty, W.L. et al. Trafficking and release of mycobacterial lipids from infected macrophages.Traffic1, 235–247 (2000).
Beatty, W.L., Ullrich, H.J. & Russell, D.G. Mycobacterial surface moieties are released from infected macrophages by a constitutive exocytic event.Eur. J. Cell Biol.80, 31–40 (2001).
Rhoades, E.R., Geisel, R.E., Butcher, B.A., McDonough, S. & Russell, D.G. Cell wall lipids fromMycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components.Tuberculosis85, 159–176 (2005).
Geisel, R.E., Sakamoto, K., Russell, D.G. & Rhoades, E.R. In vivo activity of released cell wall lipids ofMycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates.J. Immunol.174, 5007–5015 (2005).
Puissegur, M.P. et al. Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, ADAM9- and beta1 integrin-mediated pathway.J. Immunol.178, 3161–3169 (2007).
Bowdish, D.M. et al. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis.PLoS Pathog.5, e1000474 (2009).
Rhoades, E. et al. Identification and macrophage-activating activity of glycolipids released from intracellularMycobacterium bovis BCG.Mol. Microbiol.48, 875–888 (2003).
Cocchiaro, J.L., Kumar, Y., Fischer, E.R., Hackstadt, T. & Valdivia, R.H. Cytoplasmic lipid droplets are translocated into the lumen of theChlamydia trachomatis parasitophorous vacuole.Proc. Natl. Acad. Sci. USA105, 9379–9384 (2008).
Neyrolles, O. et al. Is adipose tissue a place forMycobacterium tuberculosis persistence?PLoS ONE1, e43 (2006).
McKinney, J.D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase.Nature406, 735–738 (2000).
Pandey, A.K. & Sassetti, C.M. Mycobacterial persistence requires the utilization of host cholesterol.Proc. Natl. Acad. Sci. USA105, 4376–4380 (2008).
Yang, X., Nesbitt, N.M., Dubnau, E., Smith, I. & Sampson, N.S. Cholesterol metabolism increases the metabolic pool of propionate inMycobacterium tuberculosis.Biochemistry48, 3819–3821 (2009).
Munoz-Elias, E.J., Upton, A.M., Cherian, J. & McKinney, J.D. Role of the methylcitrate cycle inMycobacterium tuberculosis metabolism, intracellular growth, and virulence.Mol. Microbiol.60, 1109–1122 (2006).
Gan, H. et al.Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence.Nat. Immunol.9, 1189–1197 (2008).
Velmurugan, K. et al.Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.PLoS Pathog.3, e110 (2007).
Keane, J. et al. Infection byMycobacterium tuberculosis promotes human alveolar macrophage apoptosis.Infect. Immun.65, 298–304 (1997).
Lee, J., Hartman, M. & Kornfeld, H. Macrophage apoptosis in tuberculosis.Yonsei Med. J.50, 1–11 (2009).
Divangahi, M. et al.Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair.Nat. Immunol.10, 899–906 (2009).
Acknowledgements
We thank C. de Chastellier and J.-F. Emile for the electron microscopy and histology inFigures 1 and3. Supported by the European Union Framework Programme (Consortiums StopLATENT-TB Health-2007-200999 to P.-J.C.), the Bill and Melinda Gates Foundation Grand Challenges in Global Health (D.G.R., and GC12#82 to P.-J.C.), Institut National de la Santé et de la Recherche Médicale (Programme Interface to F.A.), Agence Nationale de la Recherche (ANR-06-MIME-A05115KS and ANR-06-MIME-037-01 to F.A.), the US Public Health Services (D.G.R.) and the US National Institutes of Health (HL055936 and AI064430 to D.G.R.).
Author information
Authors and Affiliations
Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
David G Russell & Mi-Jeong Kim
Unitat de Tuberculosi Experimental, Institut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Catalonia, Spain
Pere-Joan Cardona
Centro Investigaciones Biomédicas en Red Enfermedades Respiratorias, Palma de Mallorca, Spain
Pere-Joan Cardona
Institut National de la Santé et de la Recherche Médicale, Unité 892, Institut de Recherche Thérapeutique, Nantes, France
Sophie Allain & Frédéric Altare
- David G Russell
Search author on:PubMed Google Scholar
- Pere-Joan Cardona
Search author on:PubMed Google Scholar
- Mi-Jeong Kim
Search author on:PubMed Google Scholar
- Sophie Allain
Search author on:PubMed Google Scholar
- Frédéric Altare
Search author on:PubMed Google Scholar
Corresponding authors
Correspondence toDavid G Russell orFrédéric Altare.
Rights and permissions
About this article
Cite this article
Russell, D., Cardona, PJ., Kim, MJ.et al. Foamy macrophages and the progression of the human tuberculosis granuloma.Nat Immunol10, 943–948 (2009). https://doi.org/10.1038/ni.1781
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs
- Tannu Priya Gosain
- Saurabh Chugh
- Ramandeep Singh
Nature Communications (2024)
Revolutionizing control strategies against Mycobacterium tuberculosis infection through selected targeting of lipid metabolism
- Hagyu Kim
- Sung Jae Shin
Cellular and Molecular Life Sciences (2023)
Modulation of TDM-induced granuloma pathology by human lactoferrin: a persistent effect in mice
- Jeffrey K. Actor
- Thao K. T. Nguyen
- Marian L. Kruzel
BioMetals (2023)
Exploring the value of Mycobacterium tuberculosis modified lipoprotein as a potential biomarker for TB detection in children
- Xinxin Yang
- Matthew F. Wipperman
- Nicole S. Sampson
BMC Infectious Diseases (2022)
Combined enhancement of the propionyl-CoA metabolic pathway for efficient androstenedione production in Mycolicibacterium neoaurum
- Zhenhua Su
- Zhenjian Zhang
- Min Wang
Microbial Cell Factories (2022)


