Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Letter
  • Published:

Homozygotes forCDKN2 (p16) germline mutation in Dutch familial melanoma kindreds

Nature Geneticsvolume 10pages351–353 (1995)Cite this article

Abstract

The p16 gene (CDKN2) which is localized on chromosome 9p21, is deleted in a significant number of sporadic cancers1–3. Moreover, germline mutations identified in some melanoma-prone kindreds4,5 last year suggested thatCDKN2 is identical to the 9p21 −linked melanoma susceptibility gene (MLM)6; however, failure to identify p16 mutations in all melanoma kindreds putatively linked to 9p21 left some doubts. We have analysedCDKN2 coding sequences in 15 Dutch familial atypical multiple mole-melanoma (FAMMM) syndrome pedigrees, and identified a 19 basepair (bp) germline deletion in 13 of them. All 13 families originate from an endogamous population. The deletion causes a reading frame shift, predicted to result in a severely truncated p16 protein. Interestingly, two family members are homozygous for the deletion, one of whom shows no obvious signs of disease. This surprising finding demonstrates that homozygotes for thisCDKN2 mutation are viable, and suggests the presence of a genetic mechanism that can compensate for the functional loss of p16. Our results also greatly strengthen the notion that p16 is indeedMLM.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kamb, A.et al. A cell cycle regulator potentially involved in genesis of many tumor types.Science264, 436–440 (1994).

    Article CAS PubMed  Google Scholar 

  2. Nobori, T.et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers.Nature368, 753–756 (1994).

    Article CAS PubMed  Google Scholar 

  3. Serrano, M., Hannon, G.J. & Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4.Nature366, 704–707 (1993).

    Article CAS PubMed  Google Scholar 

  4. Kamb, A.et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus.Nature Genet.8, 22–26 (1994).

    Article CAS  Google Scholar 

  5. Hussussian, C.J.et al. Germline p16 mutations in familial melanoma.Nature Genet.8, 15–21 (1994).

    Article CAS PubMed  Google Scholar 

  6. Cannon-Albright, L.A.et al. Assignment of a locus for familial melanoma MLM, to chromosome 9p13-p22.Science258, 1148–1152 (1992).

    Article CAS PubMed  Google Scholar 

  7. Gruis, N.A.et al. Linkage analysis in Dutch familial atypical multiple mole-melanoma (FAMMM) syndrome families. Effect of naevus count.Melanoma Res.3, 271–277 (1993).

    CAS PubMed  Google Scholar 

  8. Bergman, W., Gruis, N.A., Sandkuijl, L.A. & Frants, R.R. Genetics of seven Dutch familial atypical multiple mole-melanoma syndrome families: A review of linkage results including chromosomes 1 and 9.J. Invest. Dermat.103, 122S–125S (1994).

    Article CAS  Google Scholar 

  9. Hannon, G.J. & Beach, D. p15INK4B is a potential effector of TGF- β-induced cell cycle arrest.Nature371, 257–261 (1994).

    Article CAS PubMed  Google Scholar 

  10. Donehower, L.A.et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours.Nature356, 215–221 (1992).

    Article CAS PubMed  Google Scholar 

  11. Sah, V.P., Attardi, L.D., Mulligan, G.J., Williams, B.C., Bronson, R.T. & Jacks, T. A subset ofp53-deficient embryos exhibit exencephaly.Nature Genet.10, 175–180 (1995).

    Article CAS PubMed  Google Scholar 

  12. Lee, E.Y.-H.P.et al. Mice deficient for Rb are non viable and show defects in neurogenesis and haematopoiesis.Nature359, 288–295 (1992).

    Article CAS PubMed  Google Scholar 

  13. Guan, K.-L.et al. Growth suppression by p18, ap16INK4/MTS1 andp14INK4B/MTS2- related CDK6 inhibitor, correlates with the wild-type pRb function.Genes Dev.8, 2939–2952 (1994).

    Article CAS PubMed  Google Scholar 

  14. Bergman, W., Gruis, N.A. & Frants, R.R. The Dutch FAMMM family material: Clinical and genetic data.Cytogenet. cell. Genet.59, 161–164 (1992).

    Article CAS PubMed  Google Scholar 

  15. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells.Nucl. Acids Res.16, 1215 (1988).

    Article CAS PubMed PubMed Central  Google Scholar 

  16. Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction.Genomics5, 874–879 (1989).

    Article CAS PubMed  Google Scholar 

  17. Maniatis, T., Fritsch, E.F. & Sambrook, J. inMolecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Habor Laboratory Press, Cold Spring Habor, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. MGC-Department of Human Genetics, Leiden University, The Netherlands

    Nelleke A. Gruis, Pieter A. van der Velden, Lodewijk A. Sandkuijl, Duncan E. Prins & Rune R. Frants

  2. Department of Dermatology, University Hospital Leiden, The Netherlands

    Nelleke A. Gruis, Duncan E. Prins & Wilma Bergman

  3. Myriad Genetics Inc., Salt Lake City, Utah, USA

    Jane Weaver-Feldhaus & Alexander Kamb

Authors
  1. Nelleke A. Gruis

    You can also search for this author inPubMed Google Scholar

  2. Pieter A. van der Velden

    You can also search for this author inPubMed Google Scholar

  3. Lodewijk A. Sandkuijl

    You can also search for this author inPubMed Google Scholar

  4. Duncan E. Prins

    You can also search for this author inPubMed Google Scholar

  5. Jane Weaver-Feldhaus

    You can also search for this author inPubMed Google Scholar

  6. Alexander Kamb

    You can also search for this author inPubMed Google Scholar

  7. Wilma Bergman

    You can also search for this author inPubMed Google Scholar

  8. Rune R. Frants

    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Gruis, N., van der Velden, P., Sandkuijl, L.et al. Homozygotes forCDKN2 (p16) germline mutation in Dutch familial melanoma kindreds.Nat Genet10, 351–353 (1995). https://doi.org/10.1038/ng0795-351

Download citation

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp