Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Letter
  • Published:

Emergence and global spread of epidemic healthcare-associatedClostridium difficile

Nature Geneticsvolume 45pages109–113 (2013)Cite this article

Subjects

Abstract

EpidemicC. difficile (027/BI/NAP1) has rapidly emerged in the past decade as the leading cause of antibiotic-associated diarrhea worldwide. However, the key events in evolutionary history leading to its emergence and the subsequent patterns of global spread remain unknown. Here, we define the global population structure ofC. difficile 027/BI/NAP1 using whole-genome sequencing and phylogenetic analysis. We show that two distinct epidemic lineages, FQR1 and FQR2, not one as previously thought, emerged in North America within a relatively short period after acquiring the same fluoroquinolone resistance–conferring mutation and a highly related conjugative transposon. The two epidemic lineages showed distinct patterns of global spread, and the FQR2 lineage spread more widely, leading to healthcare-associated outbreaks in the UK, continental Europe and Australia. Our analysis identifies key genetic changes linked to the rapid transcontinental dissemination of epidemicC. difficile 027/BI/NAP1 and highlights the routes by which it spreads through the global healthcare system.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogeny ofC. difficile 027/BI/NAP1 based on the genotype at core genome SNPs.
Figure 2: Transmission events inferred for epidemicC. difficile 027/BI/NAP1.

Similar content being viewed by others

References

  1. Bartlett, J.G.Clostridium difficile: progress and challenges.Ann. NY Acad. Sci.1213, 62–69 (2010).

    Article PubMed  Google Scholar 

  2. Kelly, C.P. & LaMont, J.T.Clostridium difficile—more difficult than ever.N. Engl. J. Med.359, 1932–1940 (2008).

    Article CAS PubMed  Google Scholar 

  3. Kuijper, E.J., Coignard, B. & Tull, P. Emergence ofClostridium difficile–associated disease in North America and Europe.Clin. Microbiol. Infect.12 (suppl. 6), 2–18 (2006).

    Article CAS PubMed  Google Scholar 

  4. Warny, M. et al. Toxin production by an emerging strain ofClostridium difficile associated with outbreaks of severe disease in North America and Europe.Lancet366, 1079–1084 (2005).

    Article CAS PubMed  Google Scholar 

  5. Riggs, M.M. et al. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemicClostridium difficile strains among long-term care facility residents.Clin. Infect. Dis.45, 992–998 (2007).

    Article PubMed  Google Scholar 

  6. Clements, A.C., Magalhaes, R.J., Tatem, A.J., Paterson, D.L. & Riley, T.V.Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread.Lancet Infect. Dis.10, 395–404 (2010).

    Article PubMed PubMed Central  Google Scholar 

  7. McDonald, L.C. et al. An epidemic, toxin gene-variant strain ofClostridium difficile.N. Engl. J. Med.353, 2433–2441 (2005).

    Article CAS PubMed  Google Scholar 

  8. Loo, V.G. et al. A predominantly clonal multi-institutional outbreak ofClostridium difficile–associated diarrhea with high morbidity and mortality.N. Engl. J. Med.353, 2442–2449 (2005).

    Article CAS PubMed  Google Scholar 

  9. Muto, C.A. et al. A large outbreak ofClostridium difficile–associated disease with an unexpected proportion of deaths and colectomies at a teaching hospital following increased fluoroquinolone use.Infect. Control Hosp. Epidemiol.26, 273–280 (2005).

    Article PubMed  Google Scholar 

  10. Pépin, J., Valiquette, L. & Cossette, B. Mortality attributable to nosocomialClostridium difficile–associated disease during an epidemic caused by a hypervirulent strain in Quebec.CMAJ173, 1037–1042 (2005).

    Article PubMed PubMed Central  Google Scholar 

  11. O'Connor, J.R., Johnson, S. & Gerding, D.N.Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain.Gastroenterology136, 1913–1924 (2009).

    Article CAS PubMed  Google Scholar 

  12. Brazier, J.S. et al. Distribution and antimicrobial susceptibility patterns ofClostridium difficile PCR ribotypes in English hospitals, 2007–08.Euro Surveill.13 pii: 19000 (2008).

  13. Bauer, M.P. et al.Clostridium difficile infection in Europe: a hospital-based survey.Lancet377, 63–73 (2011).

    Article PubMed  Google Scholar 

  14. Kuijper, E.J. et al. Update ofClostridium difficile infection due to PCR ribotype 027 in Europe, 2008.Euro Surveill.13 pii: 18942 (2008).

  15. Richards, M. et al. Severe infection withClostridium difficile PCR ribotype 027 acquired in Melbourne, Australia.Med. J. Aust.194, 369–371 (2011).

    Article PubMed  Google Scholar 

  16. Stabler, R.A. et al. Comparative genome and phenotypic analysis ofClostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium.Genome Biol.10, R102 (2009).

    Article PubMed PubMed Central  Google Scholar 

  17. Croucher, N.J. et al. Rapid pneumococcal evolution in response to clinical interventions.Science331, 430–434 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  18. Harris, S.R. et al. Evolution of MRSA during hospital transmission and intercontinental spread.Science327, 469–474 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Pearson, T. et al. Phylogenetic discovery bias inBacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing.Proc. Natl. Acad. Sci. USA101, 13536–13541 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  20. Spigaglia, P., Carattoli, A., Barbanti, F. & Mastrantonio, P. Detection ofgyrA andgyrB mutations inClostridium difficile isolates by real-time PCR.Mol. Cell. Probes24, 61–67 (2010).

    Article CAS PubMed  Google Scholar 

  21. Kim, H. et al. Emergence ofClostridium difficile ribotype 027 in Korea.Korean J. Lab. Med.31, 191–196 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Lemey, P., Rambaut, A., Drummond, A.J. & Suchard, M.A. Bayesian phylogeography finds its roots.PLOS Comput. Biol.5, e1000520 (2009).

    Article PubMed PubMed Central  Google Scholar 

  23. Dallal, R.M. et al. FulminantClostridium difficile: an underappreciated and increasing cause of death and complications.Ann. Surg.235, 363–372 (2002).

    Article PubMed PubMed Central  Google Scholar 

  24. MacCannell, D.R. et al. Molecular analysis ofClostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada.J. Clin. Microbiol.44, 2147–2152 (2006).

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Drummond, A.J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees.BMC Evol. Biol.7, 214 (2007).

    Article PubMed PubMed Central  Google Scholar 

  26. Nyč, O., Pituch, H., Matejkova, J., Obuch-Woszczatynski, P. & Kuijper, E.J.Clostridium difficile PCR ribotype 176 in the Czech Republic and Poland.Lancet377, 1407 (2011).

    Article PubMed  Google Scholar 

  27. Brazier, J.S.Clostridium difficile: the anaerobe that made the grade.Anaerobe18, 197–199 (2012).

    Article PubMed  Google Scholar 

  28. Carter, G.P., Awad, M.M., Kelly, M.L., Rood, J.I. & Lyras, D. TcdB or not TcdB: a tale of twoClostridium difficile toxins.Future Microbiol.6, 121–123 (2011).

    Article PubMed  Google Scholar 

  29. Sebaihia, M. et al. The multidrug-resistant human pathogenClostridium difficile has a highly mobile, mosaic genome.Nat. Genet.38, 779–786 (2006).

    Article PubMed  Google Scholar 

  30. He, M. et al. Evolutionary dynamics ofClostridium difficile over short and long time scales.Proc. Natl. Acad. Sci. USA107, 7527–7532 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  31. Brouwer, M.S.M., Warburton, P.J., Roberts, A.P., Mullany, P. & Allan, E. Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains ofClostridium difficile.PLoS ONE6, e23014 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  32. Linder, J.A., Huang, E.S., Steinman, M.A., Gonzales, R. & Stafford, R.S. Fluoroquinolone prescribing in the United States: 1995 to 2002.Am. J. Med.118, 259–268 (2005).

    Article PubMed  Google Scholar 

  33. Köser, C.U. et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak.N. Engl. J. Med.366, 2267–2275 (2012).

    Article PubMed PubMed Central  Google Scholar 

  34. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics25, 1754–1760 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  35. Li, H. et al. The Sequence Alignment/Map format and SAMtools.Bioinformatics25, 2078–2079 (2009).

    PubMed PubMed Central  Google Scholar 

  36. Kurtz, S. et al. REPuter: the manifold applications of repeat analysis on a genomic scale.Nucleic Acids Res.29, 4633–4642 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  37. Kurtz, S. et al. Versatile and open software for comparing large genomes.Genome Biol.5, R12 (2004).

    Article PubMed PubMed Central  Google Scholar 

  38. Posada, D. jModelTest: phylogenetic model averaging.Mol. Biol. Evol.25, 1253–1256 (2008).

    Article CAS PubMed  Google Scholar 

  39. Huson, D.H. & Bryant, D. Application of phylogenetic networks in evolutionary studies.Mol. Biol. Evol.23, 254–267 (2006).

    Article CAS PubMed  Google Scholar 

  40. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Syst. Biol.52, 696–704 (2003).

    Article PubMed  Google Scholar 

  41. Suchard, M.A., Weiss, R.E. & Sinsheimer, J.S. Bayesian selection of continuous-time Markov chain evolutionary models.Mol. Biol. Evol.18, 1001–1013 (2001).

    Article CAS PubMed  Google Scholar 

  42. Zerbino, D.R. & Birney, E. Velvet: algorithms forde novo short read assembly using de Bruijn graphs.Genome Res.18, 821–829 (2008).

    Article CAS PubMed PubMed Central  Google Scholar 

  43. Carver, T.J. et al. ACT: the Artemis Comparison Tool.Bioinformatics21, 3422–3423 (2005).

    Article CAS PubMed  Google Scholar 

  44. Morelli, G. et al.Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity.Nat. Genet.42, 1140–1143 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  45. Drummond, A.J., Rambaut, A., Shapiro, B. & Pybus, O.G. Bayesian coalescent inference of past population dynamics from molecular sequences.Mol. Biol. Evol.22, 1185–1192 (2005).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the European Study Group ofClostridium difficile (ESGCD), a working group of ESCMID (European Society of Clinical Microbiology and Infectious Diseases), including F. Barbut, T. Eckmanns, M.L. Lambert, F. Fitzpatrick, C. Wiuff, H. Pituch, P. Reichert, A.F. Widmer, F. Allerberger, D.W. Notermans, M. Delmée, R. Frei, O. Lyytikäinen, A. Ingebretsen and I.R. Poxton. We thank the Wellcome Trust Sanger Institute sequencing and informatics teams. This project was funded by the Wellcome Trust (grants 098051 and 086418), a Medical Research Council New Investigator Research Grant (T.D.L.; grant 93614) and the Scottish Infection Research Network. We acknowledge funding from the National Institute for Health Research (NIHR) Biomedical Research Centre in Liverpool. Both F.M. and P.R. were supported by the Liverpool BRC (Biomedical Research Centre). M.P. is an NIHR Senior Investigator.

Author information

Authors and Affiliations

  1. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK

    Miao He, Louise Ellison, Derek J Pickard, Thomas R Connor, Simon R Harris, Sharon J Peacock, Gordon Dougan, Julian Parkhill & Trevor D Lawley

  2. Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK

    Fabio Miyajima, Paul Roberts & Munir Pirmohamed

  3. University of Liverpool and Royal Liverpool and Broadgreen University Hospital National Health Service (NHS) Trust, Liverpool, UK

    Fabio Miyajima, Paul Roberts & Munir Pirmohamed

  4. Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK

    Melissa J Martin & Brendan W Wren

  5. Belfast Health and Social Trust, Belfast, UK

    Derek Fairley

  6. Department of Infectious Diseases and Immunity, Imperial College London, London, UK

    Kathleen B Bamford & Stephanie D'Arc

  7. Department of Bacteriology, Imperial College Healthcare NHS Trust, London, UK

    Kathleen B Bamford & Stephanie D'Arc

  8. Anaerobic Reference Laboratory, Cardiff, UK

    Jon Brazier

  9. Scottish Salmonella, Shigella and Clostridium difficile Reference Laboratory, Glasgow, UK

    Derek Brown, John E Coia & Gill Douce

  10. Hines VA Hospital, Hines, Illinois, USA

    Dale Gerding

  11. College of Medicine, Yonsei University, Seoul, South Korea

    Hee Jung Kim

  12. Department of Pathology, Singapore General Hospital, Singapore

    Tse Hsien Koh

  13. Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan

    Haru Kato & Mitsutoshi Senoh

  14. Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada

    Tom Louie

  15. College of Life and Environmental Sciences, University of Exeter, Exeter, UK

    Stephen Michell & Emma Butt

  16. Department of Medicine, University of Cambridge, Cambridge, UK

    Sharon J Peacock

  17. Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK

    Sharon J Peacock & Nick M Brown

  18. Health Protection Agency, London, UK

    Sharon J Peacock & Nick M Brown

  19. School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia

    Tom Riley

  20. Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA

    Glen Songer

  21. Healthcare Associate Infection Research Group, University of Leeds, Leeds, UK

    Mark Wilcox

  22. Department of Experimental Microbiology, Leiden University Medical Centre, Leiden, The Netherlands

    Ed Kuijper

  23. School of Immunity and Infection, University of Birmingham, Birmingham, UK

    Peter Hawkey

Authors
  1. Miao He
  2. Fabio Miyajima
  3. Paul Roberts
  4. Louise Ellison
  5. Derek J Pickard
  6. Melissa J Martin
  7. Thomas R Connor
  8. Simon R Harris
  9. Derek Fairley
  10. Kathleen B Bamford
  11. Stephanie D'Arc
  12. Jon Brazier
  13. Derek Brown
  14. John E Coia
  15. Gill Douce
  16. Dale Gerding
  17. Hee Jung Kim
  18. Tse Hsien Koh
  19. Haru Kato
  20. Mitsutoshi Senoh
  21. Tom Louie
  22. Stephen Michell
  23. Emma Butt
  24. Sharon J Peacock
  25. Nick M Brown
  26. Tom Riley
  27. Glen Songer
  28. Mark Wilcox
  29. Munir Pirmohamed
  30. Ed Kuijper
  31. Peter Hawkey
  32. Brendan W Wren
  33. Gordon Dougan
  34. Julian Parkhill
  35. Trevor D Lawley

Contributions

M.H. analyzed the data. T.D.L., M.H., G. Dougan, B.W.W. and J.P. were involved in the study design. F.M., P.R., L.E., D.J.P., M.J.M., D.F., K.B.B., S.D., J.B., D.B., J.E.C., G. Douce, D.G., H.J.K., T.H.K., H.K., M.S., T.L., S.M., E.B., S.J.P., N.M.B., T.R., G.S., M.W., M.P., E.K., P.H. and B.W.W. were involved in isolate collection and DNA extraction. T.R.C. contributed to Bayesian analysis. M.H., J.P., T.D.L., G. Dougan, T.R.C. and S.R.H. contributed to data interpretation. M.H., J.P., T.D.L. and G. Dougan wrote the manuscript.

Corresponding authors

Correspondence toJulian Parkhill orTrevor D Lawley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–6 and Supplementary Note (PDF 1606 kb)

Rights and permissions

About this article

Cite this article

He, M., Miyajima, F., Roberts, P.et al. Emergence and global spread of epidemic healthcare-associatedClostridium difficile.Nat Genet45, 109–113 (2013). https://doi.org/10.1038/ng.2478

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Associated content

Clostridium difficile healthcare-associated epidemics

  • David A Rasko
Nature GeneticsNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp