- Letter
- Published:
Emergence and global spread of epidemic healthcare-associatedClostridium difficile
- Miao He1,
- Fabio Miyajima2,3,
- Paul Roberts2,3,
- Louise Ellison1,
- Derek J Pickard1,
- Melissa J Martin4,
- Thomas R Connor1,
- Simon R Harris1,
- Derek Fairley5,
- Kathleen B Bamford6,7,
- Stephanie D'Arc6,7,
- Jon Brazier8,
- Derek Brown9,
- John E Coia9,
- Gill Douce9,
- Dale Gerding10,
- Hee Jung Kim11,
- Tse Hsien Koh12,
- Haru Kato13,
- Mitsutoshi Senoh13,
- Tom Louie14,
- Stephen Michell15,
- Emma Butt15,
- Sharon J Peacock1,16,17,18,
- Nick M Brown17,18,
- Tom Riley19,
- Glen Songer20,
- Mark Wilcox21,
- Munir Pirmohamed2,3,
- Ed Kuijper22,
- Peter Hawkey23,
- Brendan W Wren4,
- Gordon Dougan1,
- Julian Parkhill1 &
- …
- Trevor D Lawley1
Nature Geneticsvolume 45, pages109–113 (2013)Cite this article
12kAccesses
681Citations
120Altmetric
Abstract
EpidemicC. difficile (027/BI/NAP1) has rapidly emerged in the past decade as the leading cause of antibiotic-associated diarrhea worldwide. However, the key events in evolutionary history leading to its emergence and the subsequent patterns of global spread remain unknown. Here, we define the global population structure ofC. difficile 027/BI/NAP1 using whole-genome sequencing and phylogenetic analysis. We show that two distinct epidemic lineages, FQR1 and FQR2, not one as previously thought, emerged in North America within a relatively short period after acquiring the same fluoroquinolone resistance–conferring mutation and a highly related conjugative transposon. The two epidemic lineages showed distinct patterns of global spread, and the FQR2 lineage spread more widely, leading to healthcare-associated outbreaks in the UK, continental Europe and Australia. Our analysis identifies key genetic changes linked to the rapid transcontinental dissemination of epidemicC. difficile 027/BI/NAP1 and highlights the routes by which it spreads through the global healthcare system.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Bartlett, J.G.Clostridium difficile: progress and challenges.Ann. NY Acad. Sci.1213, 62–69 (2010).
Kelly, C.P. & LaMont, J.T.Clostridium difficile—more difficult than ever.N. Engl. J. Med.359, 1932–1940 (2008).
Kuijper, E.J., Coignard, B. & Tull, P. Emergence ofClostridium difficile–associated disease in North America and Europe.Clin. Microbiol. Infect.12 (suppl. 6), 2–18 (2006).
Warny, M. et al. Toxin production by an emerging strain ofClostridium difficile associated with outbreaks of severe disease in North America and Europe.Lancet366, 1079–1084 (2005).
Riggs, M.M. et al. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemicClostridium difficile strains among long-term care facility residents.Clin. Infect. Dis.45, 992–998 (2007).
Clements, A.C., Magalhaes, R.J., Tatem, A.J., Paterson, D.L. & Riley, T.V.Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread.Lancet Infect. Dis.10, 395–404 (2010).
McDonald, L.C. et al. An epidemic, toxin gene-variant strain ofClostridium difficile.N. Engl. J. Med.353, 2433–2441 (2005).
Loo, V.G. et al. A predominantly clonal multi-institutional outbreak ofClostridium difficile–associated diarrhea with high morbidity and mortality.N. Engl. J. Med.353, 2442–2449 (2005).
Muto, C.A. et al. A large outbreak ofClostridium difficile–associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use.Infect. Control Hosp. Epidemiol.26, 273–280 (2005).
Pépin, J., Valiquette, L. & Cossette, B. Mortality attributable to nosocomialClostridium difficile–associated disease during an epidemic caused by a hypervirulent strain in Quebec.CMAJ173, 1037–1042 (2005).
O'Connor, J.R., Johnson, S. & Gerding, D.N.Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain.Gastroenterology136, 1913–1924 (2009).
Brazier, J.S. et al. Distribution and antimicrobial susceptibility patterns ofClostridium difficile PCR ribotypes in English hospitals, 2007–08.Euro Surveill.13 pii: 19000 (2008).
Bauer, M.P. et al.Clostridium difficile infection in Europe: a hospital-based survey.Lancet377, 63–73 (2011).
Kuijper, E.J. et al. Update ofClostridium difficile infection due to PCR ribotype 027 in Europe, 2008.Euro Surveill.13 pii: 18942 (2008).
Richards, M. et al. Severe infection withClostridium difficile PCR ribotype 027 acquired in Melbourne, Australia.Med. J. Aust.194, 369–371 (2011).
Stabler, R.A. et al. Comparative genome and phenotypic analysis ofClostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium.Genome Biol.10, R102 (2009).
Croucher, N.J. et al. Rapid pneumococcal evolution in response to clinical interventions.Science331, 430–434 (2011).
Harris, S.R. et al. Evolution of MRSA during hospital transmission and intercontinental spread.Science327, 469–474 (2010).
Pearson, T. et al. Phylogenetic discovery bias inBacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing.Proc. Natl. Acad. Sci. USA101, 13536–13541 (2004).
Spigaglia, P., Carattoli, A., Barbanti, F. & Mastrantonio, P. Detection ofgyrA andgyrB mutations inClostridium difficile isolates by real-time PCR.Mol. Cell. Probes24, 61–67 (2010).
Kim, H. et al. Emergence ofClostridium difficile ribotype 027 in Korea.Korean J. Lab. Med.31, 191–196 (2011).
Lemey, P., Rambaut, A., Drummond, A.J. & Suchard, M.A. Bayesian phylogeography finds its roots.PLOS Comput. Biol.5, e1000520 (2009).
Dallal, R.M. et al. FulminantClostridium difficile: an underappreciated and increasing cause of death and complications.Ann. Surg.235, 363–372 (2002).
MacCannell, D.R. et al. Molecular analysis ofClostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada.J. Clin. Microbiol.44, 2147–2152 (2006).
Drummond, A.J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees.BMC Evol. Biol.7, 214 (2007).
Nyč, O., Pituch, H., Matejkova, J., Obuch-Woszczatynski, P. & Kuijper, E.J.Clostridium difficile PCR ribotype 176 in the Czech Republic and Poland.Lancet377, 1407 (2011).
Brazier, J.S.Clostridium difficile: the anaerobe that made the grade.Anaerobe18, 197–199 (2012).
Carter, G.P., Awad, M.M., Kelly, M.L., Rood, J.I. & Lyras, D. TcdB or not TcdB: a tale of twoClostridium difficile toxins.Future Microbiol.6, 121–123 (2011).
Sebaihia, M. et al. The multidrug-resistant human pathogenClostridium difficile has a highly mobile, mosaic genome.Nat. Genet.38, 779–786 (2006).
He, M. et al. Evolutionary dynamics ofClostridium difficile over short and long time scales.Proc. Natl. Acad. Sci. USA107, 7527–7532 (2010).
Brouwer, M.S.M., Warburton, P.J., Roberts, A.P., Mullany, P. & Allan, E. Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains ofClostridium difficile.PLoS ONE6, e23014 (2011).
Linder, J.A., Huang, E.S., Steinman, M.A., Gonzales, R. & Stafford, R.S. Fluoroquinolone prescribing in the United States: 1995 to 2002.Am. J. Med.118, 259–268 (2005).
Köser, C.U. et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak.N. Engl. J. Med.366, 2267–2275 (2012).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics25, 1754–1760 (2009).
Li, H. et al. The Sequence Alignment/Map format and SAMtools.Bioinformatics25, 2078–2079 (2009).
Kurtz, S. et al. REPuter: the manifold applications of repeat analysis on a genomic scale.Nucleic Acids Res.29, 4633–4642 (2001).
Kurtz, S. et al. Versatile and open software for comparing large genomes.Genome Biol.5, R12 (2004).
Posada, D. jModelTest: phylogenetic model averaging.Mol. Biol. Evol.25, 1253–1256 (2008).
Huson, D.H. & Bryant, D. Application of phylogenetic networks in evolutionary studies.Mol. Biol. Evol.23, 254–267 (2006).
Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Syst. Biol.52, 696–704 (2003).
Suchard, M.A., Weiss, R.E. & Sinsheimer, J.S. Bayesian selection of continuous-time Markov chain evolutionary models.Mol. Biol. Evol.18, 1001–1013 (2001).
Zerbino, D.R. & Birney, E. Velvet: algorithms forde novo short read assembly using de Bruijn graphs.Genome Res.18, 821–829 (2008).
Carver, T.J. et al. ACT: the Artemis Comparison Tool.Bioinformatics21, 3422–3423 (2005).
Morelli, G. et al.Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity.Nat. Genet.42, 1140–1143 (2010).
Drummond, A.J., Rambaut, A., Shapiro, B. & Pybus, O.G. Bayesian coalescent inference of past population dynamics from molecular sequences.Mol. Biol. Evol.22, 1185–1192 (2005).
Acknowledgements
We are grateful to members of the European Study Group ofClostridium difficile (ESGCD), a working group of ESCMID (European Society of Clinical Microbiology and Infectious Diseases), including F. Barbut, T. Eckmanns, M.L. Lambert, F. Fitzpatrick, C. Wiuff, H. Pituch, P. Reichert, A.F. Widmer, F. Allerberger, D.W. Notermans, M. Delmée, R. Frei, O. Lyytikäinen, A. Ingebretsen and I.R. Poxton. We thank the Wellcome Trust Sanger Institute sequencing and informatics teams. This project was funded by the Wellcome Trust (grants 098051 and 086418), a Medical Research Council New Investigator Research Grant (T.D.L.; grant 93614) and the Scottish Infection Research Network. We acknowledge funding from the National Institute for Health Research (NIHR) Biomedical Research Centre in Liverpool. Both F.M. and P.R. were supported by the Liverpool BRC (Biomedical Research Centre). M.P. is an NIHR Senior Investigator.
Author information
Authors and Affiliations
Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
Miao He, Louise Ellison, Derek J Pickard, Thomas R Connor, Simon R Harris, Sharon J Peacock, Gordon Dougan, Julian Parkhill & Trevor D Lawley
Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
Fabio Miyajima, Paul Roberts & Munir Pirmohamed
University of Liverpool and Royal Liverpool and Broadgreen University Hospital National Health Service (NHS) Trust, Liverpool, UK
Fabio Miyajima, Paul Roberts & Munir Pirmohamed
Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
Melissa J Martin & Brendan W Wren
Belfast Health and Social Trust, Belfast, UK
Derek Fairley
Department of Infectious Diseases and Immunity, Imperial College London, London, UK
Kathleen B Bamford & Stephanie D'Arc
Department of Bacteriology, Imperial College Healthcare NHS Trust, London, UK
Kathleen B Bamford & Stephanie D'Arc
Anaerobic Reference Laboratory, Cardiff, UK
Jon Brazier
Scottish Salmonella, Shigella and Clostridium difficile Reference Laboratory, Glasgow, UK
Derek Brown, John E Coia & Gill Douce
Hines VA Hospital, Hines, Illinois, USA
Dale Gerding
College of Medicine, Yonsei University, Seoul, South Korea
Hee Jung Kim
Department of Pathology, Singapore General Hospital, Singapore
Tse Hsien Koh
Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
Haru Kato & Mitsutoshi Senoh
Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
Tom Louie
College of Life and Environmental Sciences, University of Exeter, Exeter, UK
Stephen Michell & Emma Butt
Department of Medicine, University of Cambridge, Cambridge, UK
Sharon J Peacock
Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
Sharon J Peacock & Nick M Brown
Health Protection Agency, London, UK
Sharon J Peacock & Nick M Brown
School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia
Tom Riley
Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA
Glen Songer
Healthcare Associate Infection Research Group, University of Leeds, Leeds, UK
Mark Wilcox
Department of Experimental Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
Ed Kuijper
School of Immunity and Infection, University of Birmingham, Birmingham, UK
Peter Hawkey
- Miao He
Search author on:PubMed Google Scholar
- Fabio Miyajima
Search author on:PubMed Google Scholar
- Paul Roberts
Search author on:PubMed Google Scholar
- Louise Ellison
Search author on:PubMed Google Scholar
- Derek J Pickard
Search author on:PubMed Google Scholar
- Melissa J Martin
Search author on:PubMed Google Scholar
- Thomas R Connor
Search author on:PubMed Google Scholar
- Simon R Harris
Search author on:PubMed Google Scholar
- Derek Fairley
Search author on:PubMed Google Scholar
- Kathleen B Bamford
Search author on:PubMed Google Scholar
- Stephanie D'Arc
Search author on:PubMed Google Scholar
- Jon Brazier
Search author on:PubMed Google Scholar
- Derek Brown
Search author on:PubMed Google Scholar
- John E Coia
Search author on:PubMed Google Scholar
- Gill Douce
Search author on:PubMed Google Scholar
- Dale Gerding
Search author on:PubMed Google Scholar
- Hee Jung Kim
Search author on:PubMed Google Scholar
- Tse Hsien Koh
Search author on:PubMed Google Scholar
- Haru Kato
Search author on:PubMed Google Scholar
- Mitsutoshi Senoh
Search author on:PubMed Google Scholar
- Tom Louie
Search author on:PubMed Google Scholar
- Stephen Michell
Search author on:PubMed Google Scholar
- Emma Butt
Search author on:PubMed Google Scholar
- Sharon J Peacock
Search author on:PubMed Google Scholar
- Nick M Brown
Search author on:PubMed Google Scholar
- Tom Riley
Search author on:PubMed Google Scholar
- Glen Songer
Search author on:PubMed Google Scholar
- Mark Wilcox
Search author on:PubMed Google Scholar
- Munir Pirmohamed
Search author on:PubMed Google Scholar
- Ed Kuijper
Search author on:PubMed Google Scholar
- Peter Hawkey
Search author on:PubMed Google Scholar
- Brendan W Wren
Search author on:PubMed Google Scholar
- Gordon Dougan
Search author on:PubMed Google Scholar
- Julian Parkhill
Search author on:PubMed Google Scholar
- Trevor D Lawley
Search author on:PubMed Google Scholar
Contributions
M.H. analyzed the data. T.D.L., M.H., G. Dougan, B.W.W. and J.P. were involved in the study design. F.M., P.R., L.E., D.J.P., M.J.M., D.F., K.B.B., S.D., J.B., D.B., J.E.C., G. Douce, D.G., H.J.K., T.H.K., H.K., M.S., T.L., S.M., E.B., S.J.P., N.M.B., T.R., G.S., M.W., M.P., E.K., P.H. and B.W.W. were involved in isolate collection and DNA extraction. T.R.C. contributed to Bayesian analysis. M.H., J.P., T.D.L., G. Dougan, T.R.C. and S.R.H. contributed to data interpretation. M.H., J.P., T.D.L. and G. Dougan wrote the manuscript.
Corresponding authors
Correspondence toJulian Parkhill orTrevor D Lawley.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–8, Supplementary Tables 1–6 and Supplementary Note (PDF 1606 kb)
Rights and permissions
About this article
Cite this article
He, M., Miyajima, F., Roberts, P.et al. Emergence and global spread of epidemic healthcare-associatedClostridium difficile.Nat Genet45, 109–113 (2013). https://doi.org/10.1038/ng.2478
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
A commensal protozoan attenuates Clostridioides difficile pathogenesis in mice via arginine-ornithine metabolism and host intestinal immune response
- Huan Yang
- Xiaoxiao Wu
- Bing Gu
Nature Communications (2024)
Nifty new tools for microbiome treatment design
- Jeroen Raes
Nature Reviews Gastroenterology & Hepatology (2023)
C. difficile intoxicates neurons and pericytes to drive neurogenic inflammation
- John Manion
- Melissa A. Musser
- Min Dong
Nature (2023)
Decoding a cryptic mechanism of metronidazole resistance among globally disseminated fluoroquinolone-resistant Clostridioides difficile
- Abiola O. Olaitan
- Chetna Dureja
- Julian G. Hurdle
Nature Communications (2023)
Screening for Asymptomatic Clostridioides difficile Carriage Among Hospitalized Patients: A Narrative Review
- Mayan Gilboa
- Nadav Baharav
- Dafna Yahav
Infectious Diseases and Therapy (2023)


