Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Genetics
  • Letter
  • Published:

The genetic landscape of mutations in Burkitt lymphoma

Nature Geneticsvolume 44pages1321–1325 (2012)Cite this article

Subjects

Abstract

Burkitt lymphoma is characterized by deregulation ofMYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, includingID3,GNA13,RET,PIK3R1 and the SWI/SNF genesARID1A andSMARCA4. Our data implicate a number of genes in cancer for the first time, includingCCT6B,SALL3,FTCD andPC.ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally thatID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicatesID3 as a new tumor suppressor gene.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results from whole-genome sequencing of a Burkitt lymphoma tumor and germline DNA.
Figure 2: Exome sequencing in Burkitt lymphoma.
Figure 3: Patterns of exonic mutations in Burkitt lymphoma compared to DLBCL.
Figure 4: RecurrentID3 mutations in Burkitt lymphomas.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Dave, S.S. et al. Molecular diagnosis of Burkitt's lymphoma.N. Engl. J. Med.354, 2431–2442 (2006).

    Article CAS PubMed  Google Scholar 

  2. Schiffman, J.D. et al. Genome wide copy number analysis of paediatric Burkitt lymphoma using formalin-fixed tissues reveals a subset with gain of chromosome 13q and corresponding miRNA over expression.Br. J. Haematol.155, 477–486 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  3. Hummel, M. et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling.N. Engl. J. Med.354, 2419–2430 (2006).

    Article CAS PubMed  Google Scholar 

  4. Swerdlow, S.H. et al.WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn. (IARC Press, Lyon, France, 2008).

  5. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics.Genome Res.19, 1639–1645 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  6. Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation.Nat. Methods6, 677–681 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  7. Pleasance, E.D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure.Nature463, 184–190 (2010).

    Article CAS PubMed  Google Scholar 

  8. Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation.Nucleic Acids Res.29, 308–311 (2001).

    Article CAS PubMed PubMed Central  Google Scholar 

  9. Yi, X. et al. Sequencing of 50 human exomes reveals adaptation to high altitude.Science329, 75–78 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  10. Li, Y. et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants.Nat. Genet.42, 969–972 (2010).

    Article CAS PubMed  Google Scholar 

  11. Ng, S.B. et al. Targeted capture and massively parallel sequencing of 12 human exomes.Nature461, 272–276 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  12. Siva, N. 1000 Genomes project.Nat. Biotechnol.26, 256 (2008).

    Article PubMed  Google Scholar 

  13. Futreal, P.A. et al. A census of human cancer genes.Nat. Rev. Cancer4, 177–183 (2004).

    Article CAS PubMed PubMed Central  Google Scholar 

  14. Morin, R.D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma.Nature476, 298–303 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  15. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma.Nat. Genet.43, 830–837 (2011).

    CAS PubMed PubMed Central  Google Scholar 

  16. Lohr, J.G. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing.Proc. Natl. Acad. Sci. USA109, 3879–3884 (2012).

    Article CAS PubMed PubMed Central  Google Scholar 

  17. Ngo, V.N. et al. Oncogenically activeMYD88 mutations in human lymphoma.Nature470, 115–119 (2011).

    Article CAS PubMed  Google Scholar 

  18. Wright, G. et al. A gene expression–based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma.Proc. Natl. Acad. Sci. USA100, 9991–9996 (2003).

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA102, 15545–15550 (2005).

    Article CAS PubMed PubMed Central  Google Scholar 

  20. Dalla-Favera, R., Martinotti, S., Gallo, R.C., Erikson, J. & Croce, C.M. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas.Science219, 963–967 (1983).

    Article CAS PubMed  Google Scholar 

  21. Little, C.D., Nau, M.M., Carney, D.N., Gazdar, A.F. & Minna, J.D. Amplification and expression of the c-myc oncogene in human lung cancer cell lines.Nature306, 194–196 (1983).

    Article CAS PubMed  Google Scholar 

  22. Münzel, P., Marx, D., Kochel, H., Schauer, A. & Bock, K.W. Genomic alterations of the c-myc protooncogene in relation to the overexpression of c-erbB2 and Ki-67 in human breast and cervix carcinomas.J. Cancer Res. Clin. Oncol.117, 603–607 (1991).

    Article PubMed  Google Scholar 

  23. Wang, Z.R., Liu, W., Smith, S.T., Parrish, R.S. & Young, S.R. c-myc and chromosome 8 centromere studies of ovarian cancer by interphase FISH.Exp. Mol. Pathol.66, 140–148 (1999).

    Article CAS PubMed  Google Scholar 

  24. Augenlicht, L.H. et al. Low-level c-myc amplification in human colonic carcinoma cell lines and tumors: a frequent, p53-independent mutation associated with improved outcome in a randomized multi-institutional trial.Cancer Res.57, 1769–1775 (1997).

    CAS PubMed  Google Scholar 

  25. Kee, B.L. E and ID proteins branch out.Nat. Rev. Immunol.9, 175–184 (2009).

    Article CAS PubMed  Google Scholar 

  26. Morin, R.D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin.Nat. Genet.42, 181–185 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  27. Jima, D.D. et al. Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs.Blood116, e118–e127 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  28. Cock, P.J., Fields, C.J., Goto, N., Heuer, M.L. & Rice, P.M. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants.Nucleic Acids Res.38, 1767–1771 (2010).

    Article CAS PubMed  Google Scholar 

  29. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.Genome Res.20, 1297–1303 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  30. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform.Bioinformatics26, 589–595 (2010).

    Article PubMed PubMed Central  Google Scholar 

  31. Parmigiani, G. et al. Design and analysis issues in genome-wide somatic mutation studies of cancer.Genomics93, 17–21 (2009).

    Article CAS PubMed  Google Scholar 

  32. Robinson, J.T. et al. Integrative genomics viewer.Nat. Biotechnol.29, 24–26 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  33. Ge, D. et al. SVA: software for annotating and visualizing sequenced human genomes.Bioinformatics27, 1998–2000 (2011).

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Reva, B., Antipin, Y. & Sander, C. Determinants of protein function revealed by combinatorial entropy optimization.Genome Biol.8, R232 (2007).

    Article PubMed PubMed Central  Google Scholar 

  35. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations.Nat. Methods7, 248–249 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  36. Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.Nat. Protoc.4, 1073–1081 (2009).

    Article CAS PubMed  Google Scholar 

  37. Needleman, S.B. & Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins.J. Mol. Biol.48, 443–453 (1970).

    Article CAS PubMed  Google Scholar 

  38. Pruitt, K.D. et al. The consensus coding sequence (CCDS) project: identifying a common protein-coding gene set for the human and mouse genomes.Genome Res.19, 1316–1323 (2009).

    Article CAS PubMed PubMed Central  Google Scholar 

  39. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features.Bioinformatics26, 841–842 (2010).

    Article CAS PubMed PubMed Central  Google Scholar 

  40. Wood, L.D. et al. The genomic landscapes of human breast and colorectal cancers.Science318, 1108–1113 (2007).

    Article CAS PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Sunay and the Georgia Cancer Coalition for support in sample collection. A.B.M. was supported by the Hertz Foundation. This work was supported through grants R21CA1561686 and R01CA136895 from the National Cancer Institute (S.S.D.). S.S.D. was also supported by the American Cancer Society. We gratefully acknowledge the generous support of C. Stiefel and D. Stiefel.

Author information

Authors and Affiliations

  1. Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, USA

    Cassandra Love, Zhen Sun, Dereje Jima, Guojie Li, Jenny Zhang, Adrienne Greenough, Andrea B Moffitt, Matthew McKinney, Vladimir Grubor & Sandeep S Dave

  2. Department of Pathology, University of Utah, Salt Lake City, Utah, USA

    Rodney Miles

  3. Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA

    Kristy L Richards & Cherie H Dunphy

  4. Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China

    William W L Choi & Gopesh Srivastava

  5. Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA

    Patricia L Lugar, David A Rizzieri, Anand S Lagoo, Matthew McKinney & Sandeep S Dave

  6. Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA

    Patricia L Lugar, David A Rizzieri, Anand S Lagoo, Matthew McKinney & Sandeep S Dave

  7. Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, USA

    Leon Bernal-Mizrachi, Karen P Mann & Christopher R Flowers

  8. Department of Medicine, Imperial College, London, UK

    Kikkeri N Naresh

  9. Department of Medicine, University of Massachusetts, Worcester, Massachusetts, USA

    Andrew M Evens

  10. Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA

    Amy Chadburn & Leo I Gordon

  11. Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA

    Magdalena B Czader

  12. Department of Hematology, Baylor University Medical Center, Dallas, Texas, USA

    Javed I Gill

  13. Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio, USA

    Eric D Hsi

  14. Department of Statistical Science, Duke University, Durham, North Carolina, USA

    Anjishnu Banerjee & David B Dunson

  15. Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, USA

    Shawn Levy

Authors
  1. Cassandra Love

    You can also search for this author inPubMed Google Scholar

  2. Zhen Sun

    You can also search for this author inPubMed Google Scholar

  3. Dereje Jima

    You can also search for this author inPubMed Google Scholar

  4. Guojie Li

    You can also search for this author inPubMed Google Scholar

  5. Jenny Zhang

    You can also search for this author inPubMed Google Scholar

  6. Rodney Miles

    You can also search for this author inPubMed Google Scholar

  7. Kristy L Richards

    You can also search for this author inPubMed Google Scholar

  8. Cherie H Dunphy

    You can also search for this author inPubMed Google Scholar

  9. William W L Choi

    You can also search for this author inPubMed Google Scholar

  10. Gopesh Srivastava

    You can also search for this author inPubMed Google Scholar

  11. Patricia L Lugar

    You can also search for this author inPubMed Google Scholar

  12. David A Rizzieri

    You can also search for this author inPubMed Google Scholar

  13. Anand S Lagoo

    You can also search for this author inPubMed Google Scholar

  14. Leon Bernal-Mizrachi

    You can also search for this author inPubMed Google Scholar

  15. Karen P Mann

    You can also search for this author inPubMed Google Scholar

  16. Christopher R Flowers

    You can also search for this author inPubMed Google Scholar

  17. Kikkeri N Naresh

    You can also search for this author inPubMed Google Scholar

  18. Andrew M Evens

    You can also search for this author inPubMed Google Scholar

  19. Amy Chadburn

    You can also search for this author inPubMed Google Scholar

  20. Leo I Gordon

    You can also search for this author inPubMed Google Scholar

  21. Magdalena B Czader

    You can also search for this author inPubMed Google Scholar

  22. Javed I Gill

    You can also search for this author inPubMed Google Scholar

  23. Eric D Hsi

    You can also search for this author inPubMed Google Scholar

  24. Adrienne Greenough

    You can also search for this author inPubMed Google Scholar

  25. Andrea B Moffitt

    You can also search for this author inPubMed Google Scholar

  26. Matthew McKinney

    You can also search for this author inPubMed Google Scholar

  27. Anjishnu Banerjee

    You can also search for this author inPubMed Google Scholar

  28. Vladimir Grubor

    You can also search for this author inPubMed Google Scholar

  29. Shawn Levy

    You can also search for this author inPubMed Google Scholar

  30. David B Dunson

    You can also search for this author inPubMed Google Scholar

  31. Sandeep S Dave

    You can also search for this author inPubMed Google Scholar

Contributions

C.L., R.M., K.L.R., C.H.D., W.W.L.C., G.S., P.L.L., D.A.R., A.S.L., L.B.-M., K.P.M., C.R.F., K.N.N., A.M.E., A.C., L.I.G., M.B.C., J.I.G., E.D.H., J.Z., G.L., A.G., M.M., S.L. and S.S.D. performed research and edited the manuscript. C.L., J.Z., A.B.M., D.J., Z.S., V.G., A.B., D.B.D. and S.S.D. analyzed data. C.L. and S.S.D. wrote the manuscript.

Corresponding author

Correspondence toSandeep S Dave.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note and Supplementary Figures 1–10 (PDF 4090 kb)

Supplementary Table 1

Burkitt lymphoma whole genome sequencing variants (XLS 2765 kb)

Supplementary Table 2

Sanger sequence validation (XLS 66 kb)

Supplementary Table 3

Recurrently mutated genes in Burkitt lymphoma (XLS 50 kb)

Supplementary Table 4

Individual variants found in Burkitt lymphoma (XLS 217 kb)

Supplementary Table 5

Patient data (XLS 42 kb)

Supplementary Table 6

Primer sequences (XLS 30 kb)

Rights and permissions

About this article

Cite this article

Love, C., Sun, Z., Jima, D.et al. The genetic landscape of mutations in Burkitt lymphoma.Nat Genet44, 1321–1325 (2012). https://doi.org/10.1038/ng.2468

Download citation

Access through your institution
Buy or subscribe

Associated content

New pathogenic mechanisms in Burkitt lymphoma

  • Elias Campo
Nature GeneticsNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing: Cancer

Sign up for theNature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly.Sign up for Nature Briefing: Cancer

[8]ページ先頭

©2009-2025 Movatter.jp