Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Letter
  • Published:

Regulation of noise in the expression of a single gene

Nature Geneticsvolume 31pages69–73 (2002)Cite this article

Abstract

Stochastic mechanisms are ubiquitous in biological systems. Biochemical reactions that involve small numbers of molecules are intrinsically noisy, being dominated by large concentration fluctuations1,2,3. This intrinsic noise has been implicated in the random lysis/lysogeny decision of bacteriophage-λ4, in the loss of synchrony of circadian clocks5,6 and in the decrease of precision of cell signals7. We sought to quantitatively investigate the extent to which the occurrence of molecular fluctuations within single cells (biochemical noise) could explain the variation of gene expression levels between cells in a genetically identical population (phenotypic noise). We have isolated the biochemical contribution to phenotypic noise from that of other noise sources by carrying out a series of differential measurements. We varied independently the rates of transcription and translation of a single fluorescent reporter gene in the chromosome ofBacillus subtilis, and we quantitatively measured the resulting changes in the phenotypic noise characteristics. We report that of these two parameters, increased translational efficiency is the predominant source of increased phenotypic noise. This effect is consistent with a stochastic model of gene expression in which proteins are produced in random and sharp bursts. Our results thus provide the first direct experimental evidence of the biochemical origin of phenotypic noise, demonstrating that the level of phenotypic variation in an isogenic population can be regulated by genetic parameters.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic noise in a genetically identical bacterial population.
Figure 2: Biochemical contribution to phenotypic noise.
Figure 3: The burst size effect.

Similar content being viewed by others

References

  1. Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions.J. Phys. Chem.81, 2340–2361 (1977).

    Article CAS  Google Scholar 

  2. McAdams, H.H. & Arkin, A. It's a noisy business! Genetic regulation at the nanomolar scale.Trends Genet.15, 65–69 (1999).

    Article CAS PubMed  Google Scholar 

  3. McAdams, H.H. & Arkin, A. Stochastic mechanisms in gene expression.Proc. Natl Acad. Sci. USA94, 814–819 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  4. Arkin, A., Ross, J. & McAdams, H.H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infectedEscherichia coli cells.Genetics149, 1633–1648 (1998).

    CAS PubMed PubMed Central  Google Scholar 

  5. Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators.Nature403, 335–338 (2000).

    Article CAS PubMed  Google Scholar 

  6. Barkai, N. & Leibler, S. Biological rhythms: circadian clocks limited by noise.Nature403, 267–268 (2000).

    Article CAS PubMed  Google Scholar 

  7. Berg, O.G., Paulsson, J. & Ehrenberg, M. Fluctuations and quality of control in biological cells: zero-order ultrasensitivity reinvestigated.Biophys. J.79, 1228–1236 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  8. Thieffry, D., Huerta, A.M., Pérez-Rueda, E. & Collado-Vides, J. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation inEscherichia coli.BioEssays20, 433–440 (1998).

    Article CAS PubMed  Google Scholar 

  9. Lutz, R. & Bujard, H. Independent and tight regulation of the transcriptional units inEscherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements.Nucleic Acids Res.25, 1203–1210 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  10. LØbner-Olesen, A. Distribution of minichromosomes in individualEscherichia coli cells: implications for replication control.EMBO J.18, 1712–1721 (1999).

    Article PubMed PubMed Central  Google Scholar 

  11. Vellanoweth, R.L. & Rabinowitz, J.C. The influence of ribosome-binding-site elements on translational efficiency inBacillus subtilis andEscherichia coli in vivo.Mol. Microbiol.6, 1105–1114 (1992).

    Article CAS PubMed  Google Scholar 

  12. Thattai, M. & & van Oudenaarden, A. Intrinsic noise in gene regulatory networks.Proc. Natl Acad. Sci. USA98, 8614–8619 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  13. Paulsson, J., Berg, O.G. & Ehrenberg, M. Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation.Proc. Natl Acad. Sci. USA97, 7148–7153 (2000).

    Article CAS PubMed PubMed Central  Google Scholar 

  14. von Dassow, G., Meir, E., Munro, E.M. & Odell, G.M. The segment polarity network is a robust developmental module.Nature406, 188–192 (2000).

    Article CAS PubMed  Google Scholar 

  15. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation.Nature405, 590–593 (2000).

    Article CAS PubMed  Google Scholar 

  16. Chapon, C. Expression ofmalT, the regulator gene of the maltose regulon inEscherichia coli, is limited both at transcription and translation.EMBO J.1, 369–374 (1982).

    Article CAS PubMed PubMed Central  Google Scholar 

  17. Trotot, P. et al. Comparative analysis of thecya locus in enterobacteria and related Gram-negative facultative anaerobes.Biochimie78, 277–287 (1996).

    Article CAS PubMed  Google Scholar 

  18. Botsford, J.L. & Harman, J.G. Cyclic AMP in prokaryotes.Microbiol. Rev.56, 100–122 (1992).

    CAS PubMed PubMed Central  Google Scholar 

  19. Spudich, J.L. & Koshland Jr, D.E. Non-genetic individuality: chance in the single cell.Nature262, 467–471 (1976).

    Article CAS PubMed  Google Scholar 

  20. Levi, M.D., Morton-Firth, C.J., Abouhamad, W.N., Bourret, R.B. & Bray, D. Origins of individual swimming behavior in bacteria.Biophys. J.74, 175–181 (1998).

    Article  Google Scholar 

  21. Ptashne, M. et al. Autoregulation and function of a repressor in bacteriophage λ.Science194, 156–161 (1976).

    Article CAS PubMed  Google Scholar 

  22. Weiss, R., Homsy, G.E. & Knight Jr, T.F., Towardin vivodigital circuits.Proceedings of the DIMACS Workshop on Evolution as Computation(1999).

  23. Hasty, J., McMillen, D., Isaacs, F. & Collins, J.J. Computational studies of gene regulatory networks:in numero molecular biology.Nature Rev. Genet.2, 268–279 (2001).

    Article CAS PubMed  Google Scholar 

  24. Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch inEscherichia coli.Nature403, 339–342 (2000).

    Article CAS PubMed  Google Scholar 

  25. Kepler, T.B. & Elston, T.C. Stochasticity in transcriptional regulation: origins, consequences and mathematical representations.Biophys. J.81, 3116–3136 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  26. Plumbridge, J. How to achieve constitutive expression of a gene within an inducible operon: the example of thenagC gene ofEscherichia coli.J. Bacteriol178, 2629–2636 (1996).

    Article CAS PubMed PubMed Central  Google Scholar 

  27. Baumeister, R., Flache, P., Melefors, O., von Gabain, A. & Hillen, W. Lack of a 5′ non-coding region in Tn1721 encodedtetRmRNA is associated with a low efficiency of translation and a short half-life inEscherichia coli.Nucleic Acids Res.19, 4595–4600 (1991).

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Kelley, R.L. & Yanofsky, C.trp aporepressor production is controlled by autogenous regulation and inefficient translation.Proc. Natl Acad. Sci. USA79, 3120–3124 (1982).

    Article CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Bell, E.M. Judd, H.H. McAdams, W.F. Burkholder and R. Weiss for critically reviewing the manuscript. E.O. was funded through a Merck fellowship. This work was supported by the Edgerly Science Partnership fund, DARPA and a National Science Foundation CAREER award.

Author information

Authors and Affiliations

  1. Department of Physics, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA

    Ertugrul M. Ozbudak, Mukund Thattai & Alexander van Oudenaarden

  2. Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, USA

    Iren Kurtser & Alan D. Grossman

Authors
  1. Ertugrul M. Ozbudak
  2. Mukund Thattai
  3. Iren Kurtser
  4. Alan D. Grossman
  5. Alexander van Oudenaarden

Corresponding author

Correspondence toAlexander van Oudenaarden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

About this article

Cite this article

Ozbudak, E., Thattai, M., Kurtser, I.et al. Regulation of noise in the expression of a single gene.Nat Genet31, 69–73 (2002). https://doi.org/10.1038/ng869

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Translating the noise

  • Jeff Hasty
  • James J. Collins
Nature GeneticsNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2026 Movatter.jp